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We analyze the topological properties of the possible superconducting states emerging from a
Cd3As2-like, C4-symmetric Dirac semimetal, with two four-fold degenerate Dirac points separated
in the kz direction. Unlike the simplest Weyl semimetal for which all pairing orders are topologically
obstructed and nodal, we show that the topological obstruction for pairing in Dirac semimetals
crucially only exists for certain pairing symmetries. In particular, we focus on odd-parity B1u and
B2u pairing states, both of which can be induced by Ising ferromagnetic fluctuations. The B1u
and B2u pairing states inherit the topological obstruction from the normal state, which dictates
that these states necessarily hosts four BdG Dirac point nodes protected by a Z2 monopole charge.
By a Wannier state analysis, we show that the topological obstruction in the superconducting
states is of higher-order nature. As a result, in a rod geometry with gapped surfaces, arcs of
higher-order Majorana zero modes exist in certain kz regions of the hinges between the BdG Dirac
points. Unlike Fermi arcs in Weyl semimetals, the higher-order Majorana arcs are stable against
self-annihilation due to an additional Z-valued monopole charge of the BdG Dirac points protected
by C4 symmetry. We find that the same Z-valued charge is also carried by B1g and B2g channels,
where the BdG spectrum hosts bulk “nodal cages”, i.e., cages formed by nodal lines, that are stable
against symmetry preserving perturbations.

I. INTRODUCTION

Topological semimetals are gapless states that exhibit
topologically stable band crossings in the Brillouin Zone
(BZ), including Weyl [1–11] and Dirac semimetals [12–
19], nodal line semimetals [20–28] and multifold fermions
[29–31]. Owing to the nontrivial topology, topologi-
cal semimetals display interesting spectral and transport
properties. For example, in Weyl semimetals there exist
gapless surface states that are restricted in certain ranges
in momentum space, known as Fermi arcs, which leads
to interesting features seen in ARPES and quantum os-
cillation measurements [1–4].

Moreover, topological semimetals are fertile play-
grounds for the interplay between correlation effects and
band topology. In particular, interacting topological
semimetals can host novel superconducting instabilities
upon doping, whose topological properties descend from
the normal state [32, 33]. For example, in a Weyl
semimetal with two Weyl points, it has been shown that
all possible pairing orders are necessarily topologically
obstructed, i.e., hosting point nodes in the BdG spec-
trum [32]. The topological obstruction comes from a
Chern number for surfaces enclosing the Weyl points,
which is inherited by the superconducting state. As a
consequence, the surface Fermi arcs in the normal states
get reconnected in the superconducting states and termi-
nate at the BdG point nodes instead [33].

Recently, the notion of band topology has been ex-
tended to higher-order ones, with examples ranging from
higher-order topological insulators [34–39], higher-order
topological superconductors [28, 40–66], and higher-order
topological semimetals [67–72]. In general, n-th order
higher-order topological phases are protected by spatial
symmetries and host gapless or degenerate states on its

(d − n)-dimensional boundary (1 < n ≤ d) while its
bulk and surface spectra are gapped. As examples, in-
teresting higher-order topological superconductivity has
been shown to emerge from nodal line semimetals [28],
time-reversal invariant Weyl semimetals [40], and Dirac
semimetals [41, 42].

Different from Weyl semimetals [1–6], the topological
stability of Dirac semimetals requires additional symme-
try. In Dirac semimetals such as Cd3As2 and Au2Pb,
the Dirac points are protected by a Z2 topological invari-
ant in the presence of time-reversal, inversion, and four-
fold rotational C4 symmetries [73–75]. In terms of bulk-
boundary correspondence, Dirac semimetals do not host
stable Fermi arcs on the surfaces [73, 76–78]. Instead,
recent studies have shown that certain Dirac semimetals
display higher-order Fermi arcs (HOFAs) [79–81], which
are one dimensional (1D) degenerate dispersive states lo-
calized on the lower dimensional hinges when two open
boundaries intersect [38, 67–69]. The HOFAs terminate
at the projections of bulk Dirac points onto 1D hinges,
and are protected by the same symmetries protecting the
bulk Dirac points.

