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We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular
pinning sites having different diameters, pinning-strengths, and spacings using the time-dependent
Ginzburg-Landau formalism. Above some critical DC current density, Jc, the vortices de-pin, and
the resulting steady-state motion then induces an oscillatory electric field, E(t), with a defect
“hopping” frequency, f0, that depends on the applied current density and the pinning landscape
characteristics. The frequency generated can be locked to an applied AC current density over
some range of frequencies that depends on the amplitude of the DC as well as the AC current
densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function
of the super-cell size of the simulated system and the (asymptotic) synchronization threshold current
densities determined.

I. INTRODUCTION

Above some magnetic field Hc1, the field penetrates
type-II superconductors as quantized vortices carrying
a flux quantum, producing the so-called mixed state.
An external current density, J, subjects each vortex to
a Lorentz force in the direction perpendicular to the
current density and field, FL = J × H. In the ab-
sence of some restraining (pinning) force, vortices move
and dissipation associated with the finite conductivity
of their moving normal cores results in a finite potential
drop across the superconductor. However, structural and
other irregularities result in finite pinning forces which
in turn result in some critical depinning current den-
sity, Jc, for the onset of dissipation, above which a finite
potential drop appears. (This current density is gener-
ally much smaller than the depairing current density re-
quired to break Cooper pairs). For two or more decades
there has been much interest in incorporating artificial
defects to increase pinning and with it Jc, particularly in
films where there is more access to the sample interior
to introduce the defects; examples include: patterned
arrays of holes (anti dots) [1, 2] or normal [3] or ferro-
magnetic metallic dots [4, 5] as well alterations induced
by particle beams as in heavy ion irradiation. When the
applied current density, |J|, exceeds the critical current
density, vortices break loose from their pinning sites and
move. In a spatially periodic system the resulting mo-
tion can generate temporally periodic pinning and de-
pinning cycles with some current density-dependent fre-
quency, here called the hopping frequency, see Sec. III.
By introducing an additional AC current density into
the system with a frequency approximating the unper-
turbed hopping frequency, the two can be locked within
some finite, amplitude-dependent, bandwidth, Sec. IV. In
what follows we will model this behavior by numerically
solving the time-dependent Ginzburg-Landau equations
(TDGL), which will be briefly reviewed in section II A.

Section II B explains the system that is simulated. While
much of the research involving artificial pinning sites fo-
cuses on maximizing Jc [6–11], the results obtained here
suggest that certain dynamic effects, and possible appli-
cations thereof, merit increased attention.

II. MODEL

The formulation of the TDGL equations utilized here
follows that of Sadovskyy et al. [12] which allows the
specification of defect positions, sizes and other charac-
teristics, as explained in Section II A. The particular sys-
tems simulated here are described in section II B.

A. Theory

The TDGL equations can be written in the following
dimensionless form:

u(∂t + ıµ)ψ = ε(r)ψ − |ψ|2ψ + (∇− ıA)2ψ, (1)

κ2∇× (∇×A) = Js + Jn, (2)

Here ψ and A are the order parameter and the vec-
tor potential respectively, µ is the scalar potential, Jn

and Js are the normal and super current densities, and
κ = λ0/ξ0 is the Ginzburg-Landau parameter. Here we
consider thin films and therefore use the κ→∞ limit and
the Landau gauge for A. The unit of length is given by
the zero-temperature coherence length, ξ0, and the unit
of time, t0 = σme/(2e

2ψ2
0), is determined by the typical

relaxation time of the TDGL equation, τψ = Γ/ν0, and
the relaxation time of the vector potential, τA ∝ σ/ψ2

0 ;
here ν0 is the density of states at the Fermi level, σ the
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normal conductivity, Γ = ν0π~
8kBTc

a relaxation parame-
ter, Tc the critical temperature, e and me the electron
charge and mass, and ψ0 the equilibrium value of the or-
der parameter, where the latter is determined by the ratio
of linear and non-linear coefficients of the dimensionless
TDGL equation, or alternatively the London penetra-
tion length λ20 = mec

2/(8πe2ψ2
0). These also define the

dimensionless relaxation parameter u = Γ/(ν0t0), which
we set to 1 in our simulations.

