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Noise is a detrimental issue for nitrogen-vacancy (NV) centers in diamond, causing line broadening
and decreasing the coherence time (T2). Following our previous electric and magnetic field noise
work, we investigate noise caused by the diamond surface roughness, which is a source for charge
density fluctuations and incoherent photon scattering. We find that the varying surface charge
density noise source is prevalent throughout the entire NV dynamical decoupling frequency range,
while the photon scattering noise is almost negligible. Next, we combine the results from various
noise sources to perform comprehensive analyses on T2 and how it varies with NV depth. At
a given NV depth of 5 nm below a hydrogen- or fluorine-terminated surface, we find that these
magnetic nuclei reduce the NV coherence time the most, followed by the surface electric field noise
sources. The photon scattering and bulk magnetic field noise effects on T2 are weak compared
to the varying charge density, electric dipole, and surface impurity noise. However, with oxygen
surface termination, the surface electric field noise sources are comparable to the surface magnetic
field noise. Our calculated values of T2,Hahn (few µs to ten µs) are in good agreement with the
experimental values reported elsewhere. Finally, we calculate an anticipated signal-to-noise ratio
(SNR) for NV AC magnetometry of external nuclear spins. In our simplified assessment, where
some depth-dependent parameters (e.g. NV conversion efficiency) are held constant, we find that
shallower NV layers should yield the best SNR, which is consistent with experimental findings.

I. INTRODUCTION

Nitrogen-vacancy (NV) centers in diamond are great
candidates for quantum applications, including quantum
metrology and sensing, quantum information processing,
and hybrid quantum systems [1, 2]. NVs can operate over
a wide range of temperatures and environments (includ-
ing ambient conditions). They also are useful for sensing
magnetic fields, electric fields, and temperatures at the
nanoscale [3, 4]. When used to sense phenomena external
to the diamond, placing NVs close to the diamond surface
can improve the signal amplitude and spatial resolution
[5–10]. However, shallower NVs experience more surface
noise and a faster decoherence rate. This noise broad-
ens the transition linewidths between NV ground-state
sublevels, reduces the lifetimes of these sublevels, and
decreases the overall quantum sensor performance. Di-
amond surface noise characteristics are therefore impor-
tant to understand, since this informs us of the trade-offs
between using shallow or deep NVs for external sensing.

Electric and magnetic field fluctuations are major NV
noise contributors [11, 12]. Some of the magnetic field
noise comes from the nuclear and electronic spin baths
in the bulk [13–17]. In addition, the diamond surface also
contributes noise due to electron spins of dangling bonds
[18, 19], terminating surface atoms [20, 21], adsorption of
external molecules [22], and static magnetic impurities in
thin films [23, 24]. Static magnetic impurities can arise
within the bulk naturally or on the surface in thin films,
and have been experimentally observed for both bulk and
single-crystal surfaces [14, 25, 26].

In our previous work, we showed that the terminat-
ing surface atoms (hydrogen, flourine, and oxygen) often
used in experiments can generate more magnetic field
noise than the magnetic impurities (13C nuclei) within
the bulk [27]. We also showed that the electric dipole
fluctuations of the diamond surface and different protec-
tive surface layers are a large source of surface electric
field noise [28]. Electric field noise is important, as it
causes population decay between the NV |+1〉 and |−1〉
ground-state sublevels [11] and decoherence for Autler-
Townes dressed states for divacancy defects in 4H-SiC
[29]. Another significant electric field noise source comes
from the diamond surface roughness. A recent experi-
ment found that tri-acid cleaning and oxygen annealing
led to a 4× increase in shallow NV coherence times [30].
Until now there has been no systematic theoretical study
of electric field noise due to the rough surface in NV quan-
tum sensors. Taking a comprehensive noise approach and
analyzing the noise source contributions to NV coherence
time is crucial to improve quantum sensing with shallow
NVs.
In this paper, we have two objectives: (a) calculate the

noise generated by the rough diamond surface, and (b)
provide a comprehensive approach of determining how
noise sources affect coherence time by including all other
noise sources from previous work, and investigate the op-
timized NV depth.
For rough-surface noise, we study two mechanisms:

varying surface charge distribution fluctuations and pho-
ton scattering. A trough created by the rough surface
will trap free surface electrons. The amount of trapped
charge varies among the troughs, causing charge distribu-
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tion fluctuations that lead to noise. We model the noise
due to the varying charge density using the Schottky ap-
proximation, and generate the noise spectrum by using
trapped charge density statistics [31] (see Sec. II A.)
The optical and microwave photons from the NV ini-

tialization, readout, and dynamical decoupling pulses will
scatter due to elastic collisions with atoms in the diamond
substrate. The atoms then vibrate, emitting electromag-
netic radiation. To model the photon scattering, we con-
sider incoherent scattering due to the non-flat rough sur-
face. We use the Green’s function method along with
a Gaussian rough surface correlation to determine the
scattering field which will interact with the NV electron
spin. With the scattering field two-time correlation de-
termined, the Wiener-Khinchin theorem [32] yields the
noise power spectrum (see Sec. II B).
In Sec. III we investigate all noise sources present from

previous work [27, 28] and this current rough-surface
work to calculate their effect on the inhomogeneous de-
phasing time T ∗

2 . We use the Gaussian phase noise ap-
proximation [33, 34] that relates the Hahn echo coherence
time (T2,Hahn) with the noise when it has reached a white
noise spectrum. We also calculate the surface noise ef-
fect on the longitudinal relaxation time T1 by applying
Fermi’s Golden Rule for electrical dipole interaction noise
[35], as described in Sec. III A 2. After determing T2,Hahn

and T1, we can determine T ∗
2 through the inverse rela-

tionship between T ∗
2 , T2,Hahn, and T1.

Recent experiments have seen that NV lifetimes de-
pend on depth [12, 36, 37]. In Sec. IV, we find the
depth dependence of the NV T2,Hahn and T1 lifetimes.
We then calculate the magnetic sensitivity to AC mag-
netic fields (η) and the magnetic field variance from Lar-
mor precession of external nuclei on the diamond sur-
face (B2

RMS), which is the signal strength for NV NMR
spectroscopy. These two factors, η and B2

RMS, both con-
tribute to the NV NMR spectroscopy signal-noise-ratio
(SNR), and they have opposite depth dependence: η im-
proves with deeper depth while B2

RMS improves with shal-
lower depth. We then predict how the SNR for detecting
external solid-state nuclei with a shallow NV varies with
depth, as was done experimentally in Ref. [38] for 11B in
hBN.
The work presented here shows that the surface noise

plays a major role in reducing the coherence times of shal-
low NVs. By understanding and mitigating this noise,
extending the lifetimes for shallow NVs, and determin-
ing an optimal NV depth for external sensing, one could
improve the sensitivity of a wide range of NV sensing
applications.