Superconductivity has been reported in Dirac mate-
rials such as Cd3As2 [82–84] and Au2Pb [85], followed
by several theoretical investigations of topological super-
conductivity in doped Dirac semimetals [73, 86–88]. In
this work we investigate possible topologically obstructed
nodal superconducting states from a C4 symmetric Dirac
semimetal. If such superconducting states do exist, a nat-
ural issue is their indication to the bulk-boundary corre-
spondence. Given that the normal state exhibits nontriv-
ial higher-order topology, such pairing states may display
nodal higher-order topological superconductivity. A sim-
ilar question was addressed in Ref. [88]. In that work, the
normal state is Z2 obstructed and the pairing states that
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Sample Cut

DSM(kz 6= 0) HOFAs HOFAs

B1u-DSC HOMAs gapless

B2u-DSC gapless HOMAs

TABLE I. Surface states or corner states for a 2D kz-slice in
different cases. “DSM” refers to Dirac semimetal and “DSC”
refers to Dirac superconductor. The DSM entry excludes the
kz = 0 plane, where gapless surface states are present due to
a nontrivial mirror Chern number. B1u and B2u are orbital-
singlet and spin-triplet pairings given by Eq. (15). We use
green dots to denote corner states in normal state and red dots
to denote corner Majorana zero modes in superconducting
state.

inherit the normal state obstruction present nodal points
on FSs. The 2D Hamiltonian is a class DIII topological
superconductor due to a 2D composite time-reversal sym-
metry which satisfies (TMz)2 = −1. For bulk-boundary
correspondence, the model studied in Ref. [88] displays
surface helical Majorana arcs connecting the projections
of bulk gap nodes onto surfaces. However, Ref. [88] con-
sidered a mirror reflection symmetry that squares to +1,
which does not apply to realistic Dirac materials.

Motivated by these questions, we begin with a simple
tight-binding model for a doped Dirac semimetal with
two Dirac points protected by time-reversal symmetry
and the D4h point group [73]. In the normal state,
there are two closed Fermi surfaces around each Dirac
point. Such a model can be thought of two copies of
Weyl semimetals that are time-reversal partners, with
two types of spin-orbit coupling terms λ1 and λ2 at lowest
order in k that couple the two copies. These spin-orbit
coupling terms eliminate the surface Fermi arcs and re-
veals the HOFAs at the hinges.

We show that just like the normal state, the topologi-
cal obstruction of the superconducting state strongly de-
pends on spatial symmetries and, in particular, the ir-
reducible representation thereof [88]. Out of all possible
pairing channels that are irreducible representations of
D4h, we show that B1u and B2u pairing channels, both
of which are odd in parity, inherit the topological obstruc-
tion from the normal state. This is in sharp contrast with
superconductivity in doped Weyl semimetals with two
Weyl points, in which all possible pairing states are nec-
essarily topologically obstructed and nodal [32]. We com-
pare the relative strength of these two pairing instabili-
ties. Assuming a scenario with Ising ferromagnetic fluc-
tuations, the effective interaction is attractive for both
pairing channels, and whether B1u or B2u is energeti-
cally favorable is determined by the relative strength of
λ1 and λ2. Even for a realistic system beyond the simple
tight-binding model we consider, we expect the result to
hold for small Fermi surfaces.

We further consider the topological nature and the re-
sulting bulk-boundary correspondence of B1u and B2u
superconducting states. Crucially, we find that the
topological properties are completely determined by the
transformation properties of the order parameter under
the point group D4h. We find that the superconducting
order parameters create BdG Dirac points residing on the
North and South poles of each of the two disjointed FSs
in the BdG Hamiltonian. Higher-order Majorana arcs
(HOMAs) localized along the hinges of a 3D rod geome-
try (finite in xy but infinite along z) exist, originating and
terminating at the projections of bulk BdG Dirac points
onto the hinges. In the normal state, generally HOFAs
are dispersive in the spectrum for a finite chemical po-
tential. By contrast, HOMAs are always pinned at zero
energy due to the particle-hole symmetry. We show that
the existence of HOMAs can be detected by a Z2 topolog-
ical invariant corresponding to the filling anomaly of the
2D subsystems at a given kz within the relevant range,
captured by the positions of the Wannier center of the
2D subsystem. The model in Ref. [88] has a similar bulk
spectra but the higher-order topology is absent since it
does not have C4 symmetry. In Ref. [89] the authors
proposed a second-order Dirac superconductor with flat-
band Majorana arcs localized on hinges. In their model
the hinge Majorana arcs terminate at the projections of
Dirac nodes from surface states, while our model features
bulk Dirac nodes.