Here we model pinning by so-called δTc pinning [13],
where the critical temperature is spatially modulated.
In Eq. (1), this is realized through the coefficient of the
linear GL term, ε(r) = Tc(r)/T − 1. In the superconduc-
tor we use a value of ε = 1 and within the pinning site
ε < 1, i.e., the local critical temperature of the pinning
site is less than the bulk Tc. For values 0 < ε < 1 one
has weakly superconducting defects whereas regions with
ε < 0 model normal defects.

The magnetic field and, correspondingly, the vector
potential are measured in units of the upper critical field
Hc2(0) = φ0/(2πξ

2
0) (φ0 = π~c/e is the flux quantum).

The total current density can be written as

J = Js + Jn = Im [ψ∗(∇− ıA)ψ]− (∇µ+ ∂tA), (3)

where the unit of the current density is given by J0 =
e~/(meξ0)ψ2

0 . In these units the depairing current den-

sity has the value Jdp = 2/
√

27 ≈ 0.385. At applied cur-
rent densities near the depairing current density above
the free-flux flow regime, amplitude fluctuations of the
superconducting order parameter become large such that
above some current density J ∼= 0.3 the local amplitude
could become zero which can lead to the creation of fluc-
tuation vortex/antivortex pairs in the system.

Here we apply an external current density in x-
direction of form

Jext,x(t) = Jdc + Jac sin(2πfextt). (4)

Important to note is that the TDGL formalism is valid
as long as non-equilibrium excitations are small and the
system remains in a steady state. Therefore, we only
consider frequencies fext � τ−1

ψ . Furthermore, we en-
sure that the peak applied current density Jdc+Jac stays
well below the depairing current density such that order
parameter fluctuations can be neglected. For a more de-
tailed discussion of non-equilibrium effects we refer to the
book by Kopnin [14]. We will discuss typical material
parameters for current and frequency as well as vortex
velocities in the discussion section.

For the numerical solution of equations (1), the sys-
tem is discretized on a regular two-dimensional mesh
in space (with a typical grid spacing of 0.3ξ0) and
the time-integration is performed by using an im-
plicit Crank-Nicolson scheme (typical time discretization
0.1t0). These discretized equations are then simulated on
GPUs using an iterative Jacobi solver. We use periodic
boundary conditions in both directions and the external

current is applied in x-direction which is realized by en-
suring that it matches the average total current following
Ref. [12].

B. Simulation

In most parts of this work we are interested in the
vortex dynamics of a superconducting film having a reg-
ular square lattice of (weakly superconducting) circular
pinning centers, where the applied current direction is ro-
tated 45◦ with respect to the principle axis of the square
array. The reason for studying this rotated configura-
tion is that enlarged systems show enhanced stability of
the moving vortex lattice compared to a square pinning
array.

The magnetic field is applied perpendicular (taken as
the z-direction) to the film with a strength correspond-
ing to the first matching field (see also Ref. [15]), i.e.,
one vortex per pinning site. Therefore, we restrict our
simulations mostly to a single unit cell of the pinning
array with periodic boundary conditions, which implies
that the steady-state dynamics of all vortices in the ex-
tended system is synchronized. We will also discuss the
collective stability in an enlarged unit cell, which we refer
to as super-cell, in Section V). This will remove the (ar-
tificial) synchronization enforced by periodic boundary
conditions involving a single unit cell. Since we are in-
terested in low-temperature applications of synchronized
vortex dynamics, we neglect thermal fluctuations in the
TDGL equations.

A
B

FIG. 1. A) a simple square lattice drawn as centered square
lattice with two pinning sites per square. B) Moving the
site centers along the square diagonal removes those at the
corners.

We start our simulations for a simple unit cell of lin-
ear size

√
2L having two offset circular pinning sites with

diameter D with an in-plane DC current, Jdc, applied in
x-direction (see Fig. 1 [region B]). Here L is the pinning
array lattice constant or, in other words, the distance be-
tween two nearest neighbor pinning sites. Note, that the
two unit cells outlined in Fig. 1 (A and B) are equivalent,
but we choose B for better visualization purposes.

