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We theoretically study photocurrents in metals that break both inversion P and T symmetries
within the transparent region. We find that the system under the ac electric fields is well described
with an effective Hamiltonian and the photocurrent is of the order of O(ωJ/γ) if the frequency of
the induced current ωJ and the scattering rate γ satisfy ωJ/γ ≪ 1, and vanishes in the limit of
ωJ/γ → 0. On the other hand, the effective Hamiltonian description indicates that nonvanishing
photocurrent can appear even in the transparent region if the system is thin enough compared to
the mean free path in the direction of the induced current (where γ can be effectively regarded
as 0). Candidate materials for the such photovoltaic effect within the transparent region include
multiferroics breaking both P and T symmetries.

I. INTRODUCTION

Photovoltaic effect attracts recent intensive interests
from the viewpoints of both fundamental physics and ap-
plications [1–14]. It is now realized that the bulk photo-
voltaic effects are closely related to the geometric aspects
of electronic states in solids (such as Berry phase [15])
that arise from the breaking of the inversion symmetry
P in noncentrosymmetric materials. Shift current and
injection current are the two major mechanisms for the
photovoltaic effect in the second order in the electric field
of light. Time-reversal symmetry T is another impor-
tant symmetry; the injection current requires the broken
T either by the circularly polarized light or the magnetic
field/order of the material, whereas the shift current does
not require the breaking of T . When both P and T are
broken, the energy dispersion of the electrons becomes
asymmetric between k and −k, and many nonrecipro-
cal phenomena are expected including the magnetochiral
anisotropy in dc transport [16]. Also insulators with bro-
ken P and T are called multiferroics, which shows the
strong coupling between the electric and magnetic de-
grees of freedom such as the magnetoelectric effect [17–
19]. It has been predicted that the excitation of the elec-
tromagnon by light in multiferroics can induce the dc cur-
rent; the low energy light below the band gap can show
the photovoltaic effect without the electronic particle-
hole excitation [20, 21]. Furthermore, it has been shown
that the soft phonon excitation in ferroelectric BaTiO3

without T -breaking produces the dc shift current [22]. A
common feature of all these photovoltaic effect is that the
absorption of light occurs in some form even if the elec-
tronic excitation is virtual. Then, the crucial question
here is if the photovoltaic effect is possible even without
the absorption of light or not.

According to the standard perturbation theory [23–27],
it seems possible that, if both T and P symmetries are
broken, finite photocurrent is induced even in the trans-
parent region where the incident photon cannot create

real excitations of electrons. Histrically, however, Be-
linicher et al. pointed out that there should be no dc pho-
tocurrent for the transparent region in the steady state
if we properly take into account the effect of the relax-
ation [28]. The effect of relaxation on the photocurrent
was discussed based on an effective Hamiltonian decades
ago and they concluded that there should be no pho-
tocurrent in the steady state [28, 29]. However, since
their discussion is based on the semiclassical theory, it is
not clear how the photocurrent in the presence of relax-
ation is affected by the interband matrix elements of the
current operator, which can be crucial in the photocur-
rent such as the shift current.

In Ref. [30], it was also pointed out that the relaxation
affects the photocurrent when the relaxation rate is larger
than the frequency of the output current, although they
studied only the region where the relaxation rate is much
smaller than the frequency of the output current.

On the other hand, recent studies suggest that there is
a possibility of finite photocurrent even in the transpar-
ent region [31, 32]. In Ref. [31], a system coupled with
particle reservoirs is discussed and it is concluded that
the photocurrent within the transparent region exists in
such systems and their relation to the thermodynamics
is also discussed. In Ref. [32], Golub et al. discussed a
Raman-like process utilizing impurity scattering. In this
case, the frequency of the incident photon and that of
the scattered photon are different, resulting in finite en-
ergy absorption to drive the finite current. Since these
studies discussed different situations or processes from
the ones in Ref. [28, 29], it is important to extend the
previous discussions in Ref. [28, 29] and investigate the
behavior of the photocurrent in the transparent region by
incorporating relaxation effects and the interband matrix
elements of the current operator.

In this paper, we perform analyses with a fully quan-
tum mechanical theory on the photocurrent within the
transparent region in the presence of relaxation effects.
As discussed previously in Ref. [30], there are two im-
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portant frequencies (or equivalently time scales) that de-
termine the photocurrent responses: the relaxation rate
γ and the difference of injected and emitted lights fre-
quencies which is equal to the frequency of current ωJ .
We usually consider the limit γ → 0 and ωJ → 0, and
their order is crucial to understand the photocurrent be-
havior. According to our theory, the photocurrent will
vanish in the limit of ωJ/γ → 0, which is consistent with
the previous discussions [28, 29], while if one can realize
the condition ωJ ≫ γ effectively, nonvanishing photocur-
rent can appear. In this work, we often call the former
case as “slow limit”, while the latter case is denoted as
“fast limit”. Our theory also enables us to calculate the
crossover at γ ∼ ωJ . We also briefly discuss the inter-
pretation of the photocurrent in the fast limit as a Ra-
man process. While phonon excitation and structural
phase transition induced through the virtual excitation
of electrons were discussed previously [33, 34], we show
that a similar Raman process without phonons can leave
an electronic excitation with a finite current in the fast
limit. A similar Raman-like mechanism of photocurrent
is proposed by Golub et al. recently [32], but our inter-
pretation does not involve impurity scattering in contrast
to Ref. [32]. In terms of applications of the bulk photo-
voltaic effect to solar cells, if the frequency of the output
current is finite but sufficiently small, it is possible to
rectify the current to extract power. Therefore, our re-
sults show a new possibility of energy harvesting of light
within the transparent region.

In general, it is a complicated task to compute nonlin-
ear responses taking into account the effect of scattering.
Although one of previous studies [35] investigated the
effect of scattering on the nonlinear optical responses in-
cluding vertex correction, we employ another approach
to this problem. Specifically, we consider an effective
Hamiltonian for the system in the presence of an ac elec-
tric field with frequencies smaller than the band gap. We
find that the second order current response arises from
the term that appears in the effective Hamiltonian and
is the second order in the external field. In particular,
this effective Hamiltonian description allows us to use
the standard linear response theory to study the second
order responses to the external field and facilitates to in-
clude the effects of scattering in the calculation. A sim-
ilar approach of an effective Hamiltonian but with the
Boltzmann equation was used in Ref. [28]. However, it
is not clear in their approach how the interband matrix
elements of the current operator can affect their results.
We show that the effective current operator is given by
the k-derivative of the effective Hamiltonian and extend
the discussion in Ref. [28].

