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We present a methodology for probing the details of electronic susceptibility through minimally-
invasive nuclear magnetic resonance techniques. Specifically, we classify electron-mediated long-
range interactions in an ensemble of nuclear spins by revealing their effect on simple spin echo
experiments. We find that the pulse strength and applied field orientation dependence of these
spin echo measurements resolves the spatial extent and anisotropy of electronic spin susceptibility.
This work provides an alternate explanation to NMR results in superconducting and magnetically-
ordered systems. The methodology has direct applications for sensing and characterizing emergent
electronic phases.

Nuclear magnetic resonance (NMR) traditionally mea-
sures dissipation using the temperature dependence of
the spin-lattice relaxation rates (T1) or spin-spin relax-
ation rates (T2) [1–4]. Changes in dissipation rates can
be compared to models for electron-nuclear or phonon-
nuclear interactions, allowing for the microscopic obser-
vation of electronic phases. This standard approach for
NMR as an experimental probe provides relationships
between electronic spin-susceptibility at high symmetry
points and the dissipation rates. NMR is an attractive
tool for probing electronic ground state properties as it
uses low frequency excitations relative to electronic ener-
gies. Recently identified quantum phases of matter may
encode details of their intricate structure into NMR re-
sponses in ways that lay outside this current paradigm.

It is not uncommon in NMR studies of strongly corre-
lated materials to observe unusual time-asymmetric fea-
tures from standard spin echo protocols. These are typi-
cally classified as experimental artifacts, often attributed
to an uncontrolled phase transition as strong RF pulses
can cause electronic heating in the sample [5–8]. Inspired
by these observations, we provide an alternate explana-
tion for such unconventional signals by investigating the
time evolution of nuclear spins with electron-mediated
interactions on a 2D lattice. When the interaction cou-
ples nuclei more than a few lattice lengths apart, clear
signatures emerge in NMR spectra during pulse angle
sweeps, including evidence of anisotropic electronic struc-
ture. The radial form and range of the interaction is also
partially recoverable from careful analysis of the spin dy-
namics. As the details of the nuclear interaction are in-
herited from the electronic spin susceptibility, one can
determine many features of electronic spin-spin correla-
tion previously inaccessible by NMR. In this letter we
demonstrate a how to extract the range and anisotropy
of electronic spin correlations through a series of simple
NMR experiments in correlated phases of solid matter.

Long-range interactions between magnetic particles
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FIG. 1. a) Top-down view of a square lattice of nuclear spins
of size nx × ny. b) The interaction between nuclei depends
on a characteristic strength α. By varying the strength of
the first applied pulse the expected angle θ between the spins
and the constant Bz can be modified. c) Average planar
magnetization from spin echo simulations, in both the time
and frequency domain, for a fixed θ and varying α, and d)
vice-versa.

through conduction electrons have been studied previ-
ously [9–13], but a theory for an interacting lattice of
spinors with long-range couplings is under-developed.
The general model for coupled nuclear spins is well under-
stood [14], with many packages available for treatment of
the full Hilbert space (limited to N ≈ 20 spins) [15–18].
Truncated Liouville space representations can handle up
to N ≈ 1000 spins [19–21], but we find that even this
is not large enough to capture the emergent properties
from long-range electronic correlations. Classical treat-
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ments with only nearest-neighbor coupling have found
good agreement with quantum methods [22], and the
agreement generally improves as the number of interact-
ing neighbors increases [23]. A well known example of
a successful mean-field treatment is the theory of multi-
ple echoes from long-range nuclear dipole interactions in
solid 3He [24].

We consider tens of thousands of spins and treat the
interactions at the mean-field level [25, 26]. Our simula-
tions are performed on an nx × ny square lattice of unit
length with spin- 1

2 nuclei (Fig. 1a) with periodic bound-
ary conditions and a Lorentzian distribution of resonant
frequencies with linewidth Γ. We perform small ∆t up-
dates on each spin in the ensemble, with ∆t chosen small
enough to prevent any error from approximation of the
Hamiltonian matrix exponential during time propagation
(see SM [27], Sec. II). To achieve a spin echo, at t = 0
a θ-strength Ix pulse brings all the spins out of align-
ment with Bz and towards the xy plane. After a time
τ = 5/Γ, a 2θ-strength Iy pulse rotates them about the y
axis. When θ = 90◦ this achieves a perfect 180◦ rotation
of the spins, cancelling the accumulated phases from the
variations in ν and forming a spin echo at t = 2τ . We
present the in-plane net magnetization of the spin ensem-
ble, M̄xy(t) = M̄x(t)+ iM̄y(t), and its Fourier transform
(see SM, Sec. IV) in Fig. 1c,d. We use the notation M̄
for the global net magnetization, to distinguish from a
local magnetization, M .