Fig. 2 shows the squared amplitude of the complex
order parameter, |ψ|2, as 3D surface plot and flat pro-
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FIG. 2. Surface plots of |ψ|2 in the simulated system of size√
2L ×

√
2L with two circular defects of diameter D (indi-

cated by the circles) separated by L representing a unit cell
of a large pinning array for different vortex positions in the
system corresponding to different phases of a cycle (see also
Fig. 3): (A) vortex is moving inside the defect, (B) vortex is
the farthest from defects, and (C) vortex is about to enter the
defect. The projection at the bottom of panel (B) indicates
regions with different Tc/ε-values in dark gray (ε = 1) and
light gray (ε = 0.75). At the center position of the vortex,
the direction of applied current, magnetic field, and resulting
Lorentz force (FL) are indicated.

jection at the bottom at three different stages of a single
oscillation of the electric field. A corresponding time-
trace of the electric field with markers of panels (A)-(C)
is shown in Fig. 3 and an animation is shown in supple-
mental movie 1 [16]. Panel (A) corresponds to the lowest
dissipation state, where the vortex is inside the defect,
panel (B) just between the pinning sites in a “free-flow”
state with intermediate dissipation, and panel (C) just
before getting trapped by a defect again. In the latter
case the vortices are pulled into the defect by the pin-
ning force, which accelerates the vortices and therefore
increased the dissipation to its maximum. Furthermore,
this panel also illustrates the unit cell geometry in more
detail (length

√
2L with circular defect of diameter D

and strength ε). Our benchmark system is defined by
L = 10, D = 5, and ε = 0.75, i.e., the pinning site is a
weakly superconducting defect.

III. RESPONSE TO A CONSTANT (DC)
CURRENT DENSITY
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FIG. 3. Three periods of the time-dependent electric field
E(t) for L = 10, ε = 0.75, and D = 5 with applied cur-
rent Jdc = 0.1. Snapshots of the order parameter and vortex
configurations at three distinct times (A)-(C) of a period are
shown in Fig. 2.

We begin our study of the unit cell dynamics by deter-
mining the current density-electric field (J-E) behavior
for systems with differing unit cell sizes, 2L2, and defects.
As it is well known, vortices depin and start moving if
the applied DC current density exceeds the critical value
Jc in the direction perpendicular to the applied current
and field (here the y-direction). Since we are studying
the regime Jdc > Jc, vortices show alternating pinning
and de-pinning motion between second nearest neighbor
sites which are separated by the unit cell size

√
2L.
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FIG. 4. J-E characteristics for five different sets of system
parameters with L = 10 given in the legends. The electric
field is averaged over & 10 periods of the vortex motion in
the steady state for each current density and parameter set.

Figure 4 shows some J-E characteristics for various
values of L, D, and ε. Note, that the electric field is
averaged over at least 10 complete oscillation periods of
E(t), i.e., we plot 〈E〉(Jdc). As expected, the critical
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FIG. 5. (top) Time-dependent electric field curves for
the L = 10, D = 5, and ε = 0.75 system with
Jdc = 0.051, 0.06, 0.12, 0.15. (bottom) The Fourier trans-
forms of the E(t) curves reveal the hopping frequencies f0 =
0.00217, 0.00547, 0.01577, 0.02080 for each of the applied cur-
rents respectively. The Fourier analysis also shows higher
harmonics.

current density, Jc, decreases with ε for fixed L and D.
Note, that in our simulations no additional pinning due
to bulk disorder or edges is considered – see section VI.