Interestingly, unlike the normal state, in the pairing
state HOMAs only appear for certain vertical hinges, de-
pending on how the finite sample is cut. Preserving all
the point group symmetries, the finite sample can either
be in a “square cut” or in a “diamond cut”, with edges at
45 degrees relative to each other. B1u pairings and B2u
pairings leave certain surfaces gapless. These gapless sur-
faces are protected by mirror symmetries. Naturally, a
finite sample hosts HOMAs only when the surfaces are
gapped, which we summarize in Table I.

We further show that the BdG Dirac points host an ad-
ditional Z monopole charge protected by the C4 symme-
try, which are the same at the same side of the Brillouin
zone. As a result, the BdG Dirac points at the North
and South poles cannot annihilate each other, and the
corresponding HOMAs at the hinges cannot be removed,
at least in the weak-pairing limit.

We note that a method based on inversion-symmetry
indicator has been proposed in Ref. [90–92]. However,
directly applying their results to our case would yield
a trivial result. This is because the indicator there is
only a diagnostic for HOMAs at kz = 0, while in our
cases HOMAs occur at finite kz’s. Therefore, our results
enrich the classification of HOMAs in Ref. [90].

Based on the same method, we also analyze the topo-
logical properties other pairing channels, out of which we
identify B1g and B2g states as hosting the same monopole
charges as the B1u and B2u states. However, these states
host cages of nodal lines in the spectra, thus the higher-
order topology is not well defined. However, each nodal
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cage still host a well-defined Z monopole charge of two,
ensuring the stability of the structure.

The rest of this paper is organized as follows. In Sec.
II we present the 3D model for a C4 symmetric Dirac
semimetal and the topological protections of bulk Dirac
nodes. We perform a real space Wannier orbital analysis
on the 2D slice Hamiltonian between the two bulk Dirac
points in Sec. II A and find an inevitable filling anomaly.
We claim in Sec. II B that surface states are gapped
out by SOC and HOFAs connecting the projections of
bulk Dirac points are present in the 3D rod Hamilto-
nian. In Sec. III, we focus on the odd-parity pairing
states in B1u/B2u channels. We show that they are the
leading instabilities induced by Ising ferromagnetic fluc-
tuations, shown in Sec. III A. In Sec. III B, a higher-order
Z2 invariant from the C4 symmetry is defined by apply-
ing Wannier orbital analysis to the 2D subsystem of the
BdG Hamiltonian, which characterizes the higher-order
corner Majorana zero modes. An additional Z valued
topological invariant protecting HOMAs is identified in
Sec. III C. In Sec III D, we elucidate the relation between
HOMAs with gapless surface states protected by mirror
symmetries. We discuss the effects of C4, time-reversal
and inversion breaking perturbations in Sec. III E. We
briefly discuss other pairing channels in Sec. IV. The
results are summarized in Sec V.

II. DIRAC SEMIMETALS PROTECTED BY C4
ROTATION SYMMETRY

An effective Hamiltonian of a well-known Dirac
semimetal such as Cd3As2 is given by [73]

H0(k) =[M0 − txy(cos kx + cos ky)− tz cos kz]σzs0

+ η sin kxσxsz − η sin kyσys0

+ λ1 sin kz(cos ky − cos kx)σxsx
+ λ2 sin kz sin kx sin kyσxsy, (1)

where M0, txy, tz, η, λ1 and λ2 are model parameters and
σi/si denotes Pauli matrices in orbital/spin spaces. A
pair of Dirac points appear at (0, 0,±k0) in the 3D Bril-
louin Zone (BZ) for tz > (M0−2txy) > 0 and k0 is defined
by M0 = tz cos k0 + 2txy with k0 > 0. In particular λ1
and λ2 are two lowest-order spin-orbit coupling terms al-
lowed by symmetry. A momentum-dependent chemical
potential µ(k)σ0s0 is not included in Eq. (1) since it does
not affect the topology.

The Hamiltonian preserves inversion I, time-reversal
T , three Mirror Mx,y,z, and a C4 rotation symmetry

about the z axis, satisfying
IH0(kx, ky, kz)I−1 = H0(−kx,−ky,−kz),
T H0(kx, ky, kz)T −1 = H0(−kx,−ky,−kz),
C4H0(kx, ky, kz)C−1

4 = H0(ky,−kx, kz),
MxH0(kx, ky, kz)M−1

x = H0(−kx, ky, kz),
MyH0(kx, ky, kz)M−1

y = H0(kx,−ky, kz),
MzH0(kx, ky, kz)M−1

z = H0(kx, ky,−kz), (2)
where

I = σz, T = isyK, C4 = isze
i(π/4)σzsz ,

Mx = isx, My = iσzsy, Mz = isz. (3)
The forms of the symmetry operators are chosen ac-
cording to the transformation properties of four spin-
orbit coupled degrees of freedom with angular momenta
J = ±1/2 and J = ±3/2. The corresponding point group
of H0(k) is D4h.