II. SURFACE ROUGHNESS NOISE MODELS
AND RESULTS

To calculate the rough surface noise, we first identify
two noise mechanisms. The first mechanism is due to
rough surface defects (which in diamond are usually pri-

FIG. 1. Rough surface model for a) valleys creating areas
where electrons can collect and become trapped generating
a varying charge density per unit area due to electrons fluc-
tuating as they repel and try to escape. The rough surface
also gives b) incoherent photon scattering where the scattered
atom will begin to oscillate based on the incident pulse from
either an initialization and readout or dynamical decoupling
microwave pulse.

mal C = C sp2 bonds [39]) trapping electrons (see Fig. 1).
Depending on the defect shapes and sizes, some regions
have more trapped electrons than others, causing charge
density variations along the surface that leads to time-
dependent fluctuations of the charge density (see Sec.
II A). The second mechanism is the rough surface caus-
ing incoherent scattering of the laser initialization, read-
out, and dynamical decoupling microwave pulses, causing
photon intensity fluctuations (see Sec. II B). NVs expe-
rience the electric fields from these sources, which enter
the NV Hamiltonian as

H = d‖Ez

[
S2
z − 2

3

]
(1)

− d⊥
[
Ex (SxSy + SySx) + Ey

(
S2
x − S2

y

)]
,

where d‖,⊥ are the coupling strengths, E is the electric
field, and Sx,y,z are the NV electron spin operators.
The surface roughness (Ra) of Element Six (E6) chemi-

cal vapor deposition (CVD) diamonds commonly used in
many experimental setups is 5 nm after polishing. E6
can use scaife polishing to smooth the diamond surface
to an Ra as small as ≤ 1 nm [40].

A. Rough surface charge distribution noise

To determine the noise spectral density due to the
varying charge density, we use the Schottky approxima-
tion to determine the total charge per unit area (see
Ref. [39] for an approximate solution similar to our direct
derivation),

Qd =
√
qNA2εε0(EF − En). (2)

Here, ε is the relative permittivity of diamond, ε0 is the
permittivity of free space, q is the electron charge, NA is
the defect concentration, EF is the Fermi energy level,
and En is the local energy level within the defect region.
Using the total areal charge due to the surface de-

fects, we now consider the time-dependent charge con-
centration as the troughs trap surface charges. Xia et
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al. [31] showed that the time-dependent charge concen-
tration due to trapped electrons is

σ(t) = qNtrapf(En) exp

[
−υ2

de

2
t2
]
. (3)

Here q, Ntrap, and f(En), are the electron charge, number
of trapped electrons, and Fermi-Dirac distribution func-
tion at t = 0, respectively, and υde = (kBT )

3
/
(
6h3υ2

)
.

Furthermore, υde is the maximum detrapping rate, kB
is Boltzmann’s constant, T is temperature, h is Planck’s
constant, and υ is the orthogonal vibrational frequency
around the defect. The energy level of the traps (i.e. the
Fermi level pinning) is temperature- and time-dependent,
and is represented by ET = kBT ln(υdet). Assuming that
q is the total charge at t = 0, and Eq. (3) is for the con-
centration of charge, q will now be replaced by the total
charge per unit area due to the defects causing rough-
ness, Qd =

√
qNA2εεo(EF − En). Plugging in the to-

tal charge per unit area (Eqn. (2)) and the Fermi-Dirac
distribution function will give a time-dependent charge
density (see Appendix (A 1).
With the time dependence of the charge density, the

two-time correlation can be expressed by an autocorrela-
tion function of the time-dependent charge density, which
can be plugged into the Wiener-Khinchin theorem to de-
termine the noise spectral density,

SCD(ω) =

∫ ∞

−∞

〈δσ(t), δσ(t + τ)〉 exp [−iωτ ] dτ. (4)

After applying the Wiener-Khinchin theorem, we get the
noise power density,

SCD(ω) = Q2
dN

2
trapf(En)

2
exp

[
− ω2

υ2

de

]

υ2
de

√
2π. (5)

B. Photon scattering noise

As photons from the initialization, readout, and dy-
namical decoupling pulses interact with the diamond sub-
strate, atoms within the diamond will have elastic colli-
sions with incoming photons. The atoms will vibrate,
emitting electromagnetic radiation. The noise generated
from the elastic scattering requires knowing the fields ra-
diated from the scattering. We approach this by consid-
ering the Green’s function method applied to the wave
equation as described in the appendix (A 2). The scat-
tered field due to the incoherent scattering of the rough
surface can be described by the following electric field,

E(t) =
qa(t) sin(θ)

4πε0rc2
. (6)

Here q is the electron charge, r is the radial distance
from the electron, a(t) is the vibrational acceleration of
the scattered atom, θ is the scattering angle, and c is

the speed of light. We now create a two-time correla-
tion function and apply the Wiener-Khinchin theorem to
relate to the noise spectral density,

SRS(ω) =

∫ ∞

0

〈E(t)E(t + τ)〉 exp [−iωτ ] dτ, (7)

SRS(ω) = E(θ)2
1

2ωinc(ωinc + ω)
. (8)

Here E(θ)2 = q2E0 sin(θ)
me4πε0rc2

and me is the electron mass.
To characterize the rough surface causing photon scat-

tering, we need a correlation function that describes the
surface roughness. We describe the rough surface corre-
lation as follows,

C(R) =
1

σ2
〈h(r)h(r +R)〉 , (9)

where h(r) is the surface height a distance r away from
a smooth reference plane and σ is the root-mean-square
height. We use Gaussian height distributions as they
are widely used to describe rough surfaces. If we con-
sider the rough surface heights that arise from a large
number of random local defects, we can use the cen-
tral limit theorem to have the cumulative effect be de-
scribed using a Gaussian function. To see how the surface
roughness affects the noise due to scattering, we generate
the power spectrum of the rough surface by taking the
Fourier transform to get the rough surface power density,

PG(ω) =
σ2λ

4π3/2
exp

(
λ2ω2

4c2

)
. (10)

Here ω/c is related to the wave number through k = ω/c,
and λ is the correlation length (which relates to the sur-
face roughness Ra). Now that we have the rough surface
noise power spectrum, we need to combine our noise and
rough surface power densities to generate the actual pho-
ton scattering noise power spectral density seen by the
NV spin, giving us the following

SRS(ω) = PG(ω)E(θ)2
1

2ωinc(ωinc + ω)
, (11)

where ωinc is the incident photon frequency.

C. Results and discussion - rough surface noise

NV dynamical decoupling experiments often probe the
103 − 107 Hz operational frequency range, though NVs
can also sense higher frequencies when measuring Rabi
frequencies or T1 lifetimes. We initially calculated the
noise spectrum from the varying charge density due to
the rough surface for this range, but noticed that the
noise very quickly reaches its maximum, making it nearly
constant throughout the operational frequency range. To
see any changes, we expanded the frequency range (see
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FIG. 2. Noise power spectra for varying charge distribution
noise when considering a concentration of 1013/cm2 (orange
dotted), 1012/cm2 (red dashed), 1011/cm2 (blue) trapped
charge area density. A 1013/cm2 surface charge density is
a plausible trapped charge area density due to surface defects
[39] before any polishing.