Increasing the diameter D from 5 to 7.5 does not
change the critical current density significantly. How-
ever, the dependence of the critical current density on
the defect diameter and area fraction, ν = πD2/(4L2),
which defects occupy in the simulated region, is typically
non-monotonic and has a maximum for a fixed ν and D.
A detailed analysis can be found in Refs. [8, 9]. The size
of a pinning site defines its curvature (since we a studying
circular defects), which has an optimal value for largest
pinning force. For L = 10 and D = 5, the area frac-
tion is close to 20%, which is close to the optimal area
fraction for largest possible critical current density. Note
that in our case the values of ε are positive and therefore
still allow for weak superconductivity inside the defects.
This influences the impact of ν for ε-values close to 1,
which becomes less relevant, while for small or even neg-
ative ε-values it is important. In the case of ε = 0.1, the
D = 5 and D = 7.5 curves show similar critical current,
because for D = 5 we are close to the optimal ν of 20%,
while for D = 7.5 the curvature is close to optimal, which

results (coincidentally) is the same critical current (Jc).
However, for D = 7.5, ν > 40%, such that the voltage
increases much more quickly above Jc. For larger ε, ν
becomes less important which is seen for intermediate ε-
values, where Jc(D = 7.5) is larger than Jc(D = 5.0)
despite the larger-than-optimal ν. For ε close to 1, also
the curvature becomes less relevant and Jc is mostly de-
termined by the difference 1− ε.

Because the pinning sites are periodic, the resulting
motion and associated electric field E(t) will then show
a regular oscillatory behavior with some current density-
dependent hopping (or nucleation) frequency f0(Jdc).
Figure 3 shows the accompanying time-dependence of the
electric field E(t) across the system, where three distinct
dynamical states are marked as (A)-(C), visualized in
Fig. 2.
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FIG. 6. Hopping frequencies as function of applied DC cur-
rent density, f0(Jdc), for various system parameters with
L = 10. The underlying oscillations of the electric field are
caused by repeated periodic pinning and depinning events.
The response frequencies are obtained by using the dominant
peak of the Fourier transform of the electric field (calculated
for & 65 periods of the vortex motion in the steady state), see
Fig. 5.

Figure 5(top) shows the behavior of E(t) over a more
extended time interval for different applied DC current
densities, while figure 5(bottom) shows the corresponding
Fourier transforms. Note, that higher harmonics, fn ≡
nf0, are clearly visible. This is to be expected since the
motion is highly inhomogeneous in both space and time.

It is clear that when Jdc increases, f0 also increases,
since higher current density can depin and translate the
vortices faster, which increases the hopping frequency.

If we plot the hopping frequency as function of applied
DC current for various pinning site parameters, shown in
Fig. 6, we notice almost the same functional dependence
as the J-E characteristics (Fig. 4): In the critical region
for Jdc near Jc we find a nonlinear dependence, f0 ∝ Jνdc,
where ν < 1, after which it becomes approximately lin-
ear for higher applied current densities, as shown figure 6.
However, as in the J-E characteristics, f0(Jdc) becomes
non-linear at very large current densities due to fluctua-
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tions of the order parameter amplitude.
Indeed, if we combine those two results and plot the av-

erage voltage, 〈V 〉 =
√

2L〈E〉, as function of the hopping
frequency f0 all graphs (almost) perfectly collapse on a
universal line with slope 4π, see Fig. 7, i.e., 〈V 〉 = 2·2πf0.
This behavior is expected on the basis of Faraday’s law
in which two fluxons pin & depin at the same time within
the unit cell in each period of f−1

0 :

V = nc−1φ0f. (5)

In our dimensionless units , c−1φ0 = 2π; n is the num-
ber of vortices in the simulated system, which is 2 for
the unit cell. Alternatively, we identify the frequency oc-
curring in Eq. (5) as the Josephson frequency fJ = 2e

h V .
This result is consistent with the analysis of Martinoli
et al. [17] and Van Look et al. [18] of periodic line and
hole arrays. Similar oscillatory behavior has been seen in
simulations of Josephson junction arrays [19, 20].
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FIG. 7. The averaged voltage, 〈V 〉 =
√

2L〈E〉, for eight dif-
ferent sets of system parameters with L = 10 given in the
legends, the slope of the line is 2 · 2π. The electric field is av-
eraged over & 10 periods of the vortex motion in the steady
state for each current density and parameter set.