To see how C4, T , and I together protects the Dirac
point, we note that (T I)2 = −1, which protects a two-
fold Kramers degeneracy at any point in the BZ. Along
kx = ky = 0, every Bloch state can be labeled by its an-
gular momentum under the fourfold rotation symmetry,
forming two Kramers pairs. The Dirac points occur at
kx = ky = 0 when the |J | = 1/2 bands and |J | = 3/2
bands cross, which are robust against any symmetry-
preserving perturbations. Here it is important that the
two pairs of bands carry different absolute values of an-
gular momenta.

One can define a Z2 monopole charge for the Dirac
point at (0, 0, k0) [73–75], given by

∆ν(k0) =
[
νJ(k+

0 )− νJ(k−0 )
]

mod 2, (4)
where
νJ(k±0 ) =

[
NJ(0, 0, k±0 )−NJ(π, π, k±0 )

]
mod 2 (5)

and NJ(0, 0, k±0 ) is the number of occupied bands with C4
eigenvalue J at the C4-invariant momenta (0, 0, k±0 ) above
(below) k0 along the C4 invariant axis. Time-reversal
symmetry and filling constraints ensures that νJ is in-
dependent of the particular J one chooses, and in our
model, it is straightforward to verify that ∆ν(±k0) = 1.

We will show in the following subsections that the
charge defined in Eq. (4) is a higher-order topological
invariant connected with the Wannier representation for
each kz layer.

A. Wannier representation

Consider the 2D subsystem of H0(k) at a fixed kz be-
tween two Dirac points

H2D(kx, ky) =[M ′0 − (cos kx + cos ky)]σzs0

+ sin kxσxsz − sin kyσys0

+ λ′1(cos ky − cos kx)σxsx
+ λ′2 sin kx sin kyσxsy, (6)
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FIG. 1. Wannier representations for the nontrivial phase in
2D subsystem of the Hamiltonian in Eq. (6). Cyan squares
represent atom sites and purple dots denote Wannier orbital
centers at r = ( 1

2 ,
1
2 ). Two dashed lines denote mirror planes

and their crossing point is the rotation axis. The corner atom
site in the finite sample acquires a charge ± 1

2e due to the
filling anomaly.

where M ′0 = M0 − cos kz, λ′1,2 = λ1,2 sin kz, and we set
txy = tz = η = 1 without loss of generality. When kz 6=
k0, H2D(kx, ky) describes a 2D subsystem of a crystalline
insulator. Note that the slice Hamiltonian H2D(kx, ky)
preserves a 2D time reversal symmetry defined by the
3D time reversal operator T times the mirror reflection
Mz, such that

T̄ H2D(kx, ky)T̄ −1 = H2D(−kx,−ky), (7)

where T̄ = TMz = isxK and T̄ 2 = +1. Such a time-
reversal symmetry does not enable a Kramers degeneracy
and the edges (corresponding to side surfaces at a given
kz) are in general gapped. Lacking protected edge states,
H2D(kx, ky) for kz 6= ±k0 can be represented by Wannier
states.

Constrained by spatial symmetries and T I symme-
try, there are two possible representations of two filled
Wannier states, with a pair of Wannier centers both at
Wyckoff position r = (1/2, 1/2) or both at r = (0, 0).
The configuration corresponding to H2D(kx, ky) can be
obtained by investigating the C4 eigenvalues of the oc-
cupied bands at C4 invariant momentum Γ = (0, 0) and
M = (π, π) in the 2D Brillouin zone, which we denote
as CΓe

±iπ4 and CMe±i
π
4 . Due to T I symmetry ensuring

Kramers doublets, CM and CΓ are both real numbers
— for |J | = 1/2, the corresponding CM,Γ = 1 and for
|J | = 3/2, CM,Γ = −1.