This paper is organized as follows. In Sec. II, we briefly
review the known results from the standard perturbation
theory in the clean limit [23–27]. In Sec. III, we show the
results for the photocurrent response within the trans-
parent region and explain the relation with the previous
studies. Sec. IV is devoted to discussion and conclusion.

II. BRIEF REVIEW OF THE STANDARD
PERTURBATION THEORY

In this section, we briefly review the standard pertur-
bation theory in the clean limit described in the litera-
ture [23–27]. Let us consider general noninteracting elec-
tronic systems with a periodic potential described by a
Hamiltonian of the following form,

Ĥ0 =

∫

ddk

(2π)d
ψ̂†
k
H0(k)ψ̂k, (1)

where ψ̂k, ψ̂
†
k

are the annihilation and creation operators
of an electron with wavevector k, H0(k) is the Bloch
Hamiltonian, and d is the spatial dimension. The ma-
trix H0(k) is hermitian and can be diagonalized with a
unitary matrix Uk as

Ek = U †
k
H0(k)Uk, (2)

where (Ek)ab = δabεka is a diagonal matrix, and εka is
the energy dispersion for the band a.

The second order current responses to ac electric fields
are described by the third-rank tensor σµαβ defined as

Jµ(ω1 + ω2) = σµαβ(ω1 + ω2;ω1, ω2)E
α(ω1)E

β(ω2).
(3)

with the Fourier component of the electric current and
the electric field, J(ω) and E(ω). In particular, the
second order dc current response to ac electric fields is
expressed as σµαβ(0;ω,−ω). We can calculate the ten-
sor σµαβ(0;ω,−ω) with the standard perturbation the-
ory [23–27]. In most literature, the current response for ω
which is equal to or larger than the band gap was studied;
for example, the shift current and the injection current
with photon energy above the band gap are well under-
stood with the perturbation theory. However, here we
focus on responses to external fields in the transparent
region. Namely, we assume the frequency of the external
fields ω satisfies

1

τ
≪ ω < Eg (4)

where τ is the scattering time, and Eg is the band gap
of the system. We set ~ = 1 here and hereafter. For ω
satisfying Eq. (4), the external field cannot induce real
electronic excitation, and also we can neglect the effects
of Drude-like absorption. In this case, there appears no
delta-function term expressing the energy conservation
and the absorption of light in the expression of the tensor,
but there are still nonzero terms in the clean limit in
general, which can be written as

σµαβ(0;ω,−ω) (clean limit)

=
e3

2~3ω2

∫

ddk

(2π)d

∑

a

(−∂µfa)

×



hαβaa +
∑

b( 6=a)

(

hαabh
β
ba

εab − ω
+
hβabh

α
ba

εab + ω

)



, (5)
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FIG. 1. Schematic illustration of the photovoltaic effect within the transparent region. In this paper, we consider cases where
(a) T -broken systems under irradiation of light or (b) T -symmetric systems under illumination of a circularly polarized light.
According to the standard perturbation theory in the clean limit, even in these cases finite photocurrent can be induced, but
the effects of relaxation can suppress the photocurrent. In these cases we clarify the condition for the photocurrent to be finite.
(c) Illustration of ω dependence of linear conductivity σ(ω). At low frequencies ω < τ−1 with the relaxation time τ , the Drude
response should be observed. At high frequencies comparable to or higher than Eg/~ with the band gap Eg, photon absorption
occurs and again Re[σµ(ω)] becomes finite.

with εab = εka − εkb and the Fermi distribution function
fa = (e(εka−µ)/kBT +1)−1 [23–27]. Here, kB is the Boltz-
mann constant, e(< 0) is the charge of an electron, T is
the temperature and µ is the chemical potential. ∂α is
the derivative with respect to kα, and hα, hαβ are defined
as

hα = U †
k
(∂αH0(k))Uk = ∂αEk − i[Λα, Ek], (6)

hαβ = U †
k
(∂α∂βH0(k))Uk = ∂αh

β − i
[

Λα, hβ
]

. (7)

where Λα is the interband Berry connection defined by

Λα = U †
k
∂αUk. (8)

hα corresponds to the velocity operator in the band ba-
sis. We note that εab, fa, h

α and hαβ are all k-dependent
although we suppress the indices k from them for short-
hand notation.

Here we emphasize that the result in Eq. (5) is valid
only in the clean limit, i.e., without any scattering or
relaxation. If one properly take into account the effects
of relaxation, the photocurrent vanishes with an addi-
tional contribution from the relaxation [28, 29]. In the
following, we will clarify when the photocurrent in the
transparent region is possible.

III. PHOTOCURRENT RESPONSE

In this section, we study the photocurrent response
when the chemical potential crosses only one band and
that band is well separated from the other bands en-
ergetically. Let us consider the case where the system
described by Eq. (1) is subjected to the ac electric field
E(t). The Bloch Hamiltonian in the band basis is no

longer diagonal due to the external field, and is given by

H(t) = E − eAα(t)hα +
e2

2
Aα(t)Aβ(t)hαβ +O

(

A3
)

,

(9)

where we omit the dependence of wavevector k in H(t)
and Ek. Here, A(t) is the vector potential and related to
the electric field E(t) as E(t) = −dA

dt . We also assume
that A(t) is of the form

A(t) = a(t)e−iωt + (a(t))∗eiωt, (10)

where a(t) is slowly varying compared to frequency ω.
Assuming ω is within the transparent region (Eq. (4)),

the effective Hamiltonian Heff and the effective current
operator Jeff for the band near the chemical potential are
given by

Heff(t) = εa − eAα(t)hαaa + Fαβbαβ(t), (11)

Fαβ = e2hαβaa + e2
∑

b6=a

[

hαabh
β
ba

εab − ω
+
hβabh

α
ba

εab + ω

]

, (12)

Jµ
eff(t) = ∂µHeff(t) +

∂Pµ
tr

∂t
, (13)

Aα(t) = aα(t)e−iωt + (aα(t))∗eiωt, (14)

bαβ(t) = aα(t)(aβ(t))∗, (15)

where a is the band index for the band we are focusing
on. In the rest of this paper, we often omit the band
index a. The Einstein convention for α, β is always used
in this paper.