IV. LOCKING TO AN EXTERNAL AC
SOURCE

Next, we examine the effect of an additional AC com-
ponent to the applied current density, Jac sin(2πfextt), on
the system. We find that fext and f0 will synchronize for
some range of applied frequencies in the vicinity of f0 for
a given Jac, where, depending on conditions, frequency
locking appears, as shown in figure 8. By comparing fig-
ure 8 with figure 5, we see that oscillations have become
more sinusoidal due to the influence of the applied fre-
quency, fext.

Figure 9 shows the result of applying a frequency out-
side, but close to, the range of frequencies where lock-
ing occurs. Note the oscillations acquire a low-frequency
modulation seen as an envelope to the hopping frequency.
These reflect the number of cycles over which the system
locks, unlocks, and then re-locks.
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FIG. 8. Frequency locking for fext = f0 for the system of
Jdc = 0.12, L = 10, D = 5, and ε = 0.75; the applied ampli-
tude is Jac = 0.02 . The plot shows a single-mode oscillation.
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FIG. 9. Time-dependent electric field behavior of a L = 10,
D = 5, and ε = 0.75 system with applied Jdc = 0.12, Jac =
0.02, and fext = 1.046f0. the envelope function is fenv =
5.632× 10−4, i.e., about 28 times lower than f0.

Figure 10 shows the locking regions for three different
Jac values.

Note that the locking region increases with increasing
Jac. This behavior is due to the fact that f0, strictly
speaking, depends on Jext, which means that by adding
the AC component, f0(Jext) oscillates as well over an
interval determined by Jac. The locking behavior can
qualitatively be understood by comparison to the over-
damped motion of a particle in a periodic potential under
the influence of a DC plus AC driving force. This basi-
cally corresponds to the Langevin dynamics of a particle
in a washboard potential, which is commonly used to
describe the dynamics of a pancake vortex in 2D in a
periodic pinning landscape. Since the dynamics in the
locking regime is synchronized, the systems behavior can
be compared to that of a single particle. Here the DC
part of the current can be interpreted as the tilt of the
periodic (pinning) potential resulting in the washboard
potential. This simple equation of motion with external
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AC force results in a similar behavior of the particle ve-
locity as the electric field dependence in the TDGL sim-
ulations, where the width of the locking region is indeed
proportional to the AC amplitude.

Using Josephson’s relation, 〈E〉 is converted to f̃ ,
which we denote as the response hopping frequency ap-
pearing in the Fourier spectrum as the second highest
peak, after the external frequency fext. Both merge when
the vortex dynamics in the system and the driving fre-
quency are locked.
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FIG. 10. Frequency locking region of the benchmark system
with L = 10, D = 5, and ε = 0.75 for different Jac and fixed
Jdc = 0.12. Here, the electric field is averaged over ∼ 103

periods of the vortex motion in the steady state.

We can locate the locking region using three meth-
ods: First, we can observe the splitting of the fundamen-
tal peak in the Fourier spectrum, since when the system
is synchronized with the applied AC current density, as
shown in figure 8, the Fourier spectrum will show only
a single peak at the applied frequency together with its
harmonics. When the system is not locked the applied
frequency will split off.

Secondly, one can measure the average DC electric field
across the sample, which in turn is related to the response
hopping frequency. This is done in Fig. 10. In general,
this method is experimentally easier to measure than the
time resolved field.

Finally, we can examine whether locking is present
by analysing the low-frequency modulation of the time-
resolved electric field: If the system is locked, the enve-
lope will have constant amplitude (cf. Fig. 8); if not, we
can determine the period of the envelope (see Fig. 9) and
calculate the difference frequency.

Experimentally this frequency might be determined by
rectifying the AC frequency and directly measuring the
frequency of the modulation envelope.

We note that the locking phenomena simulated here
are analogues to Shapiro steps observed in Josephson
junctions when an external oscillator is applied with a fre-
quency that has an integer relation to the Josephson fre-
quency as verified by the experiments of Martinoli et al.
[17] and Van Look et al. [18]; the configuration used by

the latter group has been modeled by Reichhardt et al.
[21].