One can define a topological invariant

(−1)ν = CMCΓ, (8)

such that ν = 1 represents the configuration of two
Wannier orbitals centered at the Wyckoff position r =

(1/2, 1/2) and ν = 0 corresponds to the trivial case when
the Wannier centers are at r = (0, 0) [42] (details in Ap-
pendix. A). Under open boundary conditions, the non-
trivial case ν = 1 is sketched in Fig. 1 and exhibits a
filling anomaly, i.e., it is impossible for the system to
maintain both charge neutrality and C4 rotation symme-
try due to the fact that Wannier centers are shifted from
the atomic positions, leading to an obstructed atomic
limit [93]. It is separated by a gap closing point to its
trivial phase where Wannier centers coincide with ionic
sites. The 2D subsystem is in a second-order topologi-
cal insulating phase [34–38, 81]. Even though we have
only depicted a “square cut” geometry, it can be read-
ily verified that the filling anomaly exists for any finite
geometry that preserves the C4 symmetry, including a
“diamond cut” along the diagonal direction.

From Eq. (6), for −2 < M0 − cos kz < 2, which is
precisely the range of kz between the two Dirac points,
the filled bands carries |J | = 3/2 at Γ and |J | = 1/2
at M . Therefore for this range of kz, we have ν = 1,
exhibiting a filling anomaly.

Note that the second-order topological invariant ν de-
fined here is equivalent with νJ defined in Eq. (4), and
the topological charge ∆ν of the Dirac point can be in-
terpreted as a relative Z2 invariant of two k-space layers
sandwiching the Dirac point.

B. HOFAs

Corresponding to a nontrivial ν = 1, one can show
that the system in a rod geometry hosts gapless HOFAs
on the vertical hinges, provided that the side surfaces
are gapped [72]. We note that this necessarily excludes
the kz = 0 slice of the side surfaces due to a mirror
Chern number [73]. However, surface states with mo-
menta kz 6= 0,±k0 can all be gapped out without break-
ing the symmetries. Our findings are consistent with
those obtained in Ref. [79–81], and we present our full
analysis here for completeness.

Indeed, this can be seen from splitting Eq. (6) in two
parts

H2D ≡H0 + λ′1(cos ky − cos kx)σxsx
+ λ′2 sin kx sin kyσxsy, (9)

where

H0 =[M ′0 − (cos kx + cos ky)]σzs0

+ sin kxσxsz − sin kyσys0. (10)

It can be readily verified that H0 hosts helical surface
states. On the yz surfaces they satisfy

σysz|Ψ〉 = ±|Ψ〉. (11)

For small ky, the Hilbert space of the surface Hamiltonian
is spanned by |σy = 1〉 ⊗ |sz = 1〉 and |σy = −1〉 ⊗ |sz =
−1〉, giving rise to

Hyz
0 ' kysz. (12)
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The surface dispersion Hxz
0 on the xz surface can be sim-

ilarly obtained. It then follows that λ′1 term in (9) gets
projected onto the surface and becomes λ′1〈k2

x〉sy, which
gaps out the surface Hamiltonian [77, 78, 94]. To see
how hinge modes emerge, it is helpful to set λ′2 = 0, and
consider a smooth hinge where xz and yz surfaces are
smoothly connected. On this smooth manifold, due to
the cos ky − cos kx dependence, λ′1 term necessarily van-
ishes in the diagonal direction, indicating a mass domain
wall of the helical fermion in Eq. (12), therefore leading
to a localized zero mode at the hinge. The λ′2 term has a
nonzero projection at the corner, i.e., the diagonal direc-
tion, and shifts the energy of the hinge mode. Nonethe-
less, due to the C4 symmetry, such an energy shift is the
same for all four corners, and thus the hinge modes are
degenerate.

The same argument can be applied to obtain hinge
states in a “diamond cut”, in which the relevant surfaces
are (x + y), z and (x − y), z. Without λ′1,2 terms, the
gapless edge states are given by. e.g.,

H
(x−y)z
0 ' (kx − ky) (σxsz + σys0) (13)

and

σx + σysz√
2

|Ψ〉 = ±|Ψ〉. (14)

The λ′2 term gaps out the surface states such that when
viewed as a smooth edge, the gap changes sign from the
(x − y), z surface to the (x + y), z surface, leading to a
zero mode. Further, the λ′1 term displaces the bound
state energies while maintaining their degeneracy for all
corners.

In Fig. 2 we show numerical results confirming the ex-
istence of higher-order corner states in a 2D square cut
subsystem. We schematically plot the HOFAs in the rod
Hamiltonian H0(x, y, kz) in Fig. 3.