Applying second order perturbation theory to the hy-
perfine interaction of strength ∆, here assumed to be a
diagonal tensor, between electrons and nuclei leads to an
effective spin-spin interaction bilinear in the nuclear spins
and quadratic in the hyperfine strength [28, 29]. The ef-
fective Hamiltonian for the spin-spin interaction between
nuclei takes the form

HI(i, j) ∝ ∆2I†i χ(Ri −Rj)Ij (1)

where χ is the spin susceptibility of the electrons and I =
(Ix, Iy, Iz) are the nuclear spin operators. The form of
Eq. 1 avoids assumption of an isotropic Fermi liquid, and
also makes explicit the proportional relationship between
χ and the nuclear-nuclear coupling. Making a mean-field
approximation of the interaction in Eq. 1, we keep only
the diagonal elements of χ to obtain

Hmf (i) = −νiIzi −
∑

d=x,y,z

αdI
d
iM

d
i (2)

with νi the resonant frequency of the non-interacting
spin, Md

i the mean magnetization along the d’th axis
seen by a spinor at lattice site i from the other spins,
and αd the effective strength of the hyper-fine electron-
mediated coupling along that spin axis, as illustrated in
Fig. 1b. This direct relation between χ and α is more
complicated for non-diagonal hyperfine tensors, and in
this case independent experimental measurement of the

form of the hyperfine tensor is necessary before χ can be
reconstructed from our methodology of measuring α. We
also note that for short-range interactions (where M is
sensitive only to the nearest neighboring nuclei, for ex-
ample) this mean-field approximation is not reliable, but
it should become more accurate as the range of the in-
teraction is increased and the interaction averages over
more nuclei. We treat the spin operators as unitless and
absorb all relevant physical constants into ν and α, whose
frequencies will be given in units of the linewidth Γ. Time
values will be in units of Γ−1.

We expect the introduction of the I2 operator to break
the even time-symmetry of |M̄xy(t)| around the spin echo.
As the strength of the I2 term depends on the average
magnetization when the interaction is long-range, it leads
to explicit time-dependence in the Hamiltonian. The
time-evolution of the spins can be estimated by dH/dI,
which acts as an effective torque on each spinor. For the
non-interacting case, dH/dI = −νẑ, a constant, and so
if the initial distribution of spins is frequency-symmetric
the resulting echo will be time-symmetric. As M(t) acts
as a non-constant torque, it allows for the breaking of
time-symmetry in the spin echo. As seen for α = 1.2 in
Fig. 1c, the ramping strength of the interaction as t ap-
proaches the echo time causes the post-echo shoulder to
have a different shape than the pre-echo shoulder, and for
larger α values a remnant magnetization from the initial
decay causes significant time-asymmetry.

We begin with the simplest isotropic infinite-range in-
teraction form, Mi = M̄ =

∑
j 〈Ij〉 /N and αd ≡ α.

This uses the net magnetization of the entire ensemble
(N spins) as the local magnetization when determining
Hmf , leaving α and the pulse angle θ as the only un-
fixed parameters. The role of the coupling strength α
is investigated first in Fig. 1c. Weak α values (< 1)
show a nearly perfect spin echo in both the time and fre-
quency domain. As α grows, time asymmetric echos oc-
cur. The interaction causes the most significant changes
to the spin evolution near the echo and shortly after the
initial pulse (free induction decay, or FID). For α < 1.2,
the only noticeable effect on M(t) occurs near the echo
time, showing up as a small post-echo shoulder. At larger
α values, the interactions cause significant ringing even
during the FID (see SM). In Fig. 1d, the effect of differ-
ent pulse strengths on the spin echo are compared. There
are many reductions in the magnetization near 10 MHz
reminiscent of spectral hole burning, so the signatures of
strong electron-mediated nuclear coupling could easily be
miss-attributed to over-pumping the system [8].

