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Quantum criticality emerges from the collective behavior of many interacting quantum particles, often at
the transition between different phases of matter. It is one of the cornerstones of condensed matter physics,
which we access on noisy intermediate-scale (NISQ) quantum devices by leveraging a dynamically-driven
phenomenon. We probe the critical properties of the one-dimensional quantum Ising model on a programmable
superconducting quantum chip via a Kibble–Zurek process, obtain scaling laws, and estimate critical exponents
despite inherent sources of errors on the hardware. In addition, we investigate how the improvement of NISQ
computers (more qubits, less noise) will consolidate the computation of those universal physical properties.
A one-parameter noise model captures the effect of imperfections and reproduces the experimental data. Its
systematic study reveals that the noise, analogously to temperature, induces a new length scale in the system.
We introduce and successfully verify modified scaling laws, directly accounting for the noise without any prior
knowledge. It makes data analyses for extracting physical properties transparent to noise. By understanding
how imperfect quantum hardware modifies the genuine properties of quantum states of matter, we enhance the
power of NISQ processors considerably for addressing quantum criticality and potentially other phenomena and
algorithms.

The advent of quantum computing promises to disrupt
nearly every industry, from materials science, chemistry, and
drug discovery to security, optimization, as well as artificial in-
telligence. However, current quantum processors have limited
computing capabilities, with only a small number of imperfect
qubits available. Although quantum advantage [1] has been
claimed on such NISQ devices [2, 3], it is only on specific
tasks of narrow interest. Therefore, a major goal is to address
practical problems with NISQ machines [4]. Quantum many-
body problems, which seek to describe interacting quantum
degrees of freedom, provide an ideal playground. Not only are
they suitable for current and future NISQ hardware, but they
are also of prime importance in basic research. They span nu-
clear, high-energy, condensed matter, atomic, molecular, opti-
cal physics, and quantum chemistry. Only a corner of quantum
many-body problems can be solved efficiently with classical
computers—these can serve for benchmarking—whereas the
vast majority is still open.

For instance, competing interactions between quantum par-
ticles can lead to the emergence of exotic phases of matter and
phase transitions between them [5, 6]. Of particular interest
are quantum many-body systems experiencing a second-order
quantum phase transition, as they exhibit quantum critical-
ity [7–9]: an emerging scale-invariance dictating how physi-
cal quantities (e.g., susceptibility, specific heat, spectral gap,
correlations, etc.) behave close to the transition. Quantum
criticality is tabulated into universality classes, defined by a
set of critical exponents characterizing the nature of the tran-
sition. Remarkably, universality classes are independent of
most of the microscopic details of a quantum system and
depend instead on general attributes such as dimension and
symmetries. Hence, accessing, classifying, and understand-
ing quantum criticality is a formidable fundamental physics
challenge. A conventional way for investigating quantum crit-
icality in a quantum many-body system consists of studying
its ground state properties as a function of a parameter 𝑔 driv-

ing the transition, with the transition taking place at 𝑔 = 𝑔c,
known as the quantum critical point (QCP) [6]. However, ob-
taining the lowest-energy state of a given Hamiltonian Ĥ (𝑔)
is a cumbersome task for NISQ devices.

We bypass this obstacle by leveraging a dynamically-driven
phenomenon to access quantum criticality, the Kibble–Zurek
(KZ) mechanism [10, 11]. NISQ processors have proven to
be well-suited in simulating quantum dynamics [12–33], as
the time-evolution is a unitary operation that can be straight-
forwardly translated into a shallow quantum circuit in most
cases. The KZ mechanism is triggered by time-evolving a sys-
tem from a point A to a point B of its phase diagram at a given
rate ∼ 𝑇−1, with the transition happening somewhere on the
way. With the spectral gap of a quantum system vanishing as
Δ ∼ |𝑔 − 𝑔c |𝑧𝜈 close to a second-order phase transition (with
𝑧, 𝜈 > 0 the dynamical and correlation length critical expo-
nents, respectively) [5, 6], we expect a characteristic timescale
𝜏 and associated gap scale ~/𝜏, where the adiabaticity of the
evolution breaks down. It happens at a dimensionless dis-
tance |𝑔 − 𝑔𝑐 |/𝑔𝑐 ∼ 𝜏/𝑇 of the critical point, and one finds
that 𝜏 ∼ 𝑇 𝑧𝜈/(1+𝑧𝜈) . Likewise, a characteristic length scale
ℓ ∼ 𝜏1/𝑧 emerges. It diverges in the adiabatic limit, leading
to scale invariance, as one would expect in the ground state of
Ĥ (𝑔 = 𝑔c).