Fig. 2). This almost-constant noise amplitude within
the operational frequency range is associated with the
fact that it does not take many electrons getting trapped
to start interacting with each other and vibrate rapidly,
generating noise. The noise amplitude also depends on
the square of the electron density trying to escape from
the troughs. The more electrons interacting within the
troughs, the more noise will be generated.
As the surface becomes smooth, the charge density on

the surface becomes more uniform, leading to a large de-
crease in electrons being trapped in troughs, reducing the
noise. This leads to a smaller noise floor maximum for
a smoother surface, but it does not take many electrons
getting trapped in troughs to start interacting with each
other, meaning the noise is present throughout the entire
operational frequency range. Thus, smoothing out the
surface by successive tri-acid cleaning and annealing is
effective in reducing the surface noise [30].
To calculate the noise for the initialization and read-

out laser pulses and the dynamical decoupling microwave
pulses, the scattering field was set normal to the NV axis
to make the E(θ) term maximum. This setup allows us
to study the frequency dependence of the noise spectra
in addition to studying its worst-case scenario. Figure 3
shows the noise spectrum for the initialization and read-
out laser pulses. We considered a 285 mW initialization
and readout laser power, 10 µs pulse duration, and a 40
µm diameter laser spot size (intensity I = 23 kW/cm2).
[38]. We also considered several reported NV op-
tical saturation intensities, due to disagreement
in the literature [41–43]. The laser pulses have sev-
eral orders of magnitude larger noise amplitude than the
dynamical decoupling pulses. This is because the laser
pulse electric field amplitudes are much larger than those
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FIG. 3. Noise power spectra from photon scattering of the
initialization and readout laser pulses at the NV optical sat-
uration intensity Isat =

hc

λστ
, where λ = 532 nm is the pump

laser wavelength, σ is the NV absorption cross section at 532
nm, and τ ≈ 10 ns is the upper-state lifetime. Since there is
disagreement in the literature for the value of σ, here we show
the results for σ = 2.4×10−17 cm2 (Isat = 1200 kW/cm2, red
solid) [41], σ = 3.1× 10−17 cm2 (Isat = 950 kW/cm2, orange
dashed) [42], and σ = 9.5 × 10−17 cm2 (Isat = 310 kW/cm2,
purple dotted) [43], and the experimental setup of Henshaw
et al. [38] (I = 23 kW/cm2, green dashed-dotted).

of the dynamical decoupling microwave pulses (typically
∼10 W microwave power and ∼30 ns pulse duration).
The peak field amplitude differences in the pulses leads
to the acceleration of the scattered atoms being much
larger for the laser pulses. We also studied varying the
rough surface correlation length from values ranging near
the Van der Waals radius for carbon (0.17 nm) to a few
millimeters (a typical diamond size), and saw no change
in the noise amplitude. This indicates that the pulses do
not notice the rough surface. Unfortunately, smoothing
the surface does not reduce the noise from photon scat-
tering (like for the varying charge density). On the other
hand, noise during the laser pulses shouldn’t affect the
NV lifetimes since they are being optically pumped. In
addition, if the NVs undergo most of their phase accumu-
lation (and decoherence) in the time between microwave
pulses during a dynamical decoupling AC magnetometry
experiment, additional noise during the microwave pulses
also shouldn’t matter much (see Section (IVA)).
The noise power spectra due to laser pulses

and microwave pulses (Fig. 3) and microwave
pulses resemble low-pass filters, though with dif-
ferent cutoff frequencies (∼5×1013 Hz compared
to ∼5×109 Hz). The laser pulse noise cutoff fre-
quency is beyond the practical NV AC magne-
tometry frequency range, meaning it’s essentially
white noise. The microwave pulse noise could be
reduced for NV AC magnetometry experiments
that surpass this cutoff frequency with an appre-
ciable bias magnetic field. Also note that the mi-
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crowave pulse noise power spectrum isn’t flat be-
low the cutoff frequency. Finally, NV AC mag-
netometry experiments should filter out much of
this white noise, though the filter pass-bands will
still allow some noise through.
We see different power laws for the microwave

pulse and laser pulse noise power spectra (Fig. 3
and 4). For the microwave pulse noise, we see a
1/f power law at high frequencies. This makes
sense as we consider that the photon will scatter
off a charged particle within the diamond. This
type of scattering will lead to a 1/f noise power
law [44–46]. For the laser pulse noise, we see a
1/f2 power law at high frequencies. This type of
noise can come from a generation-recombination
mechanism [47]. This makes sense for the case of
the initialization pulse as the NV will absorb the
energy and release it through photon emission.
With the noise spectra for the varying charge

density and photon scattering determined, we can
compare all of the surface noise effects we have
studied so far. Fig. 4 shows the noise contri-
butions from each of the surface noise models
we have studied so far. We assume an oxygen-
terminated surface without a protective dielec-
tric layer, and a surface roughness that gives a
1013/cm2 trapped charge density. This allows us
to study a plausible scenario of the surface noise
present in a given experiment before much noise
mitigation has been done. For frequencies < 1
kHz (not shown), the electric dipole noise is the
largest noise source. Continuing to look at the
lower frequencies, the electric dipole and varying
charge noise density are the largest noise sources.
The next largest noise source is the oxygen sur-
face impurity magnetic noise, followed by the
photon scattering noise of the initialization and
readout pulses when considering the 23 kW/cm2

laser intensity of Henshaw et al. [38]. The small-
est surface noise contribution is from the dynam-
ical decoupling microwave pulses, which makes
sense when considering the small intensity of the
pulses causing a low photon scattering noise floor.
These noise profiles will vary based on experimen-
tal details, but this gives insight into a scenario
for an experiment with limited mitigation done.

III. COMPREHENSIVE NOISE EFFECTS ON
COHERENCE TIMES AND DEVICE

SENSITIVITY

A. Coherence time - noise relationship

With our previous work on electric- and magnetic-field
noise [27, 28] and current work on rough surface noise, we
can now take a comprehensive approach to noise effects
on shallow NVs.
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FIG. 4. Noise power spectra for various surface noise sources
considering a 5 nm NV depth, including electric dipole noise
considering a bare diamond surface (SED(ω), red dashed),
varying charge density (SCD(ω), blue solid), photon scatter-
ing from the initialization and readout beams (Sinit

PS (ω), or-
ange solid), photon scattering from the dynamical decoupling
pulses (SDD

PS (ω), purple dashed-dotted), and the magnetic
surface impurity noise from oxygen termination (SOSI(ω)
green dotted).