The second term in Eq. (11) does not contribute to
the second order dc current response in the standard
perturbation theory within the clean limit. As shown
in Appendix B, the numerical calculation of simple one-
dimensional model also indicates that the contribution
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vanishes. Hence we ignore the second term hereafter. If
the second term is neglected, Eq. (11) corresponds to the
effective Hamiltonian in Ref. [28].

The last term in the effective current operator,
Eq. (13), is a total derivative with respect to time and
hence it gives a transient current when the external field
is applied. This term is closely related to the Berry con-
nection and may be interpreted as the polarization cur-
rent [36, 37]. Please see Appendix A for more details.
In the rest of the present paper, we will ignore this tran-
sient contribution unless otherwise noted. The rest of the
effective current operator is given by k-derivative of the
Heff , and hence the application of bαβ(t) also induces the
modification of the current operator as:

Jµ
eff(t) = ∂µεa + bαβ(t)∂µF

αβ. (16)

We emphasize that, our derivation of Jµ
eff(t) takes into ac-

count the interband matrix element in the original cur-
rent operator. These matrix elements appear in Jµ

eff(t)

only through the k-derivative of Fαβ . For the derivation
of the effective Hamiltonian and the detailed expression
for Ptr, see Appendix A.

Several properties of Fαβ should be noted. First, in
terms of the time reversal symmetry T , Fαβ satisfies the
following relationship if the system preserves T :

Fαβ(k) = F βα(−k), (17)

where we explicitly show the k-dependence of Fαβ . We
also note that Fαβ can be rewritten as

Fαβ = e2(∂α∂βεa)− ie2ωǫαβγF
γ

+ e2ω2
∑

b6=a

(

Λα
abΛ

β
ba

εab − ω
+

Λβ
abΛ

α
ba

εab + ω

)

. (18)

Here Λα is the interband Berry connection and Fα =

iǫαβγ
∑

b( 6=a) Λ
β
abΛ

γ
ba is the Berry curvature of the band

a, while b is a label for the other bands separated by the
band gap. ǫαβγ is the Levi-Civita symbol. This form also
appears in the expression for dynamical Stark shift [38]
as discussed later in Sec. IV.

Now let us consider the linear response of the electric
current to bαβ(t) to calculate the photocurrent response
σµαβ(0;ω,−ω). Please note that bαβ(t) is roughly related

to the slow component of Eα(t)Eβ(t) as

bαβ(t) + bβα(t) ∼
1

ω2
[slow component of Eα(t)Eβ(t)].

(19)

To be more precise, the frequency of the bαβ(t) corre-
sponds to the frequency difference of the incident and
scattered photons, which is equal to that of the output
current, and hence we denote the frequency of bαβ(t) as
ωJ . Then we can denote the current response to bαβ as

Jµ(ωJ ) = Φµαβ(ωJ)b
αβ(ωJ ), (20)

where Jµ(ωJ) is the Fourier transformation of the cur-
rent in µ direction and similar for bαβ(ωJ ). In the limit
of ωJ → 0, Φµαβ corresponds to the dc photocurrent re-
sponse σµαβ(0;ω,−ω). We can compute Φµαβ(ωJ) with
the standard linear response theory and the result in the
imaginary time domain is written as

Φµαβ(iωJ) = χµαβ(iωJ) +

∫

[dk]
〈

e∂µF
αβ
〉

0
, (21)

χµαβ(iωJ)

=
∑

n

∫

[dk]Γµ(iεn + iωJ , iεn)G(iεn + iωJ)F
αβG(iεn),

(22)

where iωJ , iεn are Matsubara frequency, Γµ is the vertex
for the current operator, and G(iε) is given by

G(iε) =
1

iε− ξk − Σ(iε,k)
. (23)

ξk is the energy dispersion of electron with respect to the
chemical potential, and Σ is the self energy. [dk] is short-
hand for ddk/(2π)d with the spatial dimension d. 〈. . .〉0
denotes the expectation value in the equilibrium, and the
last term in Eq. (21) corresponds to the diamagnetic cur-
rent like contribution arising from the modification of the
current operator due to the external field bαβ , as we al-
ready mentioned. In the above expressions, we omit the
k-dependence of G and Γ. Since we are assuming that
the chemical potential crosses only one band and the ef-
fective Hamiltonian describes that one band, Γ,G and F
in Eqs. (21),(22) are scalars (not matrices).

We can perform the summation over the Matsubara
frequencies ǫn in Eq. (22) with the standard technique
and obtain

χµαβ(iωJ) =

∫

dz

2πi

∫

[dk](−f(z))Γµ(z + iωJ , z)G(z + iωJ)F
αβG(z)

=

∫

dε

2πi

∫

[dk](−f(ε)){Pµαβ(ε+ iη, ε+ iωJ)− Pµαβ(ε− iη, ε+ iωJ) + Pµαβ(ε− iωJ , ε+ iη)− Pµαβ(ε− iωJ , ε− iη)}

(24)

where f(ε) = (eβε+1)−1 is the Fermi distribution function with the inverse temperature β, and η is an infinitesimally
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small positive number. Pµαβ(z1, z2) is defined as

Pµαβ(z1, z2) = Γµ(z2, z1)G(z2)F
αβG(z1). (25)

By analytically continuing the expression as iωJ → ωJ + iδ, we obtain

χµαβ(ωJ + iδ)

=

∫

dε

2πi

∫

[dk]

× (−f(ε)){Pµαβ(ε+ iη, ε+ ωJ + iδ)− Pµαβ(ε− iη, ε+ ωJ + iδ) + Pµαβ(ε− ωJ − iδ, ε+ iη)− Pµαβ(ε− ωJ − iδ, ε− iη)}
(26)

=

∫

dε

2πi

∫

[dk]
{

(f(ε)− f(ε+ ωJ))P
µαβ(ε− iη, ε+ ωJ + iδ)− f(ε)

[

Pµαβ(ε+ iη, ε+ ωJ + iδ)− Pµαβ(ε− ωJ − iδ, ε− iη)
]}

.