Because the KZ mechanism is controlled by the same criti-
cal exponents as the static physics, one can exploit it to access
key properties of quantum criticality in many-body systems.
For example, the KZ process was recently used in a Rydberg
atomic simulator to study a quantum critical point [34]. Here,
we analyze a classic example of quantum criticality in one spa-
tial dimension through both a gate-based quantum processor
and a classical matrix product state computation incorporating
noise. We find that the effect of noise is analogous to that of
temperature: It induces a length scale that can be accounted
for through modified scaling laws. Our results enhance the
power of NISQ processors significantly by making data anal-
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FIG. 1. (a) Quantum system dynamically driven from a point A
(paramagnetic phase—PM, for the quantum Ising model consid-
ered here) to a point B (ferromagnetic phase—FM) of its phase
diagram, with a transition happening on the way, characterized by
a quantum critical point (QCP). (b) Decomposition of the operator
�̂�𝑧𝑧
𝑚 (𝜙) = exp

(
𝑖𝜙�̂�𝑚 �̂�𝑚+1

)
by sandwiching a single-qubit rotation

gate around the 𝑧 axis by two-qubit CNOT gates. (c) Quantum cir-
cuit for the discretized unitary operation of Eq. (2) for the quantum
Ising model (3). The PM ground state is constructed by applying
Hadamard gates 𝐻 on individual qubits. The second step is the time-
evolution, generated by a first-order Suzuki-Trotter expansion. Here,
�̂�𝑥
𝑚 (𝜙) = exp

(
𝑖𝜙�̂�𝑚

)
.

yses transparent to inherent noise. Understanding how im-
perfect quantum hardware modifies the genuine properties of
quantum states of matter is a prerequisite for condensed matter
simulations, which are doomed to be noisy in the near future.

One may write a Hamiltonian interpolating between points
A and B in a KZ process as,

Ĥ (
𝑇, 𝑡

)
=
(
1 − 𝑡

/
𝑇
)ĤA + (

1 + 𝑡
/
𝑇
)ĤB, (1)

running from time 𝑡 = −𝑇 to 𝑡 = +𝑇 with ĤA,B describing
A and B, respectively. After initially preparing the system
|Ψ(𝑡 = −𝑇)〉 into the ground state of ĤA, it is dynamically
driven to point B,

��Ψ(𝑡)〉 = T exp
[
− 𝑖

~

∫ 𝑡

−𝑇
d𝑡 ′ Ĥ (

𝑇, 𝑡 ′
) ] ��Ψ(−𝑇 )〉, (2)

as pictured in Fig. 1(a). T indicates a time-ordered exponen-
tial. Close to the transition, i.e., around a model-dependent
value of 𝑡, the KZ mechanism will kick in, and |Ψ(𝑡)〉 will
display universal quantum critical properties. They can be
extracted and studied by computing standard observables sup-
plemented with a scaling analysis [35].

We consider the quantum Ising model in one dimension,
whose microscopic Hamiltonian interpolates between param-
agnetic (PM) ≡A and ferromagnetic (FM) ≡B phases,

ĤPM = −
∑︁

𝑛
�̂�𝑛, and ĤFM = −

∑︁
𝑛
�̂�𝑛 �̂�𝑛+1, (3)

with �̂�𝑛 and �̂�𝑛 as Pauli operators acting on qubit 𝑛. This
model presents several advantages: first, it provides the stan-
dard paradigm of a solvable QCP at the transition between

the two phases. Second, its dynamics can be encoded as a
quantum circuit with a relatively low gate count. Third, in the
basis where �̂� is diagonal, the starting point (ground state of
ĤPM) is an equal superposition of all basis states, which can
be readily obtained by applying individual Hadamard gates
on each of the qubits. With the interpolation of Eq. (1), it
is known that the QCP is located at 𝑡 = 0. Furthermore, the
KZ mechanism on the quantum Ising model is extensively
documented [34, 36–48].

