
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Excitations of the ferroelectric order
Ping Tang, Ryo Iguchi, Ken-ichi Uchida, and Gerrit E. W. Bauer

Phys. Rev. B 106, L081105 — Published  8 August 2022
DOI: 10.1103/PhysRevB.106.L081105

https://dx.doi.org/10.1103/PhysRevB.106.L081105


Excitations of the ferroelectric order

Ping Tang1, Ryo Iguchi2, Ken-ichi Uchida2,3,4, and Gerrit E. W. Bauer1,3,4,5
1
WPI-AIMR, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan

2
National Institute for Materials Science, Tsukuba 305-0047, Japan

3
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
4
Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan and

5
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands

We identify the bosonic excitations in ferroelectrics that carry electric dipoles from the phe-
nomenological Landau-Ginzburg-Devonshire theory. The “ferron” quasi-particles emerge from the
concerted action of anharmonicity and broken inversion symmetry. In contrast to magnons, the
transverse excitations of the magnetic order, the ferrons in displacive ferroelectrics are longitudinal
with respect to the ferroelectric order. Based on the ferron spectrum, we predict temperature depen-
dent pyroelectric and electrocaloric properties, electric-field-tunable heat and polarization transport,
and ferron-photon hybridization.

The spontaneous emergence of order in condensed mat-
ter below a critical temperature breaks a symmetry, while
the low-energy collective excitations of the order parame-
ter tend to restore it. The latter can often be modeled by
non-interacting quasi-particles that in extended system
are plane waves with a well-defined dispersion relation.
Their lifetime is finite due to self-interactions or coupling
with the environment. Wave packets of these quasiparti-
cles transport energy, momentum, and order parameter
with the group velocity from the dispersion relations.

Lattice vibrations disturb the translational symmetry
of homogeneous elastic media, and phonons are the asso-
ciated quasi-particles. The excitations of a magnetic or-
der are spin waves. The associated quanta, the magnons,
carry magnetic moments that reduce the magnetization
and can transport spin angular momentum and energy
[1, 2]. Gradients of temperature and magnon chemical
potential [3, 4] induce magnon spin and heat currents,
with associated spin Seebeck [5] and spin Peltier [6, 7]
effects.

Ferroelectric materials exhibit ordered electric dipoles
with unique dielectric, pyroelectric, piezoelectric and
electrocaloric properties [8], with many analogies with
ferromagnets [9]. However, to the best of our knowl-
edge, the quasi-particles associated to the ferroelectric
order have so far remained elusive. We previously ad-
dressed the elementary excitations of ferroelectrics or
“ferrons” and the associated polarization and heat trans-
port [10, 11] by a phenomenological diffusion equation
and a simple ball-spring model. The latter was inspired
by magnons, which are transverse fluctuations that pre-
serve the magnitude of the local magnetization. The
assumption of local electric dipoles with fixed modu-
lus should hold for order-disorder ferroelectrics such as
NaNO2 that are formed by stable molecular dipoles [12].
However, most ferroelectrics are “displacive”, i.e., formed
by the condensation of a particular soft phonon [13, 14]
with a flexible dipole moment (or are of mixed type [15–
18]), and cannot be described by our previous model.

In this work, we formulate the quasi-particle exci-

FIG. 1. Landau potential energy landscape for polarization
fluctuations in ferroelectrics (green arrows). (a) Above the
critical temperature Tc in the paraelectric phase the potential
is symmetric for the fluctuations around the minimum P0 = 0
and the average of the fluctuations 〈δP 〉 = 〈P − P0〉 = 0
even in the presence of anharmonicity (see Eq. (8)). (b)
Below Tc the ferroelectric order breaks inversion symmetry
and polarization fluctuates around finite ±P0 (e.g., the pos-
itive one in the figure) in an asymmetric potential, there-
fore carrying a non-vanishing average electric dipoles, i.e.,
〈δP 〉 = 〈P − P0〉 < 0.

tations of displacive ferroelectrics in the framework of
the Landau-Ginzburg-Devonshire (LGD) theory [19, 20],
which has been widely used to model ferroelectrics over
a broad temperature range [21]. These ferrons are lon-
gitudinal rather than transverse fluctuations and carry
electric polarization because of the non-parabolicity of
the free energy around the local minima below the phase
transition (see Fig. 1). The parameters of the LGD
free energy are well-known for many materials, which
allows quantitative predictions of their thermodynamic
and transport properties.