To remove the assumption of an isotropic interaction,
we introduce the axis-dependent couplings, αz 6= αx =
αy ≡ αxy, motivated by anisotropy in the electronic spin
susceptibility: χzz 6= χxx, χyy. This can occur in layered
materials [30] or be caused by spontaneous electronic ne-
maticity [31–35]. Fig. 2 investigates three different con-
ditions for the anistropic interaction: αxy = 0, αz = 0,
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FIG. 2. Pulse angle (θ) dependence of the NMR spectra for
different aspect ratios of the effective spin-spin interaction,
[αz, αxy] in units of Γ. The S-function ((αxy−αz)/4)(cos θ+
cos 3θ) is given by the dashed line for each aspect ratio.

and αxy 6= αz. For αxy = 0 (Fig. 2a) the interaction sim-
ply introduces an additional Iz term, increasing or de-
creasing the average resonant frequency of the ensemble.
Understanding the distribution of spins in the absence of
interactions reveals how θ shifts the resonant frequency.

We have derived the values of M̄ in the non-interacting
case exactly in the SM’s Sec. V, but here we outline the
argument for M̄z by representing the spins as a vector
of magnitude 1/2 (Fig. 3). The first θ pulse moves all
the spins an angle θ off the z-axis, where they then pre-
cess because of Bz and trace out a ring centered along
the z-axis. Assuming the time between each pulse (τ) is
long enough to ensure that the spins are uniformly dis-
tributed, the second 2θ pulse then rotates the now uni-
form ring of spins an additional angle θ away from the
z-axis. The average z-component of the spins just after
the 2θ pulse is given by the average of the maximal and
minimal z-component values of the tilted ring, cos θ and
cos 3θ respectively. The z-component is unchanged un-
der further time evolution by Bz. Therefore M̄z during
the spin echo is (αz/4)(cos θ + cos 3θ), which we denote
as an S-function, and in agreement with the frequency
shift observed in the simulations. Although Fig. 3 only
shows the case for θ < 90◦, our derivation of the average
M̄z value holds for all θ.

Considering instead αz = 0 (Fig. 2c), one can esti-
mate the magnitude of the in-plane magnetization at
t = 2τ . A simple geometric argument is not possible
for the inplane magnetization, but the exact treatment
yields M̄x = 0 and M̄y = (αxy/2) sin3 θ (see SM, Sec.
V). Because each spin is acted upon by Iz from Bz, and
Ix and Iy from the interaction, behavior beyond a sim-
ple frequency shift is expected. The multi-peak behavior
is most pronounced when the magnitude of the in-plane
magnetization is largest, e.g. near θ = 90◦. There is
also an S-function shift caused by the in-plane interac-
tion, with magnitude (αxy/4), which is due to the weak
αxy torque applied to the z-component of the spins af-
ter the 2θ pulse (see SM, Sec. VIII). For the third case
where αxy 6= αz (Fig. 2b) the S-function’s amplitude de-
pends on the difference of αz and αxy, and the presence
of αz does not remove the multiple peaks generated by
αxy near θ = 90◦.

θ

θ

2θ

z

y

θ-y pulse 2θ-x pulse
z

y

z

y

FIG. 3. Distribution of nuclear spins in the absence of the
spin-spin interaction during a [θ,2θ] pulse sequence. After
each pulse, the updated spin distribution is given by a dark
black line, and the distribution a short time after the pulse is
given by the grey outlines. The distribution just before the
2θ pulse traces out a cone, and so the last figure considers a
rotated cone instead of a rotated arrow.

Inverting the argument for the results of Fig. 2, in a
laboratory setting the pulse variation experiment could
be performed under different chosen directions for the
Bz fields relative to the sample’s crystalline axis. If the
nuclei-nuclei coupling is mostly isotropic, the resulting
NMR signals should not depend on the placement of the
z-axis (in the absence of any other effects). If the cou-
pling is stronger along one axis than the other two, a
clear S-function like that of Fig. 2a will occur along a
specific direction of the applied field, while if it is weaker
along one axis, an inverted S-function with severe hole-
burning-like features should occur (Fig. 2c).

Fig. 2b shows qualitative similarities to experimental
spectra from a superconducting phase [8]. Namely, at low
power (low θ) the observed peaks were at a low frequency,
but as the power increases (increasing θ) they shift to
higher frequencies and show unusual non-monotonic be-
havior, similar to the S-function. Mapping power (dB) to
a pulse angle (◦) is challenging in experiment, especially
when we predict large reductions in the signal near 90◦,
so more theoretical and experimental work is necessary.
The most direct approach to investigate the origin of the
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spectral shifts is to repeat experiments with greatly in-
creased repetition time, as long repetition times minimize
the accumulation of heat in the sample and would dis-
tinguish spin-spin interactions from heating effects. The
evolution of the echo shape and position as a function
of the pulse power and orientation of the applied field
permit us to reverse engineer details of this material’s
electronic spin susceptibility.