V. GLOBAL STABILITY IN LARGER
SYSTEMS

Quite generally the voltage drop across a current
driven strip containing an array of vortices moving in
some pinning landscape will consist of a superposition of
contributions produced by their individually pinning and
de-pinning from successive sites. In a spatially periodic
lattice of pinning sites of the kind considered here there
is the potential for a collective motion wherein all vor-
tices hop synchronously from site to site. However, this
is not necessarily the case and various instabilities can
develop in which such a synchronous motion is lacking or
breaks down; i.e., the hopping occurs at different times
in different unit cells (see supplemental movie 2 [16]).
In the simulations discussed in section II B the periodic
boundary conditions utilized in our code were imposed
on the unit cell of our pinning landscape, thereby forcing
vortices in all unit cells in the periodically continued sys-
tem to hop at the same time. To test for stability more
generally, we enlarged the size of the simulated system to
form a super cell that includes successively larger num-
bers of unit cells: 2 × 2, 3 × 3, 4 × 4, . . .. The number of
unit cells which fit horizontally, i.e., in the direction of
the applied current, into the super cell is denoted as Nsc.
The simulated super cells then consist of Nsc ×Nsc unit
cells. Again the unit cell used so far, is shown in Fig. 1.

As before, the applied magnetic field is the matching
field corresponding to 2N2

sc vortices. After relaxing the
system from a random initial configuration in the super
cell, we obtain a static state with one vortex is pinned
to each defect to which we then start to apply an ex-
ternal current. On increasing the applied current, one
again reaches a critical value where, at least initially,
the vortices de-pin and move as parallel columns per-
pendicular to the current. Note that the vortices within
each column always move synchronously for our weak
pinning sites and currents below the amplitude fluctua-
tion regime. Here we refer to synchronous motion in a
super cell as the simultaneous motion of adjacent vortex
columns, which means all vortices in the super cell move
at the same time, alternately pinning and depinning in
unison. This synchronous motion typically breaks down
when the current is increased to some threshold current,
Jth, when some adjacent vortex columns loose their syn-
chronization. Here, we calculate the value of Jth by start-
ing with Jdc in the asynchronous regime and decreasing
it to the point where synchronized hopping is recovered.
Its dependence on the super cell size Nsc is shown in
Fig. 11. As seen in the plot, it decreases as the size of
system increases for smaller super cells. However, it is
saturating in the asymptotic limit, implying an infinite
system would be stable. Stability can be tested by either
increasing or decreasing Jdc (in time) relative to Jth and
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examining the structure of the evolution of the array in
time. Note that the Jth values plotted here also depend
on the holding time at a fixed current during which the
vortex matter reorganizes and eventually synchronizes
and therefore represent a lower limit for its true adia-
batic value (see supplemental movie 3 [16]). Therefore,
the apparent non-monotonic behavior seen in Fig. 11 is a
result of the procedure we use to obtain this lower limit
for Jth. In particular the nature of the asynchronous
steady state we start from when lowering the current
(in combination with the current step size) will result
in variations of the time needed to establish synchronous
motion once we reach currents Jdc ≤ Jth. Furthermore,
the synchronization time could exponentially depend on
the super cell size as the rearrangement of vortices due
to inter-vortex interactions follows glassy-like dynamics.
These timescales are not feasible to reach in a simula-
tion (realistically we can simulate times up to 10’s of
microseconds). In any case we want to emphasize that
once we observe synchronization at a particular current
Jdc, the true threshold current is strictly bounded from
below by that value. However, we expect that the thresh-
old currents for adiabatically increasing and decreasing
applied DC currents will coincide and thus not show any
hysteresis.

When Jdc exceeds Jth, asynchronous hopping emerges.
However, by applying an AC current with frequency com-
parable to the natural frequency for the applied DC
current, synchronized hopping is recovered (see supple-
mental movie 4 [16]). This behavior can potentially be
used as a low-temperature signal amplifier: by applying
a small AC current to sample, it will generate a larger
signal proportional to the applied Jac.