The LGD free energy F (P) for a ferroelectric is a func-
tional of the macroscopic polarization texture P(r) that
obeys the crystal symmetry of the parent paraelectric
phase [22]. For a uniaxial ferroelectric formed out of a
centrosymmetric paraelectric phase the (Gibbs) free en-
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ergy is an integral over the sample volume V [23]:

F =

∫
d3r

(
g

2
(∇P)2 +

α

2
P 2 +

β

4
P 4 +

λ

6
P 6 −E ·P

)
,

(1)
where α, β and λ > 0 are the Landau coefficients, g >
0 is the Ginzburg-type parameter that accounts for the
energy cost of polarization textures and E an external
electric field. A constant spontaneous polarization (P0)
minimizes F (P) of a uniform medium when

αP0 + βP 3
0 + λP 5

0 = E (2)

where P0 (E) is the modulus of the vectors P0 (E) and
E‖P0. Below a critical temperature Tc the system orders
in a first (second)-order phase transition for β < 0 (β >

0) with P 2
0 =

(
−β +

√
β2 − 4αλ

)
/2λ for E = 0.

In the presence of fluctuations, the longitudinal polar-
ization dynamics (P‖P0) obeys the Landau-Khalatnikov-
Tani equation [24–27],

mp

∂2P

∂t2
+ γ

∂P

∂t
= −∂F

∂P
+ Eth, (3)

where mp = (ε0ω
2
p)−1 is the polarization inertia, ε0 the

vacuum dielectric constant, and γ a phenomenological
damping constant. The plasma frequency ωp depends
on the ionic masses Mi and charges Qi in the unit cell of
volume V0 as ω2

p = (ε0V0)−1
∑
iQ

2
i /Mi [26]. Eth(r, t) is a

Langevin noise field that obeys a fluctuation-dissipation
theorem [28],

〈Eth(q, ω)E∗th(q′, ω′)〉 =
(2π)4γ~ωδ(q− q′)δ(ω − ω′)

tanh(~ω/2kBT )
kBT�~ω→ (2π)42γkBTδ(q− q′)δ(ω − ω′), (4)

where 〈· · · 〉 is an ensemble average, Eth(q, ω) =∫
dt
∫
d3rEth(r, t)e−iq·r+iωt the Fourier component of

Eth(r, t) and the second line indicates the classical white
noise limit. Substituting the small fluctuations δP (r, t) =
P (r, t)− P0 into Eq. (3):

Ĝ−1δP = Eth −
(

3β + 10λP 2
0

)
P0δP

2 +O(δP 3) (5)

where Ĝ−1 ≡ mp∂
2
t + γ∂t − g∇

2 + (α + 3βP 2
0 + 5λP 4

0 )
is an inverse propagator. The non-linear terms on the
right-hand side of Eq. (5) are proportional to the anhar-
monicity parameters β and λ in Eq. (1). At temperatures
sufficiently below the Tc the fluctuations Eth are small
and we may solve Eq. (5) iteratively. To leading order,

δP = δPh −
(

3β + 10λP 2
0

)
P0ĜδP

2
h +O(E3

th) (6)

where δPh ≡ ĜEth are the harmonic thermal fluctua-
tions that on average do not change the polarization since

〈δPh〉 = 0. In Fourier space

δPh(q, ω) =
Eth(q, ω)

mp(ω
2
q − ω

2)− iωγ
(7)

where ωq = m−1/2p (α+3βP 2
0 +5λP 4

0 +gq2)1/2 is the dis-
persion relation. Assuming weak dissipation γ � mpωq,
Eqs. (4), (6) and (7) leads to fluctuations

〈δP 〉 = − ~(3β + 10λP 2
0 )P0

2mp(α+ 3βP 2
0 + 5λP 4

0 )

∫
d3q

(2π)3
1

ωq

coth
~ωq

2kBT

(8)
that suppress the ground state polarization P0 because
of the anharmonicity, see Fig. 1. We may quantize the
harmonic fluctuations as

δP̂h =

√
~

2mpV

∑
q

âq
eiq·r

√
ωq

+ H.c. (9)

where âq (â†q) represents the bosonic annihilation (cre-
ation) operator of “ferrons” with wave vector q and fre-
quency ωq. After substracting the zero-point fluctua-
tions, the elementary electric dipole carried by a single
ferron is δpq = 〈q|δP̂ |q〉 − 〈0|δP̂ |0〉, where |q〉 = â†q|0〉
and |0〉 the vacuum. By substituting Eq. (9) into Eq. (6),