1. Gaussian phase-noise approximation of T2,Hahn

Our task is to examine how noise from all these differ-
ent sources affects the NV coherence time, T2,Hahn. We
assume that the fluctuations will obey Gaussian statis-
tics [33, 34], i.e. that the probability distribution for the
stochastic phase of the NV system will follow a Gaussian

p(ϕ) =
1√

2π 〈ϕ2〉
exp

(
− ϕ2

2 〈ϕ2〉

)
, (12)

where ϕ is the stochastic phase of the NV. To be more
specific, we consider an NV with Bloch vectorM plugged
into the Schrödinger equation, giving Ṁ = B×M, where
B is the magnetic field. The magnetic field here will have
a static part and a stochastic part, which splits the total
phase, φ, into the sum the regular phase, φ0, and the
stochastic phase.
In the Gaussian approximation, the only relevant sta-

tistical characteristic is the two-time correlator of the
random fluctuation 〈v(t), v(t + τ)〉 = W (|t− τ |), where
v is a random variable. W (|t− τ |) vanishes as τ → ∞.
The integration time will be much larger than the decay
of the correlation function, thus, the central limit theo-
rem becomes applicable and is independent of the details
of the process. The stochastic phase decay is then given
by

e
− t

T2 =

∫
p(ϕ)eiϕdϕ = e−

1

2 〈ϕ2〉. (13)

Here t is the integration time and
〈
ϕ2
〉
is the phase vari-
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ance. The power spectrum of the noise S(ω) is

S(ω) =
1

π

∫ ∞

0

W (t) cos(ωt)dt. (14)

Combining Eq. (12) with Eq. (14) yields the following
relation

〈
ϕ2
〉
= 4

∫ ∞

−∞

sin2
(
ωt
2

)

ω2
S(ω)dω. (15)

For large t, it becomes
〈
ϕ2
〉
= 2πtS(0). (16)

The coherence time relates to the noise at its maximum
value (S(ω → 0)),

T2,Hahn =
1

πS(0)
. (17)

2. T ∗
2 , T2,Hahn, and T1 noise

Next, we determine how each noise source contributes
to T ∗

2 , T2,Hahn, and T1 decay. We have modeled each noise
source independently so we can relate the inhomogeneous
dephasing time with the coherence time predicted from
each noise source. We follow the T ∗

2 expression as given
in Ref. [4],

1

T ∗
2

≈ 1

T elect
2

+
1

Tmag
2

+
1

T other
2

+
1

2T1
, (18)

with

1

T elect
2

=
1

T dip
2

+
1

TCD
2

+
1

TPS
2

, (19)

1

Tmag
2

=
1

T surf
2

+
1

T bulk
2

. (20)

Here T elect
2 encompasses the predicted T2,Hahn for the

electric field noise sources (electric surface dipoles T dip
2 ,

photon scattering TPS
2 , and varying surface charge den-

sity TCD
2 ), while Tmag

2 encompasses the predicted T2,Hahn

for the magnetic field noise sources (electronic surface
spin bath T surf

2 and nuclear spin bath T bulk
2 ) and the lon-

gitudinal relaxation time of the NV, T1. To get a full
prediction of T ∗

2 , other sources that affect the inhomo-
geneous dephasing time such as strain effects and other
possibly unknown effects will also need to be incorpo-
rated. However, they are out of the scope of this work
so we will focus only on how the various noise profiles
we have modeled effect the coherence time. Experiments
have also shown that the Hahn echo pulse technique can
yield a T2,Hahn lifetime much longer than T ∗

2 [4, 5, 48–50].
Determining T1 is done by considering the interaction

Hamiltonian Eq. (1). If the system is placed close to po-
lar molecules or dielectric materials, electrical noise from

the surface will couple the |1〉 and |−1〉 states together
and cause transitions between these states. The rate of
this relaxation can be written using Fermi’s Golden Rule
[35],

1

T1
=

d2⊥
2

coth

(
βω

2

)∫ ∞

−∞

〈[E(t), E(0)]〉 e−iωtdt+
1

T phon
1

.

(21)
Here β = 1/kBT , 〈[E(t), E(0)]〉 is the thermally-averaged

auto-correlation function, and 1/T phon
1 encompasses

the bulk relaxation rate due to phonons [51], in-
cluding the possibility of surface phonon effects.
The Fourier transform in Eqn. (21) includes the elec-
tric field noise from an electric dipole interaction with a
surface dielectric. We have modeled the electric dipole
noise due to surface dielectrics previously [28] allowing
us to use our previous model to predict the dipole noise
effect on T1 and get a gauge on T ∗

2 based on different
experimental setups.

3. NV relaxation depth dependence due to various noise

sources

Recent experiments have reported how T2,Hahn de-
pends on the NV depth d, and the optimal depths for
various experimental situations [12, 36–38]. Equation
(17) and our work support the experimental observations:
from our previous work on electric dipole noise [28], we
found that the electric dipole noise had a 1/d2 depen-
dence. From Eqns. (A4) and (8) there is also a 1/d2

dependence on rough surface noise for both the vary-
ing charge density and photon scattering noises. On the
other hand, for the magnetic noise due to impurity spins
at the surface, the magnetic dipole moment spin-spin in-
teractions give a 1/d3 dependence [27]. Finally, for the
bulk impurity spins, the spin-spin magnetic dipole mo-
ment interaction depends on the distance between the
NV and the 13C nuclear spin bath, which is on the order
of 0.44 nm for natural-abundance 13C (1.1%) [52]. In
this sense, there is no real depth dependence as the bulk
noise will be felt before any surface effects. Similar to
the T2,Hahn depth dependence being driven by the noise,
T1 also has a depth dependence as it is affected by the
electric dipole noise. We discuss the depth dependence
in details in Sec. IV.

IV. RESULTS AND DISCUSSION - NOISE
EFFECT ON NV LIFETIMES

A. Noise effect on T2 coherence time

In this section, we calculate the depth-dependent
T2,Hahn coherence time (or decoherence rate) for each
noise source using the results from the previous work
[27, 28] and the ones obtained in Sec. II C. For noise spec-
trum calculations of electric and magnetic field noise, we
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refer to our previous work [27, 28]. Then, we compare
their effects on T2,Hahn. Table (I) shows the coherence
time at a depth of 5 nm for each noise source. We did not
include the bulk magnetic field noise (e.g. 13C and sub-
stitutional nitrogen) since it does not have a clear depth
dependence and would obscure the comparison of other
noise effects. We see that the hydrogen- and fluorine-
terminated surface impurity magnetic field noise sources
give the shortest T2,Hahn time. This is due to the 1/d3

dependence compared to the 1/d2 dependence for the
surface electric field noise.

Noise Source Coherence Time (µs)
Electric dipole (BD) 3.9
Electric dipole (glyc) 22.5
Electric dipole (PC) 30.8
Varying charge density 4.42

Photon scattering 104

Surface nuclei (F) 0.004
Surface nuclei (H) 0.08
Surface nuclei (O) 105

TABLE I. Coherence time effects when considering a 5 nm
depth from electric dipole noise when considering bare di-
amond (BD), glycerin covering layer (glyc), and propylene
carbonate covering layer (PC), varying charge density noise,
photon scattering noise from the initialization and readout
pulses with Isat = 1200 kW/cm2, and magnetic surface im-
purities of terminating atoms fluorine (F), hydrogen (H), and
oxygen (O).