(27)

In particular, if we ignore the vertex correction, then Γµ becomes hµ and the response function Φµαβ becomes

Φµαβ(ωJ)

=

∫

dε

2πi

∫

[dk]hµFαβ
[

(f(ε)− f(ε+ ωJ))G
R(ε+ ωJ)G

A(ε)− f(ε)(GR(ε+ ωJ)G
R(ε)−GA(ε)GA(ε− ωJ))

]

+

∫

[dk]
〈

∂µF
αβ
〉

0
, (28)

where GR(ε)(GA(ε)) is the retarded (advanced) Green function.
It should be noted that, without T -breaking, Φµαβ(ωJ) satisfies Φµαβ(ωJ) = −Φµβα(ωJ), and hence nonzero

photocurrent responses require some form of T -breaking such as a magnetic field, a magnetic order of the material,
or application of the circularly polarized light.

A. Slow limit (ωJ → 0 limit with finite scattering)

The case we are interested in is the dc response limit of ωJ → 0. The first term in Eq. (27) will vanish in this limit
as long as Pµαβ(ε− iη, ε+ ωJ + iη) does not diverge. For example, if we approximate the self energy as

Σ(iε) ≃ iγsgn(ε) (29)

with a constant scattering rate γ and ignore the vertex correction (see Eq. (28)), Pµαβ(ε− iη, ε+ωJ + iη) in ωJ → 0
limit becomes a Lorenztian as a function of ε, where the peak is located at ε = ξk with the width γ and its peak
value is ∝ 1/γ2, while the factor f(ε)− f(ε+ ωJ) effectively behaves as a window function with the width kBT and
the height ∝ ωJ . Therefore, the first term in Eq. (28) behaves as ∝ (ωJ/γ)(min{kBT/γ, 1}). Consequently, as long
as ωJ ≪ γ, the first term vanishes in the ωJ → 0 limit.

Then, Eq. (27) reduces to the following form:

lim
ωJ→0

χµαβ(ωJ + iδ)

=

∫

dε

2πi

∫

[dk](−f(ε))
[

Pµαβ(ε+ iη, ε+ iδ)− Pµαβ(ε− iδ, ε− iη)
]

=

∫

dε

2πi

∫

[dk](−f(ε))
[

Γµ(ε+ iη, ε+ iδ)GR(ε)FαβGR(ε)− Γµ(ε− iδ, ε− iη)GA(ε)FαβGA(ε)
]

. (30)

It is useful to use the Ward-Takahashi identity to eval-
uate this quantity. The Ward-Takahashi identity states
the vertex function Γµ(ε ± iη, ε ± iδ) is related to the

Green function as

Γµ(ε+ iη, ε+ iδ) = e∂µ
(

ξk +ΣR(ε)
)

, (31)

Γµ(ε− iδ, ε− iη) = e∂µ
(

ξk +ΣA(ε)
)

, (32)

where ΣR/A is the retarded/advanced self-energy. There-
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fore, we can prove the following relations between the
vertex function and the Green functions:

GR(ε)Γµ(ε+ iη, ε+ iδ)GR(ε) = e∂µ(G
R), (33)

GA(ε)Γµ(ε− iδ, ε− iη)GA(ε) = e∂µ(G
A). (34)

Note that GR/A is a number as we focus on a single band.
Inserting these relations into Eq. (30) and integrating by
parts, we obtain

lim
ωJ→0

χµαβ(ωJ + iδ)

=

∫

dε

2πi

∫

[dk]ef(ε)∂µF
αβ
[

GR(ε)−GA(ε)
]

(35)

We note that under the approximation ImGR(ε) ≃

−πδ(ε− ξ̃k), we can rewrite

lim
ωJ→0

χµαβ(ωJ + iδ)

≃

∫

dε

2πi

∫

[dk](−2πiδ(ε− ξ̃k))ef(ε)∂µF
αβ

=

∫

[dk]e(−f(ξ̃k))∂µF
αβ . (36)

with the renormalized energy dispersion ξ̃k, which im-
plies its connection to the “diamagnetic contribution”
∝ ∂µF

αβ .

We can evaluate the diamagnetic term in Eq. (21) as

well. The result is
∫

[dk]
〈

∂µF
αβ
〉

0

=

∫

dε

2πi

∫

[dk](−f(ε))∂µF
αβ
[

GR(ε)−GA(ε)
]

(37)

This exactly cancels the contribution from χµαβ and we
find

lim
ωJ→0

Φµαβ(ωJ + iδ) = 0 (38)

This result means that the photocurrent vanishes if we
properly take into account the effect of the scattering,
which is consistent with Ref. [28, 29].

B. Fast limit and correspondence with the
perturbation theory in the clean limit

The results in the previous section does not coincide
with the result from the perturbation theory in the clean
limit. This is because the perturbation theory employed
in, e.g., [23], assumes a different limit. To see this, we
employ the approximation in Eq. (29) and take the limit
where ωJ and γ approach zero under the condition ωJ ≫
γ, which we call the “fast limit”. In other words, we first
take γ → 0 limit and then ωJ → 0 limit. In this case, the
discussion at the beginning in Sec. III A breaks down and
the first term in Eq. (27) does not vanish even if ωJ → 0
limit. If we neglect the vertex correction, the response
function in this limit is

Φµαβ(ωJ + iδ) =

∫

dε

2πi

∫

[dk](f(ε)− f(ε+ ωJ))eh
µFαβGR(ε+ ωJ)G

A(ε)

=

∫

dε

2πi

∫

[dk](f(ε)− f(ε+ ωJ))eh
µFαβ 1

−ωJ − 2iγ

(

1

ε+ ωJ − ξk + iγ
−

1

ε− ξk − iγ

)

→γ→0

∫

dε

2πi

∫

[dk]
f(ε+ ωJ)− f(ε)

ωJ
ehµFαβ

(

1

ε+ ωJ − ξk + iη
−

1

ε− ξk − iη

)

→ωJ→0

∫

dε

2πi

∫

[dk]f ′(ε)ehµFαβ

(

1

ε− ξk + iη
−

1

ε− ξk − iη

)

=

∫

[dk](−f ′(ξk))eh
µFαβ =

∫

[dk]e(−∂µf(ξk))F
αβ

=

∫

[dk]e3(−∂µf(ξk))

[

hαβaa +
∑

b∈HB

(

hαabh
β
ba

ωab − ω
+

hβabh
α
ba

ωab + ω

)]

(39)

where we replaced γ with an infinitesimal positive quan-
tity η when taking γ → 0 limit. We note that ω corre-
sponds to the frequency of the incident photons and is
assumed to be in the transparent region (Eq. (4)).