2 4 6 8 10 12 14 16
NSC0.00

0.05

0.10

0.15

Jth- Jc

L = 10, ϵ = 0.75, D = 5

L = 10, ϵ = 0.9, D = 5

2 4 6 8 10 12 14 16
NSC0.00

0.05

0.10

0.15

Jth- Jc

ϵ = 0.75, D = 5

ϵ = 0.9, D = 5

FIG. 11. The current difference, Jth − Jc, for the onset of
asynchronous hopping with increasing super cell size, Nsc for
two systems of L = 10 and D = 5 using different defect
strength. The value of the critical currents Jc = 0.05 for The
blue line, and Jc = 0.022.

The synchronization of the vortex motion is a result of
the competing forces acting on the vortices. Most impor-
tant are: (i) the attractive one-body vortex-pinning site
interaction, (ii) the (repulsive) two-body vortex-vortex
interaction, and (iii) the Lorentz force resulting from the

applied current. At high temperatures, thermal fluctua-
tions can also affect the synchronization of vortices. In a
homogeneous system without applied current, the inter-
vortex force leads to the formation of the (hexagonal)
Abrikosov vortex lattice. Since we are considering a dy-
namic situation here, the interplay of all these forces leads
to the complex dynamic behavior we observe as compared
to a static pinned lattice.

In particular, for large applied currents, the effect of
pinning is “averaged out” and the system is governed
mostly by the inter-vortex force. If this happens, the
natural tendency for the vortex array is to adopt the
Abrikosov lattice structure, as this is energetically the
favored symmetry for a homogeneous film, thereby re-
sulting in a dynamic phase transition between a square
(imposed by the pinning sites) and a hexagonal vortex
lattice above some average drift velocity (and associated
current density). At that point the oscillatory response
with a single frequency is lost, as the vortex lattice is not
commensurate with the pinning lattice anymore: In the
pinning lattice nearest neighbor columns have a distance
of L/

√
2, while a Abrikosov lattice with the same den-

sity has a vortex column distance of L/
√

2
√

3. Overall,
this leads to a response frequency which is a multiple of
the unit cell hopping frequency. At even higher currents
beyond the dynamic phase transition, vortices start to
move horizontally as well to switch between the natural
distance and the imposed pinning site distance, which ul-
timately leads to completely incoherent vortex dynamics.

Our system has some similarity to the motion of a
system of coupled oscillators such as in the Kuramoto
model [22][23], but differs in that the one body pinning
force is of finite range and hence bounded.

VI. MATERIAL PARAMETERS

To estimate the typical range of frequencies in actual
materials, one needs to calculate the time scales involved
using typical material parameters. For some supercon-
ductors of interest such as YBCO, niobium, and molyb-
denum germanium alloys (see Table I), we find that that
t0 ∼ 10−13s and J0 ∼ 1012 A/m2. Using the parameters
of MoGe, one finds that for an applied current density
Jdc = 0.12, the frequencies generated are of order, f ∼ 86
GHz, with corresponding velocities 〈v〉 ∼ 6 km/s. Note
that in practice we expect the velocities to be limited by
the velocity of sound, which is exceeded at such veloci-
ties. Such current densities are rather high and possibly
difficult to obtain experimentally. 86 GHz is a large fre-
quency that has not been achieved in previous studies.
Some reported frequencies are f = 40 MHz [18], f ∼ 500
KHz - 100 MHz[17], f = 100MHz - 1.5GHz [24]. A re-
cent study by Dobrovolskiy et al. [25] achieved vortices
with a velocity of 10km/s, suggesting it may be possi-
ble to achieve higher frequencies. Note that near the
critical current density (Jdc = 0.051), f ∼ 12 GHz and
〈v〉 ∼ 0.8Km/s, which may be more easily achieved.
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In realistic samples, we should also consider the ef-
fect of (bulk) disorder and edges on the dynamic behav-
ior. To this end, we added a polycrystalline pattern with
spatially randomized critical temperatures being close to
the bulk Tc such that the artificial pinning sites are still
much stronger than the disorder. The observed behav-
ior is preserved with slightly reduced threshold current.
To estimate the influence of edges, we replaced the pe-
riodic boundary condition in y-direction (perpendicular
to the vortex motion) by no-current conditions (see [12])
for larger supercells. The resulting edges cause random
vortex nucleation at the entrance edge, which disrupts