The oxygen-terminated surface (which is a widely-used
method to get rid of dangling bonds on the surface) gave
a much longer T2,Hahn time compared to the electric field
noise effects. The depth proportionality difference of elec-
tric field noise and magnetic field noise may explain why
the work by Myers et al. [12] shows the electric field
noise at the surface being comparable to the magnetic
field noise. In their work, they attempt to decompose
the noise spectrum into electric field noise and magnetic
field noise since they use the magnetic field variance pro-
portional to 1/d2 rather than 1/d3.

The surface electric dipole contaminations with no pro-
tective cover layer and rough surface with the varying
charge density electric field noise gave the next shortest
T2,Hahn times. When looking at glycerin and propylene
carbonate protective layered electric dipole noise, we see
an order of magnitude increase in the T2,Hahn time which
supports previous claims that choosing the correct pro-
tective layer is important. The initialization and readout
pulse photon scattering noise and oxygen-terminated sur-
face impurity magnetic field noise give the longest T2,Hahn

times due to their overall addition being masked due to
the other stronger noise sources. As expected, the mi-
crowave dynamical decoupling pulses (not included in the
table) will also not contribute much to the T2,Hahn decay
rate.
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FIG. 5. T dipole
1

relaxation times when considering a bare di-
amond electric dipole noise (blue line) and a protective layer
of propylene carbonate (PC) (dashed red line). These values
are consistent with the few-ms T1 seen in experiment, though
the bulk T1 lifetime is also a few ms.

B. T1 and T ∗
2 calculations

NV relaxometry experiments have shown that NV
room-temperature T1 times are a few milliseconds, de-
pending on the depth [11, 12, 51]. From Eqn. (21)
we see that one part of the T1 depth dependence
comes from the electric dipole noise. It should

be noted that the Tphon
1 piece will have a depth

dependence of its own. In Fig. 5 we calculate T1

times due to the surface electric dipole noise at

different depths (denoted T dipole
1 ) to compare to

experimentally-determined values. We look at the
cases of a bare diamond surface and a propylene carbon-
ate (PC) protective layer, as this will change the elec-
tric dipole interaction strength. Our calculations for T1

come out on the order of a fraction of a millisecond for
the bare diamond and a few milliseconds with a PC pro-
tective layer. These values show good agreement with
measured values in the few-millisecond range as seen by
Myers et al. [11, 12]. Note that the bulk T1 lifetime (due
to phonons) is also a few milliseconds [51].

With the T2,Hahn decay rates from the different noise
sources and T1 determined for different depths, we now
use equation (18) to calculate T ∗

2 . Looking at Eq. (18),
we can see that T1 affects T

∗
2 minimally, as T1 is typically

much longer than the T ∗
2 contributions from the other

noise sources.

As mentioned in the previous section, dynamical de-
coupling pulse sequences can extend the NV coherence
times based on the number of π-pulses N . Experimen-
tal observations have shown that T2 should im-
prove with N as T2,N = N2/3T2,Hahn, including for

shallow NV layers [53], and we use the same N2/3

scaling here. For N = 48 pulses, we get T2,48 values of
tens of µs for depths of 2−10 nm and ∼100 µs for 20 nm
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FIG. 6. NV coherence times for XY8-48 (solid blue line),
XY8-256 (dashed red line), and Hahn echo (dashed-dotted
orange line) as a function of depth. The coherence time im-
proves with depth d, as the surface magnetic field noise is
proportional to 1/d3 and the surface electric field noise is
proportional to 1/d2.

depths, which are in good agreement with experimental
observations (see Fig. 6). For N = 256 pulses, we saw
coherence times as long as hundreds of µs. Note that
we are only considering the noise effects on T2 which we
have modeled so far; there may be other effects present
(e.g. strain fluctuations) which can accelerate the deco-
herence process. Nevertheless, our calculations tell us
that these noise sources are playing a big part in decreas-
ing coherence times with surface noise playing a large
role. Being able to use methods to mitigate the noise
from these different sources will be important to extend
these coherence times even further. Some of the sugges-
tions to reduce electric dipole noise are discussed in our
previous work [28].

C. Depth optimization for NV NMR spectroscopy

In NV NMR spectroscopy of statistically-polarized ex-
ternal nuclei, two parameters are critical: the magnetic
sensitivity and the nuclear magnetic field amplitude. The
sensitivity η is the minimum B2

RMS magnetic field noise
amplitude that can be measured in a fixed amount of
measurement time. η is related to T2 in the following
way:

η ≈ π2e
√
T2 + TR

γ2
eT

2
2A

√
IPLtint

, (22)

where γe is the electron gyromagnetic ratio (in MHz/T),
IPL is the photon count rate in photons/s, A is the pho-
toluminescence spin contrast, tint is the readout signal
integration time, and TR is the total readout and ini-
tialization time. Here we assume that the noise floor

improves with the square root of the experimental aver-
aging time. Since the sensitivity contains T2, it has a
depth dependence, which we calculate below. For sim-
plicity, we consider the sensitivity of a single NV rather
than an ensemble, since the depth of a single NV is well
defined while the NVs in an ensemble have a range of
depths.
In addition, an NV at a depth d below the diamond

surface experiences a B2
RMS magnetic field from an ex-

ternal semi-infinite homogeneous layer of nuclei [48]:

B2
RMS = ρ

(
µ0hγN
4π

)2
(
π
(
8− 3 sin4 α

)

128d3

)
. (23)

Here, µ0 is the vacuum permeability, γN is the nuclear
gyromagnetic ratio (in MHz/T), h is Planck’s constant,
ρ is the nuclear spin density, and α is the angle between
the NV axis and the diamond surface normal vector. For
NVs near a [100] diamond surface (α ≈ 54.7°), which is
the most common diamond surface cut, this reduces to

B2
RMS = ρ

(
µ0hγN
4π

)2(
5π

96d3

)
. (24)

The signal-to-noise ratio (SNR) between η and the
B2

RMS is an experimental figure-of-merit:

SNR =
B2

RMS

η/
√
s
. (25)

Maximizing the SNR (and minimizing the experiment
duration) requires finding the depth for which an im-
provement in B2

RMS signal amplitude is worth the sac-
rifice in η. While η gets worse with shallower d, the
B2

RMS amplitude improves with shallower d, as shown
in Fig. 7 (a). To calculate η, we used a typical single-
NV fluorescence intensity of IPL = 2 × 105 photons/s,
TR = 10 µs, tint = 2 µs, and A = 0.04. To calculate
B2

RMS and compare with Ref. [38], we used γN = 13.66
MHz/T, ρ = 4.1 × 1028 spins/m3 for 11B in hBN, and
γe = 28 GHz/T.
Figure 7 shows how η and B2

RMS vary with depth.
Here we see that since B2

RMS decreases with depth more
rapidly than η does, this means that a shallower depth
should yield a better SNR. This result is consistent with
experimental findings (e.g. Ref. [12, 38]), though we leave
out additional depth-dependent phenomena that also af-
fect η, such as NV conversion efficiency, photostabil-
ity, IPL, and A. In practice, these additional depth-
dependent phenomena can spoil η faster than the 1/d3