Noting the relation Eq. (19), the result of the fast limit,

Eq. (39), coincides with the result from the perturbation
theory in the clean limit (Eq. (5)).
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C. Crossover from the fast limit to the slow lmiit

We can also discuss the crossover region from the fast
limit (ωJ ≫ γ) to the slow limit (ωJ ≪ γ), i.e., ωJ ∼ γ,
with Eq. (27). As an example, we consider a general-
ized Rice-Mele model. The Hamiltonian of the Rice-Mele
model is defined as

Ĥ =
∑

n

(

tAB ĉ
†
n,B ĉn,A + tBAĉ

†
n+1,Aĉn,B + h.c.

)

+
∑

n

(

tAAĉ
†
n+1,Aĉn,A + tBB ĉ

†
n+1,B ĉn,B + h.c.

)

+
∑

n

∆

2

(

ĉ†n,Aĉn,A − ĉ†n,B ĉn,B

)

. (40)

Here i is the index for unit cells, A andB are labels for the
two sites in a unit cell, and their positions in the unit cell
are denoted by rA, rB . Then the Fourier transformation
of ĉn,i for i = A,B is defined as

ĉk,i =
∑

n

e−ik(na+ri)ĉn,i, (41)

and the Hamiltonian Ĥ can be rewritten as

Ĥ =
∑

k

[

ĉ†k,A ĉ†k,B

]

H0(k)

[

ĉk,A
ĉk,B

]

, (42)

H0(k) =

[

∆
2 + tAA cos ka t(k)

t(k)∗ −∆
2 + tBB cos ka

]

, (43)

t(k) = t∗ABe
−ik(rA−rB) + tBAe

−ik(a+rA−rB), (44)

with the size of unit cell a.

One can introduce the inversion symmetry breaking
into the model by setting, for example, ∆ 6= 0 and
|tAB| 6= |tBA|. We further break the time reversal
symmetry T by introducing a complex hopping. The
second-nearest-neighbor hopping is necessary to break T -
symmetry; otherwise the effect of the complex hopping
can be eliminated by a gauge transformation. We show
a schematic picture of the Rice-Mele model in Fig. 2(a).
We calculated the band structure (Fig. 2(b)) and the
real part of the nonlinear response function Φµαβ(ωJ)
(Fig. 2) for the parameters given in the caption of Fig. 2.
Φµαβ(ωJ ) is calculated as a function of ωJ and γ without
vertex correction by calculating Eq. (28) numerically.

Figure 2(c) shows the nonlinear response function as
a function of γ and ωJ and a crossover between the fast
limit and the slow limit. One can see that for the slow
limit ωJ ≪ γ, ReΦµαβ is almost zero and hence the pho-
tocurrent response vanishes as we showed in Sec. III A.
On the other hand, in the region ωJ ≫ γ, i.e., the
fast limit, the photocurrent response is nonzero and ap-
proaching to the value in the fast limit, which is consis-
tent with the results in Sec III B.

IV. DISCUSSION AND CONCLUSION

First we note that Φµαβ is finite only when the
time reversal symmetry T is broken either by magnetic
field/order of the system or circularly polarized light.
Since the photocurrent response is allowed only when the
spatial inversion symmetry P is broken, both breaking T
and P is important for the photocurrent discussed in the
present paper.

Our discussion clarifies the effects of scattering on the
photocurrent. If the scattering rate γ is sufficiently large
compared to the frequency of the output photocurrent
ωJ , the system supports photocurrent proportional to
ωJ at the steady state, and the photocurrent vanishes in
the limit ωJ/γ → 0. This can be understood as a real-
ization of an “equilibrium” state with renomalized energy
spectrum [28, 29]. Indeed, since the system is described
by the effective Hamiltonian (11), the perturbation is ef-
fectively static for the slow limit ωJ ≪ γ, and an “equi-
librium” state with the effective Hamiltonian is realized,
hence no current occurs. This discussion generalizes a
semiclassical result by Belinicher et al. [28] to a quantum
theoretical treatment.

The effective Hamiltonian derived in this work is
closely related to an effect called dynamical Stark effect
or optical Stark effect as well [38–43], where a shift of en-
ergy levels is induced by an external ac field. Indeed, the
dc component of Eq. (11) coincides with the expression
for optical Stark shift [38]. In Ref. [38], the dc current
induced by the applied ac electric fields with frequency
smaller than the band gap is also discussed, and it is
concluded that only transient current before the system
relaxes into an “equilibrium” state is possible.

We also note that, as a transient current, there would

be another contribution, described by
∂Pµ

tr

∂t in Eq. (13).
This contribution may be interpreted as a polarization
current (see Appendix A for details), and may be related
to the optical rectification effect, where the electric po-
larization is induced by ac electric fields [44, 45].

In the presence of finite scattering γ, the second term
in Eq. (11) may also contribute to the photocurrent.
Nonetheless, these contributions will vanish in the limit
of γ → 0. One can show this analytically in the fast
limit (limωJ→0 limγ→0), while we also confirm it numeri-
cally in the slow limit (limγ→0 limωJ→0) for a simple one-
dimensional model (see Appendix B for details).