The evolution operator in Eq. (2) is discretized by making
the Hamiltonian operator piecewise constant over a time step
𝛿𝑡. Thanks to the locality of the Ising terms in Eq. (3), the
exponentiation can be performed using a Suzuki-Trotter ex-
pansion [49], at the expense of a systematic—yet controlled—
error. It engenders operators of the form �̂�𝑥

𝑚 (𝜙) = exp
(
𝑖𝜙�̂�𝑚

)
and �̂�𝑧𝑧

𝑚 (𝜙) = exp
(
𝑖𝜙�̂�𝑚 �̂�𝑚+1

)
, which can be easily translated

into standard quantum logic gates. The former is directly re-
lated to a single-qubit rotation gate around the 𝑥 axis, 𝑅𝑥 (𝜙),
and the latter can be decomposed into standard gates [50],
see Fig. 1(b). The quantum circuit for one time step using a
first-order Suzuki-Trotter expansion is shown in Fig. 1(c).

To investigate quantum criticality, we look at the two-point
correlation function,

𝐶
(
𝑇, 𝑡, 𝑥

)
=
〈
Ψ(𝑡)

���̂�𝑟 �̂�𝑟±𝑥 ��Ψ(𝑡)〉, (4)

between a reference qubit 𝑟 assumed in the middle of the
system and another qubit at distance 𝑥. Close to the QCP, it is
expected to show a universal behavior of the form [42, 44, 45],

𝐶
(
𝑇, 𝑡, 𝑥

)
= ℓ−𝜂 F (

𝑥/ℓ, 𝑡/𝜏) , (5)

with F a non-universal scaling function, 𝜂 the anomalous
critical exponent, ℓ and 𝜏 the characteristic length and time
scales of the KZ mechanism, which depend on 𝑇 and the
critical exponents. ℓ can be interpreted as the length over
which the system will be defect-free. From there, one can
deduce that the adiabatic limit for a system of size 𝐿 will be
recovered for drive times 𝑇 & 𝐿 (1+𝑧𝜈)/𝜈—though the point of
the KZ mechanism is that useful physics can still be extracted
outside of the adiabatic regime.

To verify the scaling law of Eq. (5) we emulate the quantum
circuit corresponding to an open chain of 𝐿 = 257 qubits to-
gether with a second-order Suzuki-Trotter expansion and time
step 𝛿𝑡 = 0.1 for different values 𝑇 = 8, 16, . . . 256. We
set ~ = 1. Although it is way out of reach for NISQ hard-
ware, it allows us to obtain benchmark data. The emulation
is performed using matrix product states, a well-established
and efficient tensor network technique for classically simulat-
ing one-dimensional quantum systems [52]. The correlation
𝐶 (𝑇, 𝑡 = 0, 𝑥) is plotted in Fig. 2(a). We proceed to the rescal-
ing of the data using the exactly known value of the critical
exponents of the Ising universality class in 1 + 1 dimensions:
𝜈 = 𝑧 = 1 and 𝜂 = 1/4 [53]. The result is displayed in Fig. 2(b)
where an excellent data collapse is found. An important point
that we make in the Supplemental Material [51] is that, by
reducing the standards of an ideal simulation: smaller number



3

1 10 100G
0.001

0.01

0.1

1
�

( ),C
=

0,
G
) (a)

Ideal benchmark

) = 8
) = 16
) = 32
) = 64
) = 128
) = 256

0.1 1 10
G
/
)1/2

0.001

0.01

0.1

1

�
( ),C

=
0,
G
) ×)

1/
8

(b)

Scaling
function

1 2 3 4G

(c)

Benchmark

) = 0.5
) = 0.6
) = 0.7
) = 0.8
) = 0.9
) = 1.0

1 2 3 4 5 6
G
/
)1/2

(d)

Scaling
function

1 2 3 4G

(e)