B2
RMS improvement, meaning the depth for which the

NV NMR spectroscopy SNR is maximized is greater than
zero. A more complete analysis would include these ef-
fects, and is out of the scope of this current work.
This NV NMR spectroscopy example (statistically-

polarized nuclei in a solid) does not necessarily generalize
to every experimental situation. Applying this analysis
to NV NMR spectroscopy of statistically-polarized nuclei
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FIG. 7. (a) η/
√
s for XY8-48 (solid blue line), η/

√
s for XY8-

256, (dashed-dotted red line), and Larmor B2

RMS for 11B in
hBN (dashed orange line) as a function of depth. B2

RMS im-
proves with shallower depth like 1/d3, while the sensitivities
get worse (though more slowly). (b) Signal-to-noise ratio
(SNR) for XY8-48 (solid blue line) and XY8-256 (dashed-
dotted red line). The SNR improves for shallower depths,
though in practice other depth-dependent sensitivity factors
(e.g. IPL) move the SNR maximum to a depth greater than
zero (e.g. 5.5 nm in Ref. [38]).

in a liquid (where the molecular diffusion time depends
on NV depth), nuclei with a T ∗

2 much shorter than the
NV T2, and thermally-polarized external nuclei will likely
require modification of the above expressions for the ap-
propriate depth-dependent SNR [53–55].

Note that we are modeling the worst-case scenarios for
the noise sources. For example, we model the electric
dipole noise considering a bare diamond as in Ref. [28].
In the actual experiments, there is a hydrocarbon layer

on the diamond surface, and the external nuclei on top
of the hydrocarbon layer [38]. Depending on the surface
dielectric, the surface electric dipole noise will change
and the overall coherence time could increase, which will
change the sensitivity.

V. CONCLUSIONS

The studies presented here have been threefold. First
we investigated two noise sources due to the rough sur-
face: the varying charge density which comes from elec-
trons on the surface getting trapped within valley defects,
and photons scattering incoherently from the rough sur-
face. Second, we combined all our previous work on elec-
tric field noise and magnetic field noise with the rough
surface noise and have done comprehensive analyses of
the various noise effects on coherence times, T2,Hahn and
T ∗
2 , and the longitudinal relaxation time, T1. Finally,

we examined the NV AC magnetic sensing performance
with depth and its trade-off compared to the magnetic
field amplitude from external nuclei near the surface.
Our calculations of the varying charge density noise

show the white noise present throughout the entire oper-
ational frequency range of 103−107 Hz due to the trapped
electrons on the surface quickly beginning to fluctuate as
they interact with each other. When considering a mostly
smooth surface, the noise amplitude decreases consider-
ably but still persists throughout the entire operational
frequency range. This agrees with what has been seen in
experiment before when using triacid-cleaning to get rid
of the surface defects causing valleys [30]. As for the inco-
herent photon scattering noise due to the rough surface,
the noise spectra show that the initialization and read-
out pulses generate roughly 4 − 5 orders of magnitude
more noise than the dynamical decoupling pulses. When
compared to the other noise sources, the photon scatter-
ing is much weaker. When considering a wide range of
rough surface correlation lengths we see that the rough
surface is not impacting the photon scattering. Meth-
ods such as fabricating photonic cavities to reduce
the laser power required for initialization or pho-
tonic waveguides could help mitigate noise from
photon scattering. It should be noted that if op-
tically pumped within a resonant waveguide, the
NVs will require less laser power but the photon
rate and intensity at the NV will be the same.
We combined this work with our previous work on elec-

tric field noise and magnetic field noise [27, 28] and exam-
ined the effect on coherence time. Our results gave that
the surface magnetic impurities, electric dipole noise, and
varying charge density noise play a large role in decreas-
ing coherence times. We next calculated the surface noise
effect on the longitudinal relaxation time T1, and verified
that the result reflects experimentally determined values
[11, 12] very well. When making our best assumptions to
the possible noise sources in an experimental setup simi-
lar to Henshaw et al. [38] and assuming the scaling in the
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coherence time due to the number of pulses [53], we saw
good agreement for the coherence times for our range of
depths when compared to their data.
With the comprehensive analysis on the noise effects

on coherence times, we finally optimize the NV depth
for magnetometry. Our SNR vs. depth assessment sug-
gests that shallower NVs are better, a trend similar to
what was seen by Henshaw et al. [38]. Since we only
consider noise which we have modeled thus far, the dif-
ference in what we see compared to observed by their
experiment comes from the fact that their measurements
encompass everything that could be decreasing coherence
times whereas we only look at one part of the whole pic-
ture. Our results show that the noise piece is an impor-
tant one.
Again, it should be noted that our noise calculations do

not account for various experimental efforts (e.g. tri-acid
cleaning and annealing, choosing the correct protective
layer, etc.) to reduce noise. However, our results give
good predictions to what has been expected from these
various noise sources and will aid experimental efforts.
Regardless of the numerous experimental improvements
to sensitivity, we still see that the noise is playing a major
role in the decreasing of coherence times and among all
our modeled noise sources, the surface noise is a major
culprit. By reducing surface noise, extending lifetimes,
and determining an optimal NV depth, one could increase
the accuracy and fidelity of a wide range of NV sensing
applications.
The predictions presented here can be im-

proved by modeling additional noise sources,
like electron spin noise from paramagentic nitro-
gen defects (P1 centers) and possible electron-
electron spin-spin interaction noise from the sur-
face defects. The diamond 13C isotopic abun-
dance is also an important factor [27] that could
modify the effects of some of our current mod-
els. Future work decomposing the components
of each noise model can help us understand how
the noise affects decoherence and relaxation sep-
arately, further strengthening the results pre-
sented here. Another future direction with these
models could be the temperature dependence of
the predicted coherence times, as each of the
noise models we have described so far may have
temperature dependence.
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Appendix A: Noise spectrum derivations

1. Varying charge density noise

To determine the areal charge density of the rough
diamond surface due to defects, we use the Schottky ap-
proximation from the depletion of occupied states due
to surface defects (which in diamond are usually primal
C = C sp2 bonds [39]). The boundary conditions are:

σ(x) = qNA 0 < xd ≤ x, (A1)

σ(x) = 0 x > xd,

where q is the electron charge,NA is the defect concentra-
tion, and xd is the length of the depletion region. The de-
pletion region is the area where there is no moving charge
so an electric field can be present. With these boundary
conditions, the total charge per unit area within the de-
pletion region is Qd = qNAxd. The next step is to calcu-
late the value for the length of the depleted region using
experimentally available parameters. Gauss’s law states

∮
E(x)dA =

Qd

εs
, (A2)

where εs is the permittivity of the depleted region, E is
the electric field, and dA is the differential area. From
our boundary conditions for our charge density, we can
determine how the electric field will look within our de-
pleted region due to the defects as well as outside the
region,

E(x) = −qNA

εs
(xd − x) 0 < x < xd, (A3)

E(x) = 0 x ≥ xd.