III. B1u AND B2u PAIRING IN DIRAC
SEMIMETALS

With a nonzero chemical potential, there exists two
closed Fermi surfaces near the two Dirac points. In this
section we focus on the odd-parity pairing states belong-
ing to B1u and B2u irreducible representations. They are
described by the following equal-spin pairing terms:

B1u : ∆1ψ
†(k)(σys0)ψ†(−k),

B2u : ∆2ψ
†(k)(σysz)ψ†(−k), (15)

and we list their transformation properties under point-
group symmetries of D4h in Table II. Note that, due to
the particle-particle nature, the pairing order transforms
under symmetry operations as, e.g.,

∆1σys0 → ∆1Mxσys0MT
x = −∆1σys0. (16)

k
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FIG. 2. (a)Energy spectrum of the rod Hamiltonian
H0(x, y, kz) as a function of kz for N = 20. A momentum-
dependent term −0.3 (cos kx + cos ky)σ0s0 is added in the nu-
merics to lift the “accidental” particle-hole symmetry. Hinge
states are marked Green. (b)Wavefunction distributions of
the mid-gap states on a 2D slice in (a) at kz = π/4. Parame-
ters are M0 = 2 and txy = tz = η = λ1 = λ2 = 1. The corner
states are visible.

These pairing channels are favored by certain elec-
tronic interactions, for example, ferromagnetic spin fluc-
tuations. In fact, we show below that in the presence of
short-ranged Ising ferromagnetic fluctuations, the lead-
ing pairing instabilities are in these two channels. We
will then analyze the topological properties of these two
pairing states.

A. B1u vs B2u instabilities

Let us consider an electronic interaction that is attrac-
tive in both B1u and B2u channels. For concreteness,
we focus on interactions mediated by short-ranged Ising
ferromagnetic fluctuations, given by in second-quantized
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Representative pairing order Irrep C4 = isze
iπ4 σzsz I = σz Mx = isx My = iσzsy Mz = isz

∆1σy B1u − − − − −
∆2σysz B2u − − + + −

TABLE II. Transformation properties of ∆1 and ∆2, which forms B1u and B2u irreps of D4h.

FIG. 3. The C4 symmetric Dirac semimetal phase in a rod
geometry. Two blue dots denote the bulk Dirac points and the
cyan plane corresponds to a nontrivial mirror Chern number
at kz = 0. HOFAs (Green) cross kz = 0 and terminate at the
projections of bulk Dirac nodes onto four vertical hinges.

form

Hfm = V

∫
dr
[
ψ†(r)(σ0sz)ψ(r)

]2
, (17)

where V < 0 is the strength of the ferromagnetic fluc-
tuation. It is well-known that ferromagnetic spin fluc-
tuations suppress spin-singlet s-wave (A1g) pairing and
promote odd-parity pairing [28, 95, 96]. It turns out the
leading instabilities with this interaction are in the B1u
and B2u channels that are equal-spin, orbital-singlet, and
constant in k. The linearized gap equations are given by

∆1σy = −T
∑
k

V szG(k) (∆1σy)GT(−k)sz, (18)

∆2σysz = −T
∑
k

V szG(k) (∆2σysz)GT(−k)sz, (19)

where k ≡ (iωm,k), G(k) = [iωm − H0(k) + µ]−1 is
the (matrix) fermionic Green’s function and ωm is the
fermionic Matsubara frequency. It can be straightfor-
wardly verified that ∆1σy and ∆2σysz are indeed eigen-
vectors of the kernel.

After multiplying both sides respectively by σy and

σysz and taking the trace, we have

−1/V = Tc1
∑
k

Tr
[
σyG(k)σyGT(−k)

]
≡
∑
FS±

F1(k)
tanh ε(k)−µ

2Tc1

ε(k)− µ , (20)

−1/V = Tc2
∑
k

Tr
[
σyszG(k)σyszGT(−k)

]
≡
∑
FS±

F2(k)
tanh ε(k)−µ

2Tc2

ε(k)− µ , (21)

where ε(k) is the dispersion of H0(k) and we have as-
sumed µ > 0. Note that the momentum summation
FS± indicates that only electrons near two Fermi sur-
faces surrounding (0, 0,±k0) form Cooper pairs. Beyond
the specific interaction we consider, we note that Eq. (20)
and (21) hold for any short-ranged interaction attractive
in these channels. For example, these pairing channels
can also be induced by an inter-orbital attractive inter-
actions which dominate over intra-orbital ones [73, 86].

