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Over a decade of work has culminated in the consensus that one-dimensional systems, subject to
sufficiently large disorder fail to thermalize and posses an extensive set of local integrals of motion.
In this work I will provide numerical evidence for the contrary. In particular, this paper studies
the dynamics of disordered spin chains which are weakly coupled to a Markovian bath. Within this
approach, the critical disorder for stability to quantum avalanches exceeds W ∗ & 20 in the random
field Heisenberg chain. In stark contrast to the Anderson insulator, the avalanche threshold drifts
considerably with system size, with no evidence of saturation in the studied regime.

To date, the putative many-body localized (MBL)
phase is the sole example of a generic interacting local
Hamiltonian system that fails to thermalize under its own
internal dynamics. In contrast to other non-ergodic sys-
tems, the integrability of the MBL phase is emergent,
induced simply by strong disorder in the local potential
energy. As such, the phenomenon has attracted a lot at-
tention from the community over the past decade [1, 2].
After the initial proposal [3–5], research has been pri-
marily focused on understanding the nature of the phase
transition between the thermal and the MBL phase. A
rather complete picture seemed to have emerged, sup-
porting an MBL phase in one dimension. Recently, the
debate about the stability of the MBL phase has been
revived due to inconsistencies between the prevailing the-
ory and new numerical experiments [6–16]. Most of these
numerical experiments were done at relative weak disor-
der in, or in the vicinity of, the thermal phase. This
has raised some criticism and the question whether this
bias somehow affects the conclusion. In this context,
it would be highly desirable to numerically investigate
the instability of the MBL phase, rather than its emer-
gence from the thermal phase. In strongly disordered
systems, the leading (proposed) instability of the local-
ized phase is due to so called avalanches induced by rare
thermal inclusions [17, 18]. The inclusions are extended
regions where the disorder is anomalously small, as show
in Fig. 1. Inclusions of any size ℓ0 exist in the thermo-
dynamic limit but, since they are exponentially unlikely
in ℓ0, one would need enormously large systems to ob-
serve and study them directly. Exact numerical studies
are unfortunately limited to small system sizes and can
therefore not directly capture these inclusions. One must
thus find a way to induce avalanches in a controllable way,
so they can be studied systematically. Instead of directly
investigating rare thermal regions in a closed systems, we
study the transient dynamics of a system coupled to an
infinite bath, in line with a proposal by Moringstar et
al. [19].
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FIG. 1. Rare thermal inclusion: No matter how large the
disorder, in the thermodynamic limit the system will contain
regions of arbitrary size ℓ0 where the disorder is so weak that
it can effectively be neglected. In interacting systems, these
rare regions serve as a heat bath for the rest of the system.
The fate of the system depends critically on how fast particles
in the vicinity of the bath thermalize with it. In this work we
consider ideal asymptotically large baths ℓ0 → ∞, such that
all computational resources are used to describe the dynamics
in the strongly disordered region ℓ of interest.

BATH INDUCED AVALANCHES

By connecting an infinite bath to a finite disordered
chain, the system will surely thermalize. Within the
avalanche picture [17, 18] it is the rate of thermaliza-
tion that governs how large the thermal inclusions grow.
Consider a spin chain with a thermal inclusion of size ℓ0,
as shown in Fig. 1, and imagine it has been able to ther-
malize ℓ spins on both sides, then the inclusion has grown
to a size ℓ0 + 2ℓ. Consequently, the level spacing of the
inclusion has now become ∼ 2−(ℓ0+2ℓ). The inclusion can
only serve as a proper bath as long as it thermalizes spins
at a rate Γ which exceeds the level spacing, such that the
spins can not resolve the discreteness of the spectrum of
the bath before they thermalize. For a finite size system
of length L, the critical thermalization rate to be stable
against avalanches thus becomes Γ . 4−L. The main
purpose of this paper is to investigate the behavior of
this thermalization rate Γ.

To study the relaxation rate, consider a system coupled
to infinite Markovian bath such that the dynamics can
be described by the following master equation

∂tρ = L(ρ), (1)
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with a Liouvillian super-operator

L(ρ) = −i[H, ρ] + γ
∑

µ

(

LµρL†
µ −

1

2

{

LµL†
µ, ρ

}

)

. (2)

Here, H denotes the bare Hamiltonian of the system,
Lµ specifies the nature of the coupling to the bath and
γ simply denotes the nominal strength of the coupling.
In what follows, I will consider the canonical disordered
Heisenberg model

H =
1

4

L−1
∑

i=1

~σi · ~σi+1 +
1

2

L
∑

i=1

hiZi, (3)

with hi being i.i.d. random variables drawn out of uni-
form distribution on [−W, W ] and ~σi = (Xi, Yi, Zi) the
vector composed of Pauli operator. To mimic the ther-
mal inclusion, the Lindblad operators are taken to be the
Pauli operators on the first spin, i.e. Lµ = (X1, Y1, Z1).
The solution to the Markovian master equation (1) is
formally given by

ρt =
∑

i

eλitpiρi, (4)

where λi are the eigenvalues and ρi the right eigenoper-
ators of the Liouvillian. The coefficients pi denote the
overlap of the initial state with the left eigenoperators
of the Liouvillian. The stationary state, λ0 = 0, will be
unique and given by the infinite temperature ensemble
ρ0 ∝ I. The slowest decaying operator is associated with
the eigenvalue with the second largest real part λ1, its
relaxation rate is given by Γ = −Re(λ1).