δpq = − ~(3β + 10λP 2
0 )P0

mp(α+ 3βP 2
0 + 5λP 4

0 )

1

ωq

. (10)

Using the non-linear dielectric susceptibility χ =
∂P0/∂E = (α+3βP 2

0 +5λP 4
0 )−1 that follows from Eq. (2),

Eq. (10) can be rewritten as

δpq =
~

2mp

∂ lnχ

∂P0

1

ωq

. (11)

Eq. (10) and Eq. (11) agree with the intuitive relation

δpq = −
∂~ωq

∂E
(12)

which also holds for E 6= 0. According to Eq. (10) the
ferron electric dipole reduces P0 (i.e., ∂ lnχ/∂P0 < 0)
and emerges from the anharmonicity of the free energy
below the phase transition. As in order-disorder ferro-
electrics [10, 11] and in contrast to the magnetic dipole
associated to magnons, the electric dipole of the longitu-
dinal ferrons depends strongly and non-universally on the
wave vector. In the paraelectric phase, the spontaneous
polarization vanishes and hence δpq = 0, but a strong
enough applied external field polarizes the paraelectric
state and its elementary excitations as well.

The expansion to leading order in the amplitudes lim-
its quantitative predictions to temperatures sufficiently
below Tc. However, we may profit in the future from
the large knowledge base on computing phononic non-
linearities in complex materials [29].
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We assume dominance of a single-band soft mode that
triggers the symmetry-breaking structural phase transi-
tions to the ferroelectric state. In displacive ferroelectrics
this is the lowest soft optical phonon that vibrates par-
allel to P0. Hybridization with other, such as acoustic,
phonon modes can become significant for some physical
properties [30].

The free energy Eq. (1) does not introduce non-
parabolicities to the transverse oscillations, which there-
fore do not carry any dipolar moment. Order-disorder
ferroelectrics can also be treated by Landau theory, but
polarized fluctuations only emerge by introducing non-
linearities in the transverse amplitudes. At sufficiently
low temperatures this can conveniently be achieved by
the constraint |P| = P0, which to leading order gives rise
to a finite dipole of the transverse ferrons, analogous to
the magnetic moment of magnons [10, 11]. Longitudinal
and transverse ferrons may coexist in some multiaxial
materials.

Since the LGD parameters are well documented for
many ferroelectric materials [31–36], we are in an excel-
lent position to quantitatively study ferron-related ther-
modynamic, optical, and transport properties. Table I
summarizes the key information for selected displacive
ferroelectrics with perovskite crystal structure at room
temperature.

Pyroelectricity and electrocalorics. Pyroelectricity
(electrocalorics) is the change of polarization (entropy)
under a temperature (electric field) change [37–41]. They
are conventionally calculated directly by the LGD free
energy with linear temperature dependence of the Lan-
dau quadratic coefficient (α) [38, 41]. However, this ap-
proach is valid only near the phase transition. At lower
temperatures the fluctuations are well represented by the
ferrons, and α becomes temperature independent. The
total polarization is P (T ) = P (0) + ∆P (T ) with

∆P (T ) =

∫
d3q

(2π)3
f0
(
ξq
)
δpq

→ −~(3β + 10λP 2
0 )P0

(2πg)3/2m1/2
p

1

ξ
3/2
0

exp (−ξ0) , (13)

where f0(ξq) = [exp(ξq) − 1]−1 is the Planck distribu-
tion, ξq = ~ωq/kBT and in the second step we took
the low temperature limit ξ0 = ~ω0/kBT � 1 with

ω0 = m−1/2p (α + 3βP 2
0 + 5λP 4

0 )1/2 the ferron gap (at
E = 0). By disregarding the temperature dependence
of material parameters, the low-temperature pyroelectric
coefficient we arrive at the thermally activated form

∂∆P

∂T
→ − (~kB)1/2(3β + 10λP 2

0 )P0

(2πg)3/2(mpω0)1/2
1√
T

exp (−ξ0) .