On the other hand, the perturbation theory in the
clean limit gives finite photocurrent, as we reviewed in
Sec. II. This limit is recovered in the fast limit (γ ≪ ωJ),
as we have seen in Sec. III B. This results show that in
the time scale shorter than the relaxation time γ−1, we
can obtain finite photocurrent. In this sense, the pho-
tocurrent in the fast limit is transient current, as dis-
cussed in Ref. [28]. However, if the rate of extract-
ing electrons from the system to outside (e.g., to the
electrodes), ωJ , is sufficiently faster than the relaxation
rate γ (such as in small/thin enough samples), the cur-
rent in the fast limit may be realized. For example, if
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(a) (b) (c)

FIG. 2. Photocurrent in Rice-Mele model with time reversal symmetry broken. (a) The schematic illustration of the Rice-
Mele model (see also Eq. (40)). (b) The band structure of the Rice-Mele model. The used parameters are tAB = 1 + 0.5i,
tBA = 1− 0.5i, tAA = 0.5, tBB = 0.3, rA = 0, rB = 0.5, ∆ = 2.0, µ = −1.5, T = 0.05. The size of unit cell a is set to be 1. (c)
The photocurrent response of the Rice-Mele model for the incident photon frequency ω = 0.5, which is smaller than the direct
optical gap Eg ∼ 1. Eq. (28) is calculated numerically for 0 ≤ ωJ ≤ 0.03, 0.001 ≤ γ ≤ 0.03. The vertex correction is ignored in
the calculation. The calculated value is normalized by the value in the fast limit, i.e., Eq. (39).

the system is thin in the current direction compared to
the scattering length, the electron carrying the current
quickly flows out of the system before scattering hap-
pens, where the effective scattering rate becomes almost
zero. In this case, the ωJ ≫ γ limit is effectively realized
and nonzero photocurrent within transparent region may
be possible. Similar situation is experimentally realized
in BaTiO3 thin film [46, 47], although T is preserved
in BaTiO3. In similar setup with T breaking materials
or circularly-polarized light, one may observe finite pho-
tocurrent within transparent region.

The finite current in the fast limit can be interpreted
as a Raman process as well. Namely, the photon with fre-
quency ω1 is scattered by the sample, and the scattered
photon has a frequency ω2 = ω1 − ωJ , leaving an exci-
tation of energy ~ωJ with a finite current in the sample
(Fig. 3). Here ω1, ω2 ≃ ω and ωJ ≪ ω. Since the energy
of the incident photon is smaller than the band gap, an
electron is only virtually excited to the conduction band
from the valence band during this process. However, in
the presence of finite scattering or relaxation (i.e., the
slow limit), the induced current will be canceled.

ωJ ≫ γ limit may be related to the recent study by Shi
et al. [31]. They discussed systems coupled with particle
reservoirs. The coupling to the reservoirs results in the
relaxation rate Γ, and it is shown that finite photocur-
rent is induced when Γ is finite. Here, we note that the
relaxation rate Γ in Ref. [31] has essentially a different
meaning from what we denote as γ in the present paper.
Γ in Ref. [31] represents in a sense the particle exchange
rate with the particle reservoir, while γ in the present
work is the scattering rate within the system. Therefore,
they can have different effects on the photocurrent be-
havior, and the results in Ref. [31] do not contradict to
our results.

Our discussion does not take into account these scat-
tering effects during a virtual excitation since we start
from the effective Hamiltonian (11). Therefore, those

Conduction band

Band gap

Valence band

FIG. 3. Interpretation of the photocurrent within the trans-
parent region as a Raman-like process. The photocurrent for
the fast limit (Eq. (39)) can be understood as a Raman-like
process, where the photon with frequency ω1 is scattered by
the sample but with a different frequency ω2 = ω1 − ωJ ,
leaving an excitation of energy ~ωJ . Here, ω1, ω2 ≃ ω and
ωJ ≪ ω. The excitation with energy ~ωJ results in a finite
current. However, this current will be canceled if ωJ is suffi-
ciently slow compared with the relaxation rate γ, i.e., in the
slow limit.

scattering effects may enable finite photocurrent within
the transparent region. Indeed, Golub et al. recently
proposed that finite photocurrent can be induced even
within the transparent region if one considers the im-
purity scattering during a virtual excitation [32]. Their
proposal might look similar to our interpretation of the
current in the fast limit as a Raman process, but it is es-
sentially different because they are considering the scat-
tering effect during a virtual excitation of electrons and
they also discussed the finite momentum of the light.

In conclusion, we have derived the effective Hamilto-
nian under illumination of light with frequency smaller
than the band gap, and clarify the effects of relaxation on
photovoltaic effect. We show that if the frequency of the
output current ωJ is much smaller than the scattering
rate γ, the photocurrent will be proportional to ωJ/γ
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and vanishes in the limit of ωJ/γ → 0. In contrast,if
the condition ωJ ≫ γ is met in some situations, nonzero
photocurrent can appear in the transparent region.
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Appendix A: Construction of the effective
Hamiltonian

In this appendix, we construct the effective Hamilto-
nian for noninteracting electronic systems under ac elec-
tric fields, the frequency of which is smaller than the
band gap. To this end, we utilize the Schrieffer-Wolff
transformation for the time-dependent Hamiltonian.

1. Model

Let us consider the system under the ac electric field
E(t). The Bloch Hamiltonian in the band basis is given
by

H(t) = E − eAα(t)hα +
e2

2
Aα(t)Aβ(t)hαβ +O

(

A3
)

,

(A1)

where A(t) is the vector potential and e(< 0) is the
charge of the electron. α, β are spatial indices and the
Einstein convention is always used in this paper. Here
and hereafter, the planck constant ~ is set to be 1.

The vector potential A(t) is related to the electric field
E(t) as E(t) = −dA

dt . We further assume that the vector
potential is given by

A(t) = a(t)e−iωt + (a(t))∗eiωt, (A2)

where a(t) varies slowly compared to the frequency ω.

2. Time-dependent Schrieffer-Wolff transformation

Here we would like to find an effective Hamiltonian for
low energy bands. We denote the set of the low energy
bands as LB, and the other bands as HB.