Finding the exact spectrum of the Liouvillian super-
operator is numerically quite demanding. It requires di-
agonalizing a 4N ×4N matrix for a system composed of N
spins and is thus limited to very small systems. In ref. [19]
the coupling to the bath, γ in eq. (2), is taken to be of
O(1). However, at present, there is no immediate reason
to be interested in non-perturbative effects of the system-
bath coupling. In fact, at sufficiently large system-bath
coupling one will induce a Zeno effect, resulting in a re-
laxation rate Γ ∝ 1/γ. The virtue of working at weak
coupling is that the decay rate can be computed pertur-
batively. For γ = 0, the eigenoperators and eigenvalues
of the Liouvillian are simply given ρnm = |n〉 〈m| and
λnm = i(Em −En) respectively, where |n〉 and En denote
the eigenvectors and eigenvalues of the bare Hamiltonian
of the system. Assuming the Hamiltonian has no degen-
erate gaps, all the λnm are unique as long as n 6= m.
There is an exponentially degenerate sector composed of
all operators that are diagonal in the Hamiltonian, i.e.
n = m such that λnn = 0. It’s easy to show that the
slowest operator will be in this degenerate diagonal sec-
tor. For example, the perturbative decay rate of ρnm

becomes Γnm = γ
∑

µ Rµ, with

Rµ =
1

2

(〈

n|L2
µ|n

〉

+
〈

m|L2
µ|m

〉

− 2 〈n|Lµ|n〉 〈m|Lµ|m〉
)

.

It follows that Γnm ≥ (Γmm + Γnn)/2, implying one of
the two diagonal states must have a smaller decay rate
than the off-diagonal combination. The slowest operator
thus resides in the diagonal sector and can be found by
diagonalizing the matrix

Mn,m = γ
∑

µ

(〈

n|L2
µ|n

〉

δn,m − | 〈n|Lµ|m〉 |2
)

, (5)

such that the decay rate is given by the smallest non-zero
eigenvalue of M . Deep in the MBL phase, the latter can
be thought of as the lifetime of the most decoupled l-bit.
The computational cost has been reduced to diagonaliz-
ing a 2N ×2N (dense) matrix. In fact, the relaxation rate
of the slowest operator can also be found by minimizing:

Γ = γ
∑

µ

Tr ([O, Lµ][Lµ, O])

Tr (O2)
, (6)

over all traceless operators that are constraint to be di-
agonal in the Hamiltonian H , i.e. O =

∑

n on |n〉 〈n|. In
what follows, results for system sizes ranging from L = 4
to L = 14 will be discussed. Currently, numerics is lim-
ited by the precision with which one can represent the
matrix elements of M . For this reason, we will use the
80th percentile instead of the median to characterize the
typical behavior. Doing so does not affect the overall
scaling behavior but allows us to study a slightly larger
regime. To asses the stability against avalanches it’s in-
structive to look at the crossing points of the ratio of the
relaxation rate to the level spacing g = Γ4L for various
system sizes. The results are shown in Fig. 2 for the
canonical disordered Heisenberg model. Over the range
of available system sizes, the crossing point shifts from
somewhere around W ≈ 7 to W > 20, with no indication
that this slows down in any way. This is in stark contrast
to what happens in the non-interacting Anderson insula-
tor where the crossing point barely moves (see Fig. 6 in
Appendix A). On the same system sizes, a critical point
of W ≈ 1.4 is extracted, which is in good agreement with
the avalanche stability threshold of W = 1.34 obtained
by Crowley and Chandran [20].

Furthermore, the crossing in Fig. 2 becomes shallower
with increasing system size, giving the impression that
there is a lower bound to the rescaled rate g. This is
exactly the behavior one would expect from a finite size
crossover where small systems appear to become more
stable to avalanches, i.e. g decreases with L, while ulti-
mately crossing back over to a regime in which g increases
with L, as shown in Fig. 3.

In other words, no exponentially localized conserved
charges are found in the region that is accessible by state
of the art numerics. If this behavior were to persist, there
would be no stable MBL phase in the thermodynamic
limit. To understand the drift it’s instructive to analyze
the asymptotic large W regime. Deep in the MBL phase
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FIG. 2. Relaxation rate: Curves show the 80th percentile
of the distribution of the smallest (non-zero) eigenvalue of the
Liouvillian super-operator in a Heisenberg chain over disorder
realizations. By rescaling with 4L the crossing point in the
data becomes indicative of the avalanche stability threshold.
Different curves show different system sizes, ranging from L =
7 − 14. The crossing point drifts substantially from around
W ∗

≈ 8 for the smallest system to W ∗ > 20 for the largest
available system size. Inset shows the numerically extracted
minimal value of Γ4L with 99% bootstrap confidence intervals.