Here the electric field goes to zero outside the depleted
region. This makes sense as a non-zero field would cause
mobile carriers to redistribute themselves until the field
is zero. The maximum possible value for the electric field
is Emax = −qNAxd/εs.
The electric potential corresponding to the electric

field then becomes

φ(x) = 0 x = 0, (A4)

φ(x) =
qNA

2εs

[
x2
d − (xd − x)2

]
0 < x < xd,

φ(x) =
qNA

2εs
x2
d x > xd.
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A boundary condition on the potential is applicable when
the density of the free charge carriers is very high and the
thickness of the charge layer is very thin, thus, a potential
difference between them is orders of magnitude smaller
than the potential difference within the defect despite
the total amount of charge being the same. This is a
key piece of the Schottky approximation and works well
when determining the energy bands at the diamond sur-
face. The total potential difference within the depletion
region is the Fermi energy (EF ), that is further reduced
or increased by the local energy level, En, in the depletion
region. The boundary condition gives

EF − En = −φ(x = 0) =
qNA

2εs
x2
d (A5)

and the length of the depleted region becomes

xd =

√
2εs(EF − En)

qNA
, (A6)

With the relation between the maximum electric field,
we obtain the total charge per unit area which is similar
to the approximation found in Ref. [39],

Qd =
√
qNA2εεo(EF − En). (A7)

where ε is the relative permittivity of diamond and εo is
the permittivity of free space.
Using the total areal charge due to the surface defects,

we now consider the time-dependent charge distribution
as the defects trap mobile charges at the surface. Xia et

al. [31] showed that the time-dependent charge concen-
tration due to trapped electrons is

σ(t) = qNtrapf(En) exp

[
−
∫ t

0

Pdedt
′

]
. (A8)

Here q, Ntrap, and f(En), are the electron charge, trap
density occupied, and the Fermi-Dirac distribution func-
tion at t = 0, respectively, and Pde is the probability
of an electron being detrapped. The probability of an
electron to be detrapped can be written as a Boltzmann
rate,

Pde = υde exp

[
− ET

kBT

]
,where υde =

(kBT )
3

6h3υ2
.

Here υde is the maximum detrapping rate, kB is Boltz-
mann’s constant, T is temperature, h is Planck’s con-
stant, and υ is the orthogonal vibrational frequency
around the defect. The energy level of the traps is
temperature- and time-dependent and is represented by
ET = kBT ln(υdet). Plugging in the definition of ET

and υde into Pde makes determining the probability of
detrapping a straight forward process and gives the the
time-dependent charge concentration as

σ(t) = qNtrapf(En) exp

[
−υ2

de

2
t2
]
, (A9)

where f(En) =

[
1 + exp

(
EF − En

kBT

)]−1

.

Assuming that q is the total charge at t = 0, q will now
be replaced by the total charge per unit area due to the
defects causing roughness, Qd =

√
qNA2εεo(EF − En).

Plugging in the total charge per unit area from before we
get the following time-dependent charge density,

σ(t) = QdNtrapf(En) exp

[
−υ2

de

2
t2
]
. (A10)

With the time dependence of the charge density,
the two-time correlation can be expressed by an auto-
correlation function of the time-dependent charge den-
sity

〈δσ(t), δσ(t + τ)〉 = Λ
exp

[
υ2

de
τ2

4

]√
π

υde
, (A11)

where Λ = Q2
dN

2
trapf(En)

2 exp

[
−υ2

de

2
τ2
]
.

The auto-correlation function can then be plugged into
the Wiener-Khinchin theorem to relate to the noise spec-
tral density,

SCD(ω) =

∫ ∞

−∞

〈δσ(t), δσ(t + τ)〉 exp [−iωτ ] dτ.

After applying the Wiener-Khinchin theorem, we get the
noise power density,

SCD(ω) = Q2
dN

2
trapf(En)

2
exp

[
− ω2

υ2

de

]

υ2
de

√
2π. (A12)

2. Incoherent photon scattering

a. Green’s function method

As photons from the initialization, readout, and Hahn
echo pulses interact with the diamond substrate, atoms
within the diamond will have elastic collisions with in-
coming photons. The atoms will vibrate emitting elec-
tromagnetic radiation. This requires knowing the fields
radiated from the scattering. We approach this by con-
sidering the Green’s function method applied to the wave
equation. The potentials from the pump laser pulse can
usually be considered from the Lorenz gauge or Gaus-
sian. Either way the wave equation will take the follow-
ing form,

∇2Φ− 1

c2
∂2Φ

∂t2
= −4π. (A13)

Here Φ can be either a scalar potential or a component
of the potential. This gives the corresponding Green’s
function equation,

∇2G(~x, t; ~x′, t′)− 1

c2
∂2G

∂t2
= −4πδ(~x−~x′)δ(t−t′), (A14)



12

where the source is now an event located at ~x = ~x′ hap-
pening at t = t′. Performing a Fourier transform and
considering the spherical symmetry and the properties of
the delta function give a solution for the Green’s function
Fourier transform,

G(~x, ω; ~x′, t′) =
1√
2πR

(
AeikR +Be−ikR

)
e−iωt′ . (A15)

Doing the inverse transform to get us back our original
Green’s function,

G(~x, t; ~x′, t′) =
1√
2π

∫ ∞

−∞

G(~x, ω; ~x′, t′)e−iωtdω, (A16)

G(~x, t; ~x′, t′) = Aδ(t′−(t−R

c
))+Bδ(t′−(t+

R

c
)). (A17)

The second term is usually rejected as it predicts a re-
sponse to an event occurring in the future, so here we
shall do the same. The time t − R/c here is normally
referred to as the retarded time tret. With our Green’s
function we can solve our wave equation and determine
the potential,

Φ(~x, t) =
1

c

∫ ~j(~x′, t′)

R
δ(t′ − tret)dt

′d3x′, (A18)

Φ(~x, t) =
1

c

∫ ~j(~x′, tret)

R
d3x′. (A19)

It can be seen relatively easily that this represents a static
potential, but for our case we want the field from a charge
that is accelerating due to it interacting with the photon.

b. Scattered field solution

Our source of the scattered field is going to be an atom,
more specifically a charge, accelerating due to the elastic
collision with the incoming photon. This will allow us to
rewrite Eq. (A19) as the following,

Φ(~x, t) =
1

c

∫
q~vδ(~x′ − ~r(t′))

R
δ(t′ − tret)dt

′d3x′. (A20)

Here ~v is the velocity of the oscillating charge and ~r(t′) is
the position changing over time. Doing the integral over
the spatial coordinates we get,

Φ(~x, t) =
1

c

∫
q~v

δ(t′ +R(t′)/c− t)

R(t′)
dt′, (A21)

where R(t′) = |~x′ − ~r(t′)|. With what we have here, we
cannot do a straight integration of t′. We will have to
reexpress the delta function to do this integral to be the
delta function of a function which has the form,