the synchronized motion near the critical current. This
effect becomes smaller as we increase the applied current
as long as it remains below the threshold current. How-
ever, if we remove option for random vortex nucleation
by introducing a row of notches matching the pinning site
columns, the synchronization persists. Finally, we note
that the estimated vortex velocities will heat the sample.
However, we assume that any heat generated by the vor-
tex motion can be effectively removed from the system.
Experimentally, one can consider that the system is ei-
ther immersed in a cryogenic liquid or that the substrate
of the superconducting film is thermally anchored.

quantity Nb MoGe YBCOc YBCOa,b

ξ0 38nm 5nm 0.4nm 2nm
λ0 39nm 500nm 800nm 150nm
σ 6.6 · 106S/m 5.8 · 105S/m ∼ 106S/m ∼ 106S/m
t0 1.26 · 10−14s 1.83 · 10−13s 8.03 · 10−13s 2.82 · 10−14s
J0 4.53 · 1012 A/m2 2.10 · 1011 A/m2 1.02 · 1012 A/m2 5.82 · 1012 A/m2

TABLE I. Parameters for Niobium (Nb) [26–28], Molybdenum Germanium (MoGe) [29, 30], and YBa2Cu3O7−x (YBCO) at
x = 0.7 (optimal) for c-plane and ab-plane. [31, 32]

VII. CONCLUSION

Using the time dependent Ginzburg-Landau formalism
we have shown that above some critical current, Jc, a
commensurate vortex lattice moving in a periodic pinning
landscape of circular holes can generate an oscillating
electric field at a certain inter pinning-site vortex hopping
frequency. The hopping frequency, f0, itself depends, not
only on the system characteristics (lattice constant, hole
size, and hole pinning strength), but also on the applied
current. Adding an AC component to the applied DC
current allows us to lock the hopping frequency to a range
of applied frequencies which is near f0. The range of the
locking frequency interval depends also on the amplitude
of the AC current.

In our initial simulations we considered a square unit
cell having a single vortex with a current applied per-
pendicular to an edge. However, in going over to larger
systems comprised of multiple unit cells, called super-
cells, the synchronization of the vortex motion between
neighboring unit cells was quickly lost. We then exam-
ined a 45◦ rotated square lattice with two vortices in an
enlarged unit cell, with the current still perpendicular
to an edge. When considering a super-cell in this system
the synchronization of the vortex motion was found to be
stable below some threshold current density, Jth, that de-
pends on the super-cell size; furthermore, Jth approaches
a limiting value with increasing super-cell size, implying
an extended system can be stable below this value.

Since the applied current density can be varied,
the systems studied here constitute miniature, current-

tunable, oscillators that operate at cryogenic tempera-
tures. They can be patterned directly into a strip-line
wave guides with their output transmitted to other re-
mote devices. The loss of synchronization observed at
higher currents in larger systems can likely be minimized
by patterning strips of finite width containing a limited
number of columns.

The frequency can be modulated simply by varying
the DC current density, Jdc, in time. Given that the
vortex drift velocity responds quickly to a change in the
applied current (since no narrow-band circuit elements
are involved) these devices should switch on and off, or
between differing frequencies, in times comparable to an
oscillation period.The range of frequencies generated de-
pends on the system parameters (hole geometry and sep-
aration) together with the superconducting materials of
which it is made.

As seen from Fig. 5 the harmonic content of the sig-
nals produced can be quite high. For applications where
this is undesirable it can be suppressed by engineering
a smoother potential landscape; alternatively, one might
want to exploit this feature.

Finally, there appears to be considerable potential that
phenomena of the kind considered can lead to new de-
vices based on the dynamics of vortex arrays moving in
engineered artificial defect landscapes.
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