The derivations of form factors F1,2(k) are given in
Appendix B, where we find that

F1(k) '
k2
x + k2

y + λ2
1

(
k2
x−k

2
y

2

)2
sin2 k0

µ2 , (22)

F2(k) '
k2
x + k2

y + λ2
2k

2
xk

2
y sin2 k0

µ2 . (23)

Here in F1,2(k) we have set ε(k) = µ and hence the
' sign. For approximately spherical Fermi surfaces, we
find that

∑
k F1(k) >

∑
k F2(k), i.e., Tc1 > Tc2 when

|λ1| > |λ2|, thus favoring ∆1 as the pairing state, and
vice versa. This conclusion holds for small Fermi sur-
faces that can be sufficiently approximated by a k · p
Hamiltonian. For larger Fermi surfaces a more detailed
analysis of the realistic band structure is needed.

We note that F1,2(k) vanishes at kx = ky = 0, which
are the polar points on the two disjoint Fermi surfaces.
These k points thus do not participate in pairing. In
fact, as we shall see, there exist gapless nodal points at
the poles of the Fermi surfaces.
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(a) HBdG(Γ)

(b) HBdG(M)

FIG. 4. Energy spectrum of (a) H0(0, 0, kz) and (b)
H0(π, π, kz) with M0 = 2 and µ = ∆1 = 0.4. All bands are
two-fold degenerate due to the product of time reversal and
inversion symmetry (T̄ Ĩ)2 = −1. Purple bands correspond to
|J | = 3/2 while blues bands correspond to |J | = 1/2. Dashed
lines denote BdG shadow bands. In (a), there are four BdG
Dirac points (marked by red dots) at kz = ±k1 and kz = ±k2,
between which the 2D slice Hamiltonian represents a nontriv-
ial higher-order topological superconducting phase.

B. Higher-order topology and HOMAs

The corresponding Bogoliubov de Gennes (BdG)
Hamiltonian for the B1u(B2u) pairing state is

HBdG(k) =(M0 − cos kx − cos ky − cos kz)σzτz
+ sin kxσxsz − sin kyσyτz − µτz
+ λ1 sin kz(cos ky − cos kx)σxsx
+ λ2 sin kz sin kx sin kyσxsyτz
+ ∆1σyτy (+∆2σyszτx) , (24)

where τx/y/z are Pauli matrices in the Nambu space. The
symmetry operators are elevated to the BdG level as

Ĩ = σzτz, T̃ = isyK, C̃4 = isze
i(π/4)σzszτz . (25)

Mirror symmetry operators are different for B1u and B2u
order, such that

for B1u, M̃x = isx, M̃y = iσzsyτz,

for B2u, M̃x = isxτz, M̃y = iσzsy. (26)

Since ∆1 and ∆2 in general do not coexist from our ener-
getic analysis, all point group symmetries are preserved.
In addition, a particle-hole symmetry P̃ = τxK is present,
such that P̃HBdG(k)P̃−1 = −HBdG(−k).

Before we analyze the higher-order topology, it can be
directly checked that Eq. (24) has a mirror Chern number
CM = 2 at kz = 0. Compared with the normal states,
the doubling in CM comes from the Nambu space. This
corresponds to protected gapless surface states at kz =
0. For all other kz values the 2D subsystem does not
have nontrivial first-order topology, but may still possess
nontrivial second-order topology.

By directly diagonalizing the Hamiltonian, we see that
∆1 and ∆2 pairing terms both create nodal points on the
North pole and South pole of the spherical Fermi surface
in the bulk BdG spectra. For the B1u order parameter
∆1, we write down HBdG(k) in Eq. (24) along (0, 0, kz)

HBdG,Γ(kz) = −µτz − cos kzσzτz + ∆1σyτy, (27)

where we set M0 = 2 without loss of generality. The
corresponding energy dispersion is

E = ± cos kz ±
√
µ2 + ∆2

1, (28)

which we plot in Fig. 4(a). We see that there exist
four four-fold degenerate crossing points at zero energy
— these are the Dirac points in the BdG spectrum (here-
after referred to as “BdG Dirac points”) pinned to zero
energy by particle-hole symmetry. Their locations are at
(0, 0, kz) with

kz = ±k1 = ± arccos
(√

µ2 + ∆2
1

)
, and

kz = ±k2 ≡ ±(π − k1). (29)

In the weak-pairing limit, ∆ � µ, and the BdG Dirac
points are located at the north and south poles of the
two Fermi surfaces.