Quantum processor

) = 0.5
) = 0.6
) = 0.7
) = 0.8
) = 0.9
) = 1.0

1 2 3 4 5 6
G
/
)1/2

(f)

Scaling
function

1 2 3 4G

(g)

Noisy emulation

) = 0.5
) = 0.6
) = 0.7
) = 0.8
) = 0.9
) = 1.0

1 2 3 4 5 6
G
/
)1/2

(h)

Scaling
function

0.5 1.0 1.5 2.0
a

0.5

1.0

1.5

2.0

[ (i)

0.5 1.0 1.5 2.0
a

0.5

1.0

1.5

2.0

[

(j)
30

30

40

50

10−5

10−4

10−3

j
2/ #

do
f

30

40

50

60

j
2/ #

do
f

FIG. 2. (a)–(c)–(e)–(g) Two-point correlation function of Eq. (4) at 𝑡 = 0 plotted versus the distance 𝑥 for different drive times𝑇 . (b)–(d)–(f)–(h)
Rescaled two-point correlation function according to Eq. (5) with 𝜈 = 𝑧 = 1 and 𝜂 = 1/4. (a)–(b) Tensor network emulation of the quantum
circuit for 𝐿 = 257 qubits with a second-order Suzuki-Trotter expansion and time step 𝛿𝑡 = 0.1. (c)–(d) Perfect emulation of the quantum
circuit using 𝐿 = 7 qubits and performing two time steps of different duration 𝛿𝑡 to access various drive times 𝑇 . (e)–(f) Simulation on Rigetti
Aspen-9 superconducting quantum chip using the same parameters as (a) and (b). (g)–(h) Noisy emulation of the quantum circuit to model the
imperfect hardware. (i)–(j) Chi-square per degree of freedom 𝜒2/𝑁dof quantifying the quality of the data collapse for the two-point correlation
function of Eq. (4) as a function of the critical exponents 𝜈 and 𝜂, see Supplemental Material [51] (smaller is better). The best collapse should
be obtained from the genuine values of 𝜈 and 𝜂. The exact values are marked at the intersection of the two bold straight white lines. (i) Using
the benchmark data of (a). (j) Using the quantum processor data of (e).

of qubits, larger time step, lower-order Suzuki-Trotter expan-
sion, and shorter drive times 𝑇 , one is still able to produce
reasonable physics that should be accessible on current NISQ
devices, see also Figs. 2(c)–(d).

We now run the quantum circuit on a quantum computer.
We use Rigetti Aspen-9 superconducting quantum chip and
the provided compiler to translate the quantum circuit into
the native gate set [51]. We work with seven qubits, each
directly representing one Ising spin of the Hamiltonians (3).
We perform two time steps using a first-order Suzuki-Trotter
expansion, and vary its duration 𝛿𝑡 to access different drive
times 𝑇 . We collect 32 768 basis states as outputs, from which
we compute the two-point correlation function of Eq. (4). The
raw data are shown in Fig. 2(d). We observe a distinct decay
of the correlation with the distance, but there is no clear hi-
erarchy for the different 𝑇 values, although the smaller ones
tend to be generally lower. Note that, unlike the benchmark
emulation, the range of available drive times and distances is
more restricted. In the corresponding lower panel, we rescale
the data according to Eq. (5) and plot for comparison the scal-
ing function extracted from the benchmark data of Fig. 2(b).
There is a good qualitative agreement, despite the hardware
being imperfect.

By leaving the exponents 𝜈 and 𝜂 as free parameters and
solving the optimization problem seeking to maximize the
quality of the data collapse (e.g., by minimizing the chi-square
per degree of freedom 𝜒2/𝑁dof) [51, 54], we can extract a re-
gion of maximum likelihood for their values. The correspond-

ing results for the benchmark and quantum processor data are
shown in Figs. 2(i)–(j). The procedure on the benchmark data
gives back the known values of the critical exponents. As for
the experimental data, we are not able to precisely determine
values for the exponents, as there is no clear minimum for the
chi-square (cause by a smaller number of qubits, a smaller
range of drive times 𝑇 , noise, etc.). Nonetheless, we find that
the exact values are within the region with minimum 𝜒2/𝑁dof ,
and which provides bounds for the exponents. We expect that
the continuous improvement of NISQ processors will tighten
the bound on the exponent values, see Supplemental Material
for additional data [51].