the thermalization rate of the system should be deter-
mined by the decay of the most distant l-bit from the
bath. Reaching the bath than requires using L−1 bonds
and if all those transitions are far of resonant one would
expect the thermalization rate to scale as

Γ ≈
CL

W 2(L−1)
(7)

Such scaling can indeed be observed at much larger W ,
see Fig. 4. Due to limited numerical precision one can
not access the asymptotic regime on larger system sizes.
In order to extract the constant CL, one can factor out
the expected W 2L−b scaling and extrapolate the data to
W → ∞; numerically the constant b is found to be 2.8
which is close to the expected b = 2. The procedure is
summarized in Fig. 4B. It’s immediately clear that the
constant CL in expression (7) has a very strong depen-
dence on the system size. The extracted constant, with
bootstrapped confidence intervals, is shown in Fig. 5. It
grows at least exponentially with system size, in contrast
to the Anderson insulator in which it barely changes. In
additional, there is a significant curvature on a semi-log
scale, making the data much better described by a fac-
torial rather than an exponential.

Thusfar the argument for the asymptotic (J/W )2L−2-
scaling, does not distinguish interacting from non-
interacting problems, it simply captures the energetics of
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FIG. 3. Relaxation rate II: Curves show the behavior 80th
percentile of the distribution of the smallest (non-zero) eigen-
value of the Liouvillian super-operator in a Heisenberg chain
over disorder realizations. Different curves correspond to dif-
ferent value of the disorder strength W = 8−20; blue squares
serve as a reference and correspond to weak disorder W = 1.
Black lines show quadratic fits, from which we extract the
minimal value of the rescaled rate shown in the inset in Fig. 2.

the problem but lacks the operator Hilbert space struc-
ture of the problem. For a non-interacting particle to
reach the bath starting L sites away entails moving the
particle one site in every step, implying there is a sin-
gle path (Pauli string) contributing to the relaxation at
leading order in 1/W . Interacting particles can scatter
with each other and this scattering process can lead to a
rapid growth of the number of paths that contribute to
the relaxation, i.e. the number of paths can grow much
faster than exponential [10, 21–23]. It can of course not
be ruled out from numerical considerations alone that
at even higher disorder, the scaling of CL becomes ex-
ponential in which case a stable MBL phase emerges.
Regardless of the asymptotic behavior, the lower bound
on the avalanche stability threshold is about four times
larger than the current common consensus on the MBL
transition.
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FIG. 4. Relaxation rate III: The typical slowest relaxing
operator in a disordered Heisenberg chain. Curves show the
80th percentile of the distribution of the smallest (non-zero)
eigenvalue of the Liouvillian super-operator over disorder re-
alizations. Different curves correspond to different systems
sizes ranging from L = 4 − 10. Panel A shows the bare
rate Γ and panel B shows the rate rescaled by its expected
asymptotic W −2(L−1) behavior. The dashed lines show the
extracted asymptotes and dotted lines show the extrapolated
function.
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FIG. 5. Asymptotic Scaling: At sufficiently large disor-
der W the slowest relaxation rate is expected to behave as
C/W 2(L−1). This figure shows the change in the numerically
extracted prefactor with system size L. Red circles and blue
squares correspond to the Heisenberg chain and free fermions
respectively. Shaded areas indicate 99% bootstrap confidence
intervals. The inset shows the same data as a function of
L log L.
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APPENDIX A: ANDERSON INSULATOR

To further substantiate the method, it’s instructive to investigate the Anderson insulator over the same range of
system sizes and disorder strengths as the results presented on the Heisenberg model in the main text. It serves as a
point of comparison. Specifically, consider the Hamiltonian

H =
1

4

L−1
∑

i=1

(XiXi+1 + YiYi+1) +
1

2

L
∑

i=1

hiZi, (8)

with hi being i.i.d. random variables drawn out of uniform distribution on [−W, W ] and (Xi, Yi, Zi) denoting the
respective Pauli operators on each site i. After Jordan-Wigner transformation this maps to free fermions with on-site
disorder. A detailed analysis by Crowley and Chandran [20] concluded that the Anderson insulator should be stable
against avalanches for disorder strengths W > 1.34. Even on very small systems I find W ∗ ≈ 1.4, with a crossing that
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drifts very weakly to smaller values of disorder, see Fig. 6. Note that at fixed disorder one observes a rather clean
exponential growth/decay for the rescaled rate Γ4L, in contrast to the observed crossover behavior in the Heisenberg
model.
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FIG. 6. Relaxation time Anderson: The typical slowest relaxing operator in a disordered chain of non-interacting fermions.
Curves show the 80th percentile of the distribution of the smallest (non-zero) eigenvalue of the Liouvillian super-operator over
disorder realizations. Panel A Different curves correspond to different systems sizes ranging from L = 4 − 10. By rescaling
with 4L the crossing point in the data becomes indicative of the avalanche stability threshold. A stable crossing is observed
around W ≈ 1.4. The dashed lines show the decay rate of the slowest single particle operator. Panel B The same data is
shown as a function of L for different values of the disorder strength W .