Using B1u order parameter as an example, (the anal-
ysis for the B2u order parameter ∆2 is exactly the same
until Sec. III D), the 2D subsystem of HBdG(k) for a kz
slice is given by

HBdG, 2D(kx, ky) =(M ′0 − cos kx − cos ky)σzτz
+ sin kxσxsz − sin kyσyτz
+ λ′1(cos ky − cos kx)σxsx
+ λ′2 sin kx sin kyσxsyτz
+ ∆1σyτy − µτz. (30)
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HBdG(kx, ky) satisfies the 2D version of time reversal ,
particle-hole, chiral symmetries and a BdG version of
C̃4 = diag{C4,−C∗4}. The system above can be regarded
as an insulator before taking the particle-hole symmetry
into account, and we can deduce a similar topological in-
variant following the HOFAs case. The difference is that
the corner states in this Hamiltonian are pinned at zero
energy due to the particle-hole symmetry, hence they are
Majorana zero modes. Eq. (30) then describes a second-
order topological superconducting phase in 2D.

In Fig. 4, we label the angular momenta of each BdG
band. We see that for |kz| > k2 and for |kz| < k1, the
four negative-energy bands of the 2D subsystem in Eq.
(30) carry the same C4 eigenvalues both at Γ and M .
For k1 < kz < k2 and −k2 < kz < −k1, there are two
negative-energy bands with |J | = 1/2 (i.e., C4 = e±i

π
4 )

and the other two negative-energy bands with |J | = 3/2
(i.e., C4 = e±i

3π
4 ) in HBdG(Γ) — this is simply derived

from the normal state band structure. On the other
hand, both pairs of negative-energy bands at M point
have |J | = 1/2 (see Fig. 4(b)).

Formally, the same Z2 topological invariant for the 2D
subsystem can be constructed as a characterization of the
second-order topological superconducting phase. With
four negative-energy BdG bands, the topological invari-
ant ν is given by

(−1)ν =
∏
i

CΓ,iCM,i (31)

where CΓ,i is defined the same way as in (8) and i runs
over two sets of two-fold degenerate BdG bands. It is now
straightforward to see that ν = 1 for −k2 < kz < −k1
and k1 < kz < k2, while ν = 0 otherwise. Mapping
to real space, the nontrivial 2D system corresponds to
the configuration sketched in Fig. 5, where two Wannier
orbitals are centered at r = (1/2, 1/2) and two Wannier
centers are at r = (0, 0), displaying a filling anomaly. The
two kz slices sandwiching each of the four BdG Dirac
points at (0, 0,±k1) and (0, 0,±k2) differ by ∆ν = 1,
which can be viewed as the Z2 monopole charge of the
BdG Dirac points.

To highlight the role of the pairing order in determining
the topology, it is helpful to go to the weak-pairing limit
∆ � µ, i.e., when the pairing order does not change
the band structure away from the Fermi surfaces. Note
that at M , one of the negative-energy band with J =
±1/2 is the same as the normal state, while the other
is the BdG shadow of the unfilled band with J = ±3/2.
Importantly, the B1u/B2u pairing order parameter carry
an angular momentum ∆J = 2, which causes the shadow
band to take a different angular momentum from the
original band, which is

J =
(
∓3

2 + 2
)

mod 4 = ±1
2 . (32)

The above result comes from the nontrivial anti-
commutation relation between the 2D particle-hole sym-

FIG. 5. Wannier representations for the nontrivial phase in
2D subsystem of the BdG Hamiltonian in Eq. (30). Two
Wannier orbitals are centered at r = (0, 0) and the other two
at r = ( 1

2 ,
1
2 ). Each corner acquires a charge ± 1

2e due to the
filling anomaly, indicating Majorana zero modes.

metry and C̃4 symmetry{
PMz, C̃4

}
= 0. (33)

For an arbitrary band ψ1 carrying angular momenta J1
at a C̃4-invariant point that satisfies C̃4ψ1 = ei

π
2 J1ψ1,

its BdG shadow band (PMzψ1) carrys angular mo-
menta (2 − J1) mod 4 according to C̃4 (PMzψ1) =
−PMze

iπ2 J1ψ1 = ei
π
2 (2−J1) (PMzψ1), which agrees with

Eq. (32).
As at Γ point all the negative-energy states have

J = ±1/2,±3/2, there is a mismatch between Γ and M
points, which leads to one pair of Wannier states centered
at r = (1/2, 1/2) in Fig. 5. Here we see that the nontrivial
pairing symmetry B1u/B2u plays an important role, just
as much as the normal state band structure. Had the
pairing order transformed trivially under C4, the BdG
shadow band would carry instead J = ±3/2, leading to
an on-site Wannier center at r = (0, 0) and no filling
anomaly.

By the