Noise is inherent in NISQ devices, has various origins, and
is by definition machine-specific. Familiar sources include
decoherence through relaxation and dephasing, readout error,
and the qubits being imperfect two-level systems, which can
result in faulty quantum operations. Here, we model the effect
of noise with a depolarizing channel [55]. The noisy system is
emulated by performing the following stochastic modification
to the quantum logic gates [56, 57],{

�̂�𝑚 → �̂�𝑚�̂�𝑚,
�̂�𝑚,𝑛 → �̂�𝑚,𝑛

(
�̂�𝑚 ⊗ �̂�𝑛

)
,

�̂�, �̂� ∈ {
𝐼, �̂�, 𝑌 , �̂�

}
, (6)

where �̂�𝑚 and �̂�𝑚,𝑛 represent a one-qubit acting on 𝑚 and a
two-qubit gate acting on (𝑚, 𝑛), respectively. The probability
that it remains unchanged, i.e., �̂�(= �̂�) = 𝐼, is 1 − 𝑝, with
𝑝 a parameter controlling the strength of noise. All other
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FIG. 3. (a) Two-point correlation of Eq. (4) as a function of the
distance 𝑥, rescaled by the 𝑝 = 0 data for 𝐿 = 33 qubits. Emulation
details: 36 513 gates comprised of Hadamard, �̂�𝑥 , and �̂�𝑧𝑧 with
𝑇 = 32, 𝑡 = 0, and second-order Suzuki-Trotter expansion where 𝛿𝑡 =
0.1. The results are averaged over & 2 × 103 random circuits. Each
curve corresponds to a value of 𝑝 whose code color can be read from
panel (b). Fit of the observed exponential decay ∼ exp

[−𝑥/𝜉 (𝑝)]
(bold line) to extract length 𝜉 (𝑝). (b) Length 𝜉 (𝑝) as a function of
𝑝, which shows a ∼ 1/𝑝 dependence. (c)–(d) Rescaled two-point
correlation function according to Eq. (5) (𝑧 = 𝜈 = 1 and 𝜂 = 1/4).
The form of the circuit is the same as the one in panel (a) with
𝑝 = 10−4 for various drive times 𝑇 . (d) Same as (c) except that the
y-axis is multiplied by an additional term with 𝜉 ≈ 180, see Eq. (7).

combinations are uniformly distributed with probabilities 𝑝/3
and 𝑝/15 for one- and two-qubit gates, respectively. The
process has to be repeated many times to generate random
disordered circuits over which the results are averaged. The �̂�
gates induce dephasing, the �̂� gates induce a qubit flip, and 𝑌
a mix of the two.

To assess the reasonableness of the noise model of Eq. (6),
we emulate the experiment in the presence of noise and at-
tempt to find a value for the parameter 𝑝, reproducing at best
the experimental data of Figs. 2(e)–(f). Because all the cir-
cuits run on the quantum processor involve two time steps
using a first-order Suzuki-Trotter expansion, they all have the
same form and size: we anticipate that different quantum cir-
cuits performing the same task (following, e.g., compilation)
will simply lead to a rescaled value of the phenomenological
parameter 𝑝. To that end, we emulate with noise the cir-
cuit of Fig. 1(c). We report the results in Figs. 2(g)–(h) for
𝑝 ≈ 0.08. Despite being a simple one-parameter phenomeno-
logical model which may not capture the various imperfections
of the hardware, a good agreement with the experimental data
is observed, thus validating to some extent the model.