(14)
The electrocaloric coefficient, i.e. the isothermal entropy
change with electric field, is according to the Maxwell

relation (
∂∆S

∂E

)
T

=

(
∂∆P

∂T

)
E

. (15)

The temperature dependence deviates strongly from
a Curie-Weiss power-law. Glass and Lines [42] derived
the scaling relation Eq. (14) in order to explain the
low-temperature pyroelectricity of LiNbO3 and LiTaO3,
thereby implicitly introducing the ferron concept for
equilibrium properties a long time ago. Lang et al. [43]
observed a negative pyroelectric coefficient in BaTiO3

ceramic at low temperature, whose absolute value in-
creases exponentially with temperature, in qualitative
agreement with Eq. (14). However, the experimental
∂∆P/∂T = −5 × 10−7 C/(m2K) at 4.9 K is much larger
than Eq. (14), which has been ascribed to a polarization
of acoustic phonons coupled to the soft mode [44, 45].
Polarization and heat transport by ferrons. We con-

sider here diffuse and ballistic ferron transport in bulk
ferroelectrics [10] and through constrictions [11], respec-
tively. In the former case we focus on homogeneous
single-domain ferroelectrics at local thermal equilibrium
with an electric field generated by internal polarization
and external charges. Electric field (∂E) and temper-
ature (∂T ) gradients set along the x direction induce
polarization

(
jp
)

and heat
(
jq
)

current densities. The
driving forces include non-equilibrium contributions from
polarization and heat accumulations that should be com-
puted self-consistently [10]. We can derive the polariza-
tion (σ) and thermal (κ) conductivities and the Seebeck
(Sd) and Peltier (Πd) coefficients in the linear response
relations (

−jp
jq

)
= σ

(
1 Sd

Πd κ/σ

)(
∂E
−∂T

)
(16)

by the Landau theory introduced above. The linearized
Boltzmann transport equation of the ferron gas in a con-
stant relaxation time approximation [46] yields

σ =
τ

~

∫
(vxq)2(δpq)2

(
− ∂f0
∂ωq

)
d3q

(2π)3

=
τ~

8π2m3/2
p g1/2

[
∂ lnχ

∂P0

]2{ √π
2 ξ
−3/2
0 e−ξ0 ,
π
16ξ
−1
0 ,

ξ0 � 1
ξ0 � 1

(17)

Sd =
τ

~(σT )

∫
(vxq)2(−δpq)~ωq

(
− ∂f0
∂ωq

)
d3q

(2π)3

=
τk2BT

12π2~(mpg)1/2σ

∂ lnχ

∂P0

{
3
√

π
2 ξ

1/2
0 e−ξ0 ,
π
2

3 ,

ξ0 � 1
ξ0 � 1

(18)

κ =
τ

~T

∫
(vxq)2(~ωq)2

(
− ∂f0
∂ωq

)
d3q

(2π)3

=
τk4BT

3m1/2
p

6π2~3g1/2

{
3
√

π
2 ξ

5/2
0 e−ξ0 ,

4π
4

15 ,

ξ0 � 1
ξ0 � 1

(19)
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and the Kelvin-Onsager relation Πd = TSd. Here τ is
the ferron relaxation time, vxq = ∂ωq/∂qx = gqx/(mpωq)
the group velocity in the tranport (x) direction. We may
define a Lorenz number

Ld ≡
κ

σT
=

4m2
pk

4
BT

2

~4

[
∂ lnχ

∂P0

]−2{
ξ40 ,

64π
3

45 ξ0,

ξ0 � 1
ξ0 � 1

that is material specific and, assuming that the other
parameters are approximately constant, scales with T−2

(T ) at low (high) temperatures.

Next, we consider a quasi-one dimensional ballistic fer-
roelectric wire that connects to reservoirs. Within the
linear response regime, the effective field (∆E) and tem-
perature (∆T ) differences between the reservoirs gener-
ate the polarization (Jp) and heat (Jq) currents as [11](

−Jp
Jq

)
= G

(
1 Sb

Πb K/G

)(
∆E
−∆T

)
, (20)

noting that the currents driven by an effective field dif-
ference are transient. The polarization (G) and ther-
mal (K) conductances and the ballistic Seebeck (Sb) and
Peltier (Πb = TSb) coefficients follow from the Landauer-
Büttiker formalism [11]:

G =
1

~

∫
(δpk)2

(
− ∂f0
∂ωk

)
dωk
2π

=
~χ

8πmp

[
∂ lnχ

∂P0

]2{
e−ξ0 ,
1
3ξ
−1
0 ,

ξ0 � 1
ξ0 � 1

(21)

Sb =
1

~(GT )

∫
(−δpk)~ωk

(
− ∂f0
∂ωk

)
dωk
2π

=
~

4πmp(GT )