δ(f(t′)) =
∑ 1

|f ′(t′i)|
δ(t′ − t′i). (A22)

where f(t′i) = 0. Taking the derivative and using the
definition of the velocity, we will get,

f ′(t′i) = 1 +
1

c

dR

dt′
= 1− 1

c

(~x− ~r(t′))

|~x− ~r(t′)| ·
d

dt′
(~x− ~r(t′)),

(A23)

f ′(t′i) = 1− ~v · (~x− ~r(t′))

c |~x− ~r(t′)| = 1− ~v · ~R
cR

. (A24)

This function is zero for t = tret, so evaluating the inte-
grals we get

Φ(~x, t) =
q~v

R(1− ~v·~R
cR )

. (A25)

This is the Leinhard-Wiechart potential, and from here
we can start determining the scattering field.
The electric field from electromagnetic radiation is pro-

portional to the magnetic field as ~B = ~Ec. From this, the
field which will have the largest interaction with the NV
center electron spin will be the electric field. Thus, we
only consider the electric field emitted from the Rayleigh
scattering within the diamond lattice. We can write the
electric field as follows:

~E(~x, t) = −~∇V − 1

c

∂~Φ

∂t
, (A26)

where the potential V looks like Φ(~x, t) without the ve-
locity factor. The potentials here are in terms of ~x and
tret, so the partial derivatives will be a bit different, but
we can put the origin at the spontaneous position of the
oscillating charge, R = r, allowing us to simplify things.
Rewriting the electric field to fit our potentials in terms
of ~x and tret we get

~E(~x, tret) = ~∇V · d~x− ∂~Φ

∂tret

dr

c
+

∂~Φ

∂tret
dt. (A27)

Looking at the first term of the electric field we get,

~∇V = ~∇q

r
= − q

r2
~∇r, (A28)

where

~∇r = (A29)

∂

∂r

(
r − ~r · ~v

c

)
r̂ +

θ̂

r

∂

∂θ

(
r − ~r · ~v

c

)

+
φ̂

r sin θ

∂

∂φ

(
r − ~r · ~v

c

)
.

Choosing our axes with polar axis along the instanta-
neous direction of the velocity, we get ~r · ~v = rv cos θ
giving us,

~∇r =
(
1− v

c
cos θ

)
r̂ +

θ̂

r

(
r
v

c
sin θ

)
. (A30)
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We can consider here the non-relativistic limit such that
v/c ≪ 1, simplifying the first term in our electric field

to be ~∇r = r̂. To get the entire electric field, we will
need the ∂r/∂t term, which will simply give ∂r/∂t =
− (~r · ~a) /c. Putting everything together, we have

~E =
q

r2
r̂

(
1 +

(~r · ~a)
c

)
− q~a

cr
+

q~v

cr2

(
r − (~r · ~a)

c

)
, (A31)

~E =
q

r2
r̂

(
1 +

(~r · ~a)
c

)
− q~a

cr
. (A32)

The first term is the usual point charge term, but the
other two terms are the radiated field.
You can also look at the trigonometry and see that the

parallel component is the piece that resembles a static
charge where as the emitted field will then be the per-
pendicular piece. Doing the full vector analysis, we will
get the radiated component of the electric field,

E(t) =
qa(t) sin(θ)

4πε0rc2
. (A33)

Here q is the electron charge, ε0 is the permittivity of free
space, r is the radial distance from the electron, a(t) is the
vibrational acceleration of the charge, θ is the scattering
angle, and c is the speed of light. We neglect the static
field term as physically its interaction with the NV center
electron will be much smaller that of the emitted field
from the oscillating charge, so it will not add to the noise.

c. Rayleigh scattering noise density

Now that we have the emitted field due to the scatter-
ing, we need to determine the acceleration of the oscillat-
ing charge. We can do this by considering the position
of an electron bound to an atom in an applied oscillating
electric field,

xe(t) =
qE0

me(ω2
0 − ω2

inc)
exp[−iωinct]. (A34)

Here E0 is the amplitude of the electric field, me is the
mass of the electron, ω0 is the resonant frequency of the
diamond, and ωinc is the frequency of the oscillating field
(incident light-wave). For both pulses, ωinc ≫ ω0, and
from this we get the acceleration of the oscillating charge
will be

a(t) = −qE0

me
exp[−iωinct]. (A35)

It is important to note that the Hahn echo pulse could be
near this resonant (microwave) frequency, possibly blow-
ing up the above expression, but if we calculate E0 from
experimental values we will get an extremely small am-
plitude counteracting this large value from 1/(ω2

0 −ω2
inc)

leading to a small acceleration. From this we will con-
tinue with what is derived here, as the method will not
change.
Now that we have a time-dependent electric field, we

can determine the two-time correlation function. One
constraint to place is that at t < 0 the correlation will
go to zero when considering causality. This can also be
done as to determine our potentials the Green’s function
required a similar causality. This will allow us to shift
the integration limits for the correlation function inte-
gration as well as deal with any convergence issues of the
exponential function. The two-time correlation function
is then defined as

〈E(t)E(t + τ)〉 = E(θ)

∞∫

0

e[−iωinct]e[−iωinc(t+τ)]dτ,

(A36)

where E(θ) =
q2E0 sin(θ)

me4π, ε0rc2

〈E(t)E(t+ τ)〉 = E(θ)2
exp[−iωincτ ]

2ωinc
. (A37)

With the two-time correlation function, we can apply the
Wiener-Khinchin theorem and the same causality con-
straint as before to shift the integration limits and get
rid of any convergence issues to get the noise spectral
density,

SRS(ω) =

∫ ∞

0

〈E(t)E(t + τ)〉 exp [−iωτ ] dτ, (A38)

SRS(ω) = E(θ)2
1

2ωinc(ωinc + ω)
. (A39)

d. Rough surface scattering density

To characterize rough surface causing photon scatter-
ing, we need a correlation function to describe the surface
roughness. In this sense, we will describe the rough sur-
face correlation as

C(R) =
1

σ2
〈h(r)h(r +R)〉 , (A40)

where h(r) is the surface height a distance r away from
a smooth reference plane and σ is the root-mean-square
height. Here we use a Gaussian correlation function of
the rough surface. It should be noted that the correlation
function can also be described with an exponential, which
data is often fit to.
To see how the surface roughness will effect the noise

due to scattering, we need to generate the power spec-
trum of the rough surface by taking the Fourier transform

P (k) =
σ2

(2π)2

∫ ∞

−∞

C(R) exp (ik ·R) dR. (A41)
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Here k is the wave number and is related to the to the
frequency of the scattered wave by k = ω/c. Plugging in
the Gaussian correlation functions and doing the integral,
we get following power density

PG(ω) =
σ2λ

4π2/3
exp

(
λ2ω2

4c2

)
, (A42)

where λ is the correlation length. Now that we have

the rough surface, we need to combine our noise and
rough surface power densities to generate the actual pho-
ton scattering noise power spectral density seen by the
NV center spin giving us

SRS(ω) = PG(ω)E(θ)2
1

2ωinc(ωinc + ω)
. (A43)
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