To construct an effective Hamiltonian, let us consider a
time dependent unitary transformation U(t). U(t) trans-
forms the Hamiltonian H(t) into H ′(t) as

H ′(t) = U(t)H(t)U †(t)− iU(t)∂tU
†(t). (A3)

We determine U(t) so that H ′(t) is block-diagonal up to
O(A), i.e.,

H ′(t)ab = O
(

A2
)

for a/b ∈ LB and b/a ∈ HB (A4)

We further assume that U(t) is of the form U(t) =
exp(S(t)) with S(t) = O(A). Then the new Hamiltonian
H ′(t) becomes

H ′(t) = E − eAα(t)hα + [S(t), E ] + i∂tS(t)

+
e2

2
Aα(t)Aβ(t)hαβ + [S(t),−eAα(t)hα] +

1

2

{

S(t)2, E
}

− S(t)ES(t) +
i

2
[S(t), ∂tS(t)] +O

(

A3
)

. (A5)

Thus the condition (A4) becomes

(−eAα(t)hα + [S(t), E ] + i∂tS(t))ab = 0 (A6)

for a/b ∈ LB, b/a ∈ HB. This can be rewritten as

(εba + i∂t)Sab = eAα(t)hαab, (A7)

where εab = εa−εb. By using the Fourier transformation,
this equation can be easily solved and we obtain

Sab(t) =

∫

dΩ

2π
e−iΩt eA

α(Ω)hαab
Ω− εab

≃ ehαab

(

aα(t)e−iωt

ω − εab
+

(aα(t))∗eiωt

−ω − εab

)

(A8)

for a/b ∈ LB, b/a ∈ HB. Here, Aα(Ω) is the Fourier
transformation of Aα(t). In the derivation of Eq. (A8),
we ignore the time dependence of a(t). The other com-
ponents of S is 0.

Then H ′
aa′ for a, a′ ∈ LB becomes

H ′
aa′(t) ≃ δaa′εa − eAα(t)hαaa′ + bαβ(t)Fαβ

aa′

+ (terms with e−2iωt, e2iωt) +O
(

A3
)

(A9)

Fαβ
aa′ = e2hαβaa′ +

e2

2

∑

b∈HB

[(

1

εab − ω
+

1

εa′b − ω

)

hαabh
β
ba′

+

(

1

εab + ω
+

1

εa′b + ω

)

hβabh
α
ba′

]

, (A10)

bαβ(t) = aα(t)(aβ(t))∗, (A11)
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and for a/b ∈ LB, b/a ∈ HB,

H ′
ab(t) =

e2

2
Aα(t)Aβ(t)hαβab

− eAα(t)
∑

c

[(

aβ(t)e−iωt

ω − εac
+

(aβ(t))∗eiωt

−ω − εac

)

ehβach
α
cb

−ehαac

(

aβ(t)e−iωt

ω − εcb
+

(aβ(t))∗eiωt

−ω − εcb

)

hβcb

]

(A12)

To eliminate the O
(

A2
)

terms in off-diagonal matrix
elements in H ′, we further apply another unitary trans-
formation V (t) = exp(T (t)) with T (t) = O

(

A2
)

to H ′(t)
to obtain H ′′(t). H ′′(t) is given by

H ′′(t) = H ′(t) + [T (t), H ′(t)] + i∂tT (t) +O
(

A3
)

,

(A13)

and the condition to determine T (t) is

0 = H ′′(t)ab

= H ′
ab + Tab(H

′
bb −H ′

aa) + i∂tTab. (A14)

Note that T = O
(

A2
)

and Taa′ = 0 for a, a′ ∈ LB. Using
the solution for Eq. (A14), the new Hamiltonian H ′′

aa′(t)
for a, a′ ∈ LB becomes

H ′′
aa′(t) = H ′

aa′(t) +
∑

b∈HB

(TabH
′
ba′ −H ′

abTba′)

+
∑

a′′∈LB

(Taa′′H ′
a′′a′ −H ′

aa′′Ta′′a′) + i∂tTaa′

+O
(

A3
)

= H ′
aa′(t) +O

(

A3
)

. (A15)

Therefore, H ′′
aa′(t) coincides with H ′

aa′(t).

3. Transformed current operator

Since we are interested in the current response, we will
need the current operator after the Schrieffer-Wolff trans-
formation. The current operator before the transforma-
tion is given by

Jµ(t) = ∂µH(t)− i[Λµ, H(t)], (A16)

where Λµ is the interband Berry connection.
The new current operator J ′′µ(t) is given by

J ′′µ(t) = Ũ(t)Jµ(t)Ũ †(t)

= Ũ(t)(∂µH(t)− i[Λµ, H(t)])Ũ †(t)

= ∂µH
′′(t)− i[Λ′′µ(t) + ζ′′µ(t), H ′′(t)]

+ ∂µζ
′′
t (t)− i[Λ′′µ(t) + ζ′′µ(t), ζ′′t (t)], (A17)

where Ũ(t) = V (t)U(t),Λ′′µ(t) = Ũ(t)ΛµŨ †(t) and

ζ′′µ(t) = iŨ(t)∂µŨ
†(t), (A18)

ζ′′t (t) = iŨ(t)∂tŨ
†(t). (A19)

The third and fourth terms in Eq. (A17) can be rewritten
as a total derivative with respect to time:

∂µζ
′′
t (t)− i[Λ′′µ(t) + ζ′′µ(t), ζ′′t (t)] =

∂Pµ
tr

∂t
, (A20)

Pµ
tr = Λ′′µ(t) + ζ′′µ(t), (A21)

and hence this is a transient current. Ptr may be inter-
preted as a polarization current [36, 37]. Indeed, Λ′′µ

is the Berry connection after the unitary transformation
Ũ(t), and ζ′′µ is also a Berry connection-like quantity

defined with Ũ(t), instead of the unitary transformation
diagonalizing the Bloch Hamiltonian without external
fields.

In particular, J ′′µ
aa′(t) for a, a′ ∈ LB is given by

J ′′µ
aa′(t) = ∂µH

′′
aa′(t)

− i
∑

a′′∈LB

[(

Λ′′µ
aa′′(t) + ζ′′µaa′′(t)

)

H ′′
a′′a′(t)

−H ′′
aa′′(t)

(

Λ′′µ
a′′a′(t) + ζ′′µa′′a′(t)

)]

+
∂Pµ

tr,aa′

∂t
+O

(

A3
)

.