∂ lnχ

∂P0

f0 (ξ0) (22)

K =
1

~T

∫
(~ωk)2

(
− ∂f0
∂ωk

)
dωk
2π

= K0

{
3

π
2 ξ

2
0e
−ξ0 ,

1,

ξ0 � 1
ξ0 � 1

(23)

where k is the wave vector of the ferrons propagating
along the wire with the dispersion relation ωk, K0 =
πk2BT/(6~) the single-mode quantum thermal conduc-
tance and the summation over transverse modes was re-
stricted to the lowest subband. The Lorenz number turns
out to be quite different

Lb ≡
K

GT
=

4

(Tχ)2

[
∂ lnχ

∂P0

]−2{
1,

π2ξ−10 ,
ξ0 � 1
ξ0 � 1

. (24)

All the above transport coefficients depend on an ap-
plied uniform electric field via the field-dependence of
P0 (see Eq. (2)). The integrand of the diffuse thermal
conductivity Eq. (19) depends on the field only via the

TABLE I. The material parameters introduced in the text for
selected perovskite ferroelectrics at room temperature.

BaTiO3 [35] PbTiO3 [31] LiNbO3 [33] units

α −5.544× 10
−2 −0.3416 −2.012 10

9
Jm/C

2

β −2.590 −0.29 3.608 10
9

Jm
5
/C

4

λ 4.802 0.1563 0 10
10

Jm
9
/C

6

g 5.1 2 [47] 5.39 [48] 10
−10

Jm
3
/C

2

mp 1.35 1.59 [49] 1.81 10
−18

Jms
2
/C

2

τ [50] 0.21 [51] 0.15 [52] 0.54 [53] ps

V0 66 63.18 317.73 Å
3

occupation numbers,

κ′ ≡ ∂κ
∂E

=
τ

T~2

∫
(vxq)2(~ωq)2δpq

∂2f0

∂ω2
q

d3q

(2π)3

=− σSd

{
ξ0,

3,

ξ0 � 1

ξ0 � 1
(25)

where the thermal conductance drops with a positive
electric field along P0 by electric “freeze out” of the ther-
mally excited ferrons. We also find

K ′ ≡ ∂K

∂E
= −ξ0 [1 + f0 (ξ0)]GSb. (26)

Thus the κ′ (K ′) together with the Ld (Lb) allows one to
access σ (G) and Sd (Sb).

Table II summarizes the numerical calculations of
the integral expressions of transport coefficients derived
above with the parameters given in Table I, in which
the integrals are cut-off by the Debye wave vector qD =

(6π2/V0)1/3. We observe that the experimental thermal
conductivities are much larger than the computed ones
because they are dominated by the acoustic phonons
and that the κ′ and K ′ agree well with the relations
κ′ ≈ −3σSd and Eq. (26), respectively.

The ferron dipole in BaTiO3 is about 6 times (one
order of magnitude) larger than in PbTiO3 (LiNbO3)
because of a larger anharmonicity (β and λ) relative to
the quadratic coefficient (α) in Eq. (10). Hence, the po-
larization transport coefficients and the field derivative
of the thermal conductivity (conductance) κ′ (K ′) are
largest in BaTiO3. A negative κ′ can provide evidence
for ferronic transport [57]. However, when comparing
with experiments several competing mechanisms should
be considered. While to leading order acoustic phonons
do not carry an electric dipole, the electric field also mod-
ulates the elastic parameters including the sound veloci-
ties by electrostriction and thereby heat transport, which
could be separated in prinicple by clamping the sample.
A second order effect of the electrostriction is a dynam-
ical coupling of the acoustic phonons with the ferrons
that preserves κ′ < 0 at low temperatures [30]. Finally,



5

TABLE II. The ferron gap (ω0) and dipole moment (δp0) at
the Γ-point and transport coefficients for the ferroelectrics in
Table I at room temperature and zero field. The spontaneous
electric dipole moment p0 = P0V0N with N the number of
unit cells and experimental total thermal conductivities (κ

exp
tot )

are given for comparison.