Our work also allows for the determination of the spa-
tial extent of electron-electron correlations. In real ma-
terials, each spinor will feel a local contribution from
nearby nuclei, not a global average of the magnetization.
Between different materials and quantum spin phases,
the type of radial decay in the susceptibility and its char-
acteristic correlation length will vary. To investigate this
variation, we define the local magnetization Mi felt by a
nucleus at site ri as the sum

Mi =
∑
j

K(rij) 〈Ij〉 (3)

with K a radial kernel for the interaction. We study
three choices of K here. First, a short-range Gaussian
that depends on a correlation length ξ, K(r) = e−(r/ξ)2 ,
motivated by the susceptibility expected from a gapped
spin excitation. Second, a long-range form given by a
power p, K(r) = r−p, motivated by a gapless spin ex-
citation. Finally, the RKKY form expected from spin
interactions in a simple metal [28, 29] which is also de-
pendent on a length γ, K(x) = x−4 (x cosx− sinx) for
x = 2(r/γ). In Fig. 4a the three functional forms for
K are plotted using parameters that yield similar length
scales, for comparison.

Spin echo results identical to those of Fig. 1 and Fig. 2
are possible in this more realistic model if α and the
length-scale parameter, ξ, p, or γ are chosen appropri-
ately (see SM, Sec. VI). The key parameter is the average
effective interaction

αeff ≡
∑

d=x,y,z

αd
3

∑
ij

K(rij) (4)

which is an integral of the interaction over the lattice
and averaged over the three spin-spin spatial dimensions.
We find that a local interaction produces similar echoes
to that of the global magnetization studied earlier, as
long as the α used in the global case is similar to αeff

of the local one and the range of the interaction is suffi-
ciently long. In Fig. 4b-d, simulations with an isotropic
(αd = α) Gaussian functional for three values of ξ are
shown. At the small value of ξ = 2, the spin echo acts
similarly to the infinite-range model for weak αeff. But
as the interaction increases, the coupling to neighboring
spins becomes so strong that extreme variations in the lo-
cal effective magnetization occur throughout the lattice,
destroying the echo. For intermediate values (ξ = 8)
similar behavior is observed, but now the critical αeff for
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FIG. 4. a) Absolute value of the three magnetization kernels,
K: Gaussian (red) with ξ = 8 , power (green) with p = 1.47,
and RKKY (blue) with γ = 13. b-d) Time-domain spin echos
for an isotropic Gaussian kernel with a short, medium, and
long-range ξ (time in units of Γ−1). e) Simulated time-domain
spin echos for the isotropic kernels with medium length scale
as given in (a) for increasing interaction strength. All three
curves are identical for αeff = 0.8. In b-e), θ = 90◦ and the
total effective interaction, αeff in Eq. 4, is given in black on
the right of each set of simulated spin echo curves in units of
Γ.

complete destruction of an echo is larger. When the cor-
relation length is much larger than the lattice parameter
(ξ = 32), the echo is identical to the results of the infinite-
range coupling even for large αeff. Therefore, the effec-
tive strength of the coupling (αeff) can be determined if
an echo occurs, and the higher its value the longer range
the electronic spin-spin correlations must be. To estimate
the critical minimal value of ξ for a given αeff in a three-
dimensional lattice, we take ξ2/3 ≈ 4, 10 lattice lengths,
for the intermediate and long-range values respectively.