(A22)

Here we used H ′′
ab(t) = O

(

A3
)

for a ∈ LB and b ∈ HB.
Furthermore, since H ′′

aa′(t) = O(A) if a 6= a′ for a, a′ ∈
LB and ζ′′µaa′(t) = O

(

A2
)

for a, a′ ∈ LB, J ′′µ
aa′(t) is simpli-

fied to

J ′′µ
aa′(t) = ∂µH

′′
aa′(t)

− i
∑

a′′∈LB

(

Λ′′µ
aa′′(t)H

′′
a′′a′(t)−H ′′

aa′′(t)Λ
′′µ
a′′a′(t)

)

− iζ′′µaa′(t)εa′a +
∂Pµ

tr,aa′

∂t
+O

(

A3
)

(A23)

If we denote the projection operator onto LB as Π,
Eq. (A23) can be rewritten as

ΠJ ′′µ(t)Π

= ∂µΠH
′′(t)Π− i[ΠΛ′′µΠ,ΠH ′′(t)Π]

− i[Πζ′′µΠ,ΠEΠ] + Π
∂Pµ

tr

∂t
Π+O

(

A3
)

(A24)

In particular, if LB includes only one band, the second
and the third terms in Eq. (A24) vanish and we obtain

ΠJ ′′µ(t)Π = ∂µΠH
′′(t)Π + Π

∂Pµ
tr

∂t
Π, (A25)

which corresponds to Eq. (11) in the main text. As in

the main text, if we neglect the transient current ∂Pµ

∂t and
the term linear in Aα(t), the effective current operator is
given by

ΠJ ′′µ(t)Π = ∂µεa + bαβ∂µF
αβ
aa , (A26)

where a is the index for the band in LB.
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In summary, we have obtained an effective Hamilto-
nian and the corresponding current operator as

ΠH ′′(t)Π = ΠEΠ− eAα(t)ΠhαΠ+ bαβ(t)Fαβ (A27)

Fαβ
aa′ = e2hαβaa′ +

e2

2

∑

b∈HB

[(

1

εab − ω
+

1

εa′b − ω

)

hαabh
β
ba′

+

(

1

εab + ω
+

1

εa′b + ω

)

hβabh
α
ba′

]

, (A28)

ΠJ ′′µ(t)Π = ∂µΠH
′′(t)Π− i[ΠΛ′′µΠ,ΠH ′′(t)Π]

− i[Πζ′′µΠ,ΠEΠ] + Π
∂Pµ

tr

∂t
Π+O

(

A3
)

(A29)

In the case that LB consists of only one band with index

a, these results are simplified to the following:

Heff(t) = εa − eAα(t)hαaa + Fαβbαβ(t), (A30)

Fαβ = e2hαβaa + e2
∑

b6=a

[

hαabh
β
ba

εab − ω
+
hβabh

α
ba

εab + ω

]

, (A31)

Jµ
eff(t) = ∂µHeff(t) +

∂Pµ
tr

∂t
, (A32)

Aα(t) = aα(t)e−iωt + (aα(t))∗eiωt, (A33)

bαβ(t) = aα(t)(aβ(t))∗, (A34)

Appendix B: Numerical calculation of nonlinear
responses from intraband terms

In this Appendix, we demonstrate that the nonlinear
responses arising from the second term in Eq. (11) van-
ishes for finite γ and ωJ for a simple 1D model with
numerical calculation. With the standard techniques of
the Feynmann diagrams, we can calculate the second or-
der contribution from the second term in Eq. (11) to dc
electric current as follows:

σµαβ
intra(ωJ ;ω1, ω2) = σ1 + σ2, (B1)

σ1 =
−e2

~2ω1ω2

∫

[dk]

∫

dε

2πi
(−f(ε))

×
[

(∂µξk)(∂αξk)(∂βξk)(G
R(ε)−GA(ε))(GR(ε+ ω1)G

R(ε+ ωJ) +GR(ε− ω1)G
A(ε+ ω2) +GA(ε− ωJ)G

A(ε− ω2)
]

+ (ω1, α↔ ω2, β), (B2)

σ2 =
−e2

~2ω1ω2

∫

[dk]

∫

dε

2πi
(−f(ε))(∂µ∂αξk)(∂βξk)(G

R(ε)−GA(ε))(GR(ε+ ω2) +GA(ε− ω2)) + (ω1, α↔ ω2, β),

(B3)

where GR(ε) = (ε − ξk + iγ)−1, GA(ε) = (GR(ε))∗, and
ξk is the electron dispersion measured from the chemi-
cal potential µ. ωJ(= ω1 + ω2) is the frequency of the
output current. f(ε) = (eβε + 1)−1 is the Fermi dis-
tribution function with the inverse temperature β, and
γ is the scattering rate. Here we neglected the vertex

correction. σµαβ
intra(ωJ ;ω1, ω2) can be calculated by speci-

fying the band dispersion ξk measured from the chemical
potential. As an example, we consider the following one-
dimensional dispersion,

ξk = cos k + sin 2k, (B4)

and calculate the k integration and ε integration in
Eq. (B2) and (B3) numerically. For the numerical inte-
gration, we used hcubature function in HCubature pack-
age of a programming language Julia, and the k inte-

gration over [−π, π] and the ε integration are performed.
We performed ε integration over [−∞,∞] by changing
the integral variable from ε to θ = arctan ε and integrat-
ing with respect to θ over [−π/2, π/2]. In the numer-
ical integration, the absolute tolerance (atol parameter
in hcubature function) is set to be 1× 10−9. The re-
sults for ω = 2.0 and temperature T = 1.0 are shown in
Fig. 4. The result shows that Reσxxx

intra = O
(

1× 10−12
)

and thus indicates that Reσxxx
intra = 0 for 0 ≤ ωJ ≤ 0.03,

0.01 ≤ γ ≤ 0.031. In particular, this result suggests that
there is no contribution such as one proportional to ωJ/γ
or γ/ωJ . The standard perturbation calculation within
the clean limit, which yields no contribution from the
second term in Eq. (11), also indicates the absence of the
contribution proportional to ωJ/γ. Therefore we ignore
the second order contribution to electric current from the
second term in Eq. (11) in the main text.
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FIG. 4. γ and ωJ dependence of Reσxxx
intra for model (B4). ω1

and ω2 are set to be ω1 = ω + ωJ/2, ω2 = −ω + ωJ/2, and
the dependence of Reσxxx

intra(ωJ ;ω1, ω2) on the frequency of
the output current ωJ and the scattering rate γ is calculated
numerically for 0 ≤ ωJ ≤ 0.03, 0.01 ≤ γ ≤ 0.031. Since the
absolute tolerance is set to be 1× 10−9 in this calculation (see
the text for the calculation method), the results indicate that
Reσxxx

intra = 0 within this region.
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