BaTiO3 PbTiO3 LiNbO3 units

ω0 20 32 47 THz

δp0 −2.75 −0.45 −0.15 eÅ

p0 1.09N 2.97N 14.8N eÅ

σ 1.0 3.4× 10
−2

7.8× 10
−3

10
−15

m/Ω

G 1.72 2.7× 10
−2

1.9× 10
−3

10
−24

m
2
/Ω

Sd 0.16 0.72 1.94 10
7

V/(Km)

Sb 0.04 0.32 1.18 10
7

V/(Km)

κ 2.03 0.74 1.02 W/(Km)

K 0.75 0.47 0.34 K0

κ
′ −4.99 −0.67 −0.42 10

−9
W/(KV)

K
′
/K0 −3.11 −0.42 −0.12 10

−9
m/V

κ
exp
tot 6.5 [54] 3.9 [55] 8.5 [56] W/(Km)

FIG. 2. The dispersion relations and the corresponding elec-
tric dipoles (represented by color) of two (±) of ferron polari-
tons branches in the absence of damping. The electric dipoles
are in units of eÅ with δp0 = −0.15 eÅ. The parameters are
for LiNbO3 with ε(∞) = 5.5.

electric fields suppress domain walls, which leads to an
increasing thermal conductivity via a field-dependent re-
laxation time [55, 58–60].

Electric dipole of ferron polaritons. Photons can hy-
bridize with optical phonons to form phonon polaritons
[61–67], that can show anharmonicities in ferroelectrics
[68, 69]. We may therefore consider “ferron polaritons”
with a dispersion relation governed by [61]

c2k2

ω2 = ε(ω) (27)

where c, k and ε(ω) are the light velocity, wave vec-
tor and the dynamic (relative) permittivity in the long-

wavelength limit, respectively. According to Eq. (7)

ε(ω)− ε(∞) ≡ δPh

ε0Eth

=
1

mpε0(ω2
0 − ω

2 − iωγ̃)
(28)

where γ̃ = γ/mp, while ε(∞) is the high-frequency per-
mittivity. While this dispersion is identical to that of the
phonon polaritons in normal ionic crystals [61, 62], the
ferron polaritons may transport electric dipoles below Tc.
By Eq. (12), the electric dipole of ferron polaritons reads

δp±(k) = − ∂~ω±(k)

∂E

∣∣∣∣
E→0

=
∂ω±(k)

∂ω0

δp0 (29)

where +(−) indicates two (optical and ferronic) branches
and δp0 = −∂~ω0/∂E. Figure 2 gives the dispersion rela-
tions and the electric dipoles carried by the two branches
for LiNbO3, in which the level repulsion renders the
dipole of the ferronic branch smaller than δp0 even at
k = 0. Focused optical excitations at the optical phonon
frequency of ferroelectrics can therefore be a source of co-
herent polarization currents and give rise to unique elec-
trooptic properties such as electric field-controlled light
propagation. Electric-dipolar interaction importantly af-
fects the surface ferron-polariton dispersion relations [70].
Discussion and conclusions. We address displacive fer-

roelectrics by the Landau theory of a structural phase
transition by condensation of a soft phonon. We iden-
tify the ferrons as the quasi-particle excitations on top of
the ordered state that, in contrast to conventional optical
phonons, are endowed with a net electric dipole moment.
The physical origin is the anharmonicity and the broken
inversion symmetry of the ferroelectric order.

The anharmonicity of the Landau free energy as a func-
tion of polarization is essential when the system is far
from equilibrium, e.g., during polarization switching, and
is responsible for transient negative capacitances [71],
while the interaction with high-frequency phonons en-
ables ultrafast polarization reversal [72–74]. These pro-
cesses may be accompanied by polarization loss due to
ferron emission.

Goldstone-like (phason) and Higgs-like (amplitudon)
excitation exist in any vector field and such as the ferro-
electric [75, 76] and ferromagnetic [77] orders. Transverse
ferrons as discussed in Refs. [10, 11]may be called phason-
like excitations. The ferrons in displacive ferroelectrics
discussed here are fluctuations of the polarization mod-
ulus and therefore Higgs-like.

In conclusion, we identify the quasi-particle excita-
tions of displacive ferroelectrics that carry heat and
electric dipole currents and predict the associated low-
temperature pyroelectric or electrocaloric coefficients,
the (field-dependent) thermal conductivity, Peltier and
Seebeck coefficients, and ferron polariton polarization.
Thermally driven and electrically tunable ferronic trans-
port in a broad class of ferroelectric materials may pro-
vide unique functionalities to thermal management and
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information technologies. Ferrons become observable by,
e.g., a thermovoltage, a transient Peltier effect [10], and
a magnetic stray field generated by the ferron current
[11], a field-dependent thermal conductivity, and nonlo-
cal dipolar drag effects [78].
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