To better understand the physics induced by the noise model
on the time-evolution, we study the combined systems as a
function of 𝑝 using matrix product states. The form and
size of the circuit are fixed with 𝐿 = 33 qubits and 36 513

gates. We plot in Fig. 3(a) the two-point correlation func-
tion of Eq. (4) rescaled by the noiseless data as a function
of the distance 𝑥. We observe an exponential decay of the
form 𝐶

(
𝑥, 𝑝

)
= 𝐶

(
𝑥, 𝑝 = 0

)
e−𝑥/𝜉 (𝑝) , meaning that the noise

gives rise to a new length scale in the system. We extract it
in Fig. 3(b) and find that 𝜉 (𝑝) ∼ 1/𝑝. A simple argument
where one supposes that the effect of a single defect in a cir-
cuit volume 𝑑𝑥 (with 𝑑 the depth) will reduce the correlation
by a factor 𝜀 > 1, leads to 𝐶 (𝑥, 𝑝) ∼ 𝐶 (𝑥, 𝑝 = 0)/𝜀𝑝𝑑𝑥 for
an average number of defects ∼ 𝑝𝑑𝑥, assuming their effect is
uncorrelated. It is compatible with the exponential decay ob-
served in the emulations reported in Figs. 3(a)–(b). The depth-
dependence 𝜉 ∼ 1/𝑑 at fixed 𝑝 is verified in the Supplemental
Material [51]. Note that for a fixed time step 𝛿𝑡, the circuit
depth is proportional to the drive time 𝑇 , and we use 𝑑 → 𝑇
in the following. The noise-induced length scale 𝜉 ∼ 1/𝑝𝑇
competes with the characteristic length scale ℓ ∼ 𝑇 𝜈/(1+𝑧𝜈) of
the KZ mechanism. In the one-dimensional quantum Ising
model studied here, for the KZ mechanism to dominate over
the noise and observe genuine quantum criticality, one needs
𝑝 � 𝑇−3/2 ∼ 𝐿−3. An analogy can be drawn between the
noise in the quantum circuit and thermal effects induced by a
finite temperature Θ in the quantum Ising model, as they both
lead to a length scale 𝜉−1 ∼ Θ ∼ 𝑝 [58]. Such an analogy
between noise and effective temperature was also reported in
open quantum systems [59–61] and sudden quench protocols
subject to a time-dependent white noise [62, 63]. Interestingly,
one can include a new parameter 𝜉 = 𝑇𝜉 in the critical scal-
ing of Eq. (5), accounting for the effect of noise on quantum
criticality,

F (
𝑥/ℓ, 𝑡/𝜏) → F (

𝑥/ℓ, 𝑡/𝜏) × exp
(−𝑥𝑇/𝜉) . (7)

Eq. (7) is confirmed by emulations based on matrix product
state for 𝐿 = 33 qubits and 𝑝 = 10−4, with the form of the
circuit and other parameters similar to those of Figs. 3(a)–
(b). The raw and noise-corrected data collapses are displayed
side by side in Figs. 3(c)–(d), with a substantial improvement
upon including the parameter 𝜉 ≈ 180, which can be found
without any prior knowledge, comparably to the critical ex-
ponents [51]. The reduced connectivity at the boundaries of
the system makes the exponential decay of Fig. 3(a) drifts for
these qubits, and the noise correction is not directly applicable
on smaller-scale systems, such as the ones simulated on the
quantum processor displayed in Figs. 2(e)–(f).

While quantum criticality is well-understood in 1+1 dimen-
sions, much less is known beyond that. The absence of efficient
classical methods to simulate certain types of quantum many-
body systems, e.g., interacting fermions or frustrated magnets,
limits our microscopic understanding of these phases of mat-
ter and their transitions. Here, we have shown that current
NISQ devices can simulate quantum criticality by leveraging
a dynamically-driven phenomenon. Using a programmable
superconducting processor, we demonstrated this approach on
the one-dimensional quantum Ising model by obtaining a good
agreement with benchmark data. Despite the limited number
of qubits and the restricted depth of the quantum circuits, we
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estimated the critical exponents. The continuous improvement
of NISQ hardware will generate better quality and larger-scale
data. Not only will it leads to more accurate results, but it will
also open the way to uncharted problems. In addition, we have
shown that one can directly account for the inherent noise of
the current generation of quantum computers. We found that
the noise induces a length scale controlling how far qubits
can be nontrivially correlated. It can be included in scaling
laws, thus making the noise irrelevant to some extent when
investigating quantum criticality. Whether this noise-induced
length scale is a general feature arising in other quantum algo-
rithms remains to be explored, as similar behavior was recently
reported in other kinds of many-body problems [64, 65].
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