Echos caused by interactions with similar αeff but dif-
ferent isotropic radial forms are shown in Fig. 4e. We see
that although all three curves show similar qualitative
trends, there are small details that distinguish them. For
example, in the pre-echo shoulder (t = 7.5) the RKKY
form always has the highest M̄xy(t) value, followed by
the Gaussian, and then the power form. Similarly, in the
post-echo shoulder (t = 12.5), the power form yields the
largest M̄xy(t) and the Gaussian form the smallest. At
the largest αeff value in Fig. 4e, these trends no longer
hold because the echoes have disappeared for the Gaus-
sian and RKKY forms. The RKKY form is an oscillating
power-law decay, with its nodes partially cancelling long-
range contributions and making it act like a short range
interaction in our model. The power law balances local
versus average magnetization and prevents a complete
breakdown of the spin echo phenomena.
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Careful evaluation of NMR responses provides valuable
insight into systems with long-range electronic spin corre-
lations. We demonstrate that pulse-induced spectral line
shifts could be caused not only by external effects quench-
ing an electronic phase, but also by the electronic phase
itself. There are two important conditions that must be
satisfied by the electronic spin susceptibility for this ef-
fect to occur. First, the integral of the electron-mediated
nuclear interaction strength (aeff) must be similar to or
larger than the material’s natural linewidth. Second, this
interaction must be relatively strong over a large num-
ber of nuclei, such that the spin-spin interactions lead
to an effective spin memory in the system instead of the
T2 decay that occurs when the interaction is only among
nearest neighbors. Our work encourages careful consider-
ation of any NMR result in a strongly correlated system,
be it a conventional solid or an artificial atomic lattice.
Clear signatures of nematic (anisotropic) ordering can be
revealed by changing the pulse strength and orientation
of the applied field. Moreover, the methodology devel-
oped here gives insight into the radial form and range of
electronic correlations. We hope that extensions of this
work can ultimately lead to the ability to reverse engi-
neer the full electronic susceptibility from simple NMR
spectral measurements.

We thank Mladen Horvatić for helpful comments. This
work was supported by the National Science Foundation
under grant No. OIA-1921199. The calculations were
conducted using computational resources and services at
the Center for Computation and Visualization, Brown
University.
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[21] A. Karabanov and W. Köckenberger, Spectral green’s-
function method in driven open quantum dynamics,
Phys. Rev. A 103, 012224 (2021).

https://doi.org/10.1103/PhysRevB.39.274
https://doi.org/10.1103/PhysRevB.39.274
https://doi.org/10.1103/PhysRevLett.66.381
https://doi.org/10.1103/PhysRevLett.66.381
https://doi.org/10.1103/PhysRevB.47.3461
https://doi.org/10.1103/PhysRevB.66.014511
https://doi.org/10.1103/PhysRevB.66.014511
https://doi.org/10.7566/JPSJ.89.034712
https://doi.org/10.7566/JPSJ.89.034712
https://doi.org/10.1038/s41586-019-1596-2
https://doi.org/10.1103/PhysRevB.104.014502
https://doi.org/10.1103/PhysRevLett.101.039701
https://doi.org/10.1103/PhysRevLett.96.127005
https://doi.org/10.1103/PhysRevB.76.245106
https://doi.org/10.1103/PhysRevLett.107.150503
https://doi.org/10.1103/PhysRevLett.107.150503
https://doi.org/10.1038/ncomms6417
https://doi.org/10.1038/ncomms6417
https://doi.org/10.1103/PhysRevB.101.075421
https://doi.org/10.1103/PhysRevB.101.075421
https://doi.org/https://doi.org/10.1016/0370-1573(82)90164-8
https://doi.org/https://doi.org/10.1016/0370-1573(82)90164-8
https://doi.org/https://doi.org/10.1006/jmre.2000.2179
https://doi.org/https://doi.org/10.1006/jmre.2000.2179
https://doi.org/https://doi.org/10.1016/j.jmr.2014.07.002
https://doi.org/https://doi.org/10.1016/j.jmr.2005.07.018
https://doi.org/https://doi.org/10.1016/j.jmr.2005.07.018
https://doi.org/https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1063/1.3505455
https://doi.org/10.1063/1.3505455
https://doi.org/10.1103/PhysRevLett.115.020404
https://doi.org/10.1103/PhysRevLett.115.020404
https://doi.org/10.1103/PhysRevA.103.012224


6

[22] C. Tang and J. S. Waugh, Dynamics of classical spins on
a lattice: Spin diffusion, Phys. Rev. B 45, 748 (1992).

[23] T. A. Elsayed and B. V. Fine, Effectiveness of classical
spin simulations for describing NMR relaxation of quan-
tum spins, Phys. Rev. B 91, 094424 (2015).

[24] G. Deville, M. Bernier, and J. M. Delrieux, Nmr multi-
ple echoes observed in solid 3He, Phys. Rev. B 19, 5666
(1979).

[25] C. Snider, S. Carr, D. E. Feldman, C. Ramanathan, J. B.
Marston, and V. F. Mitrović, In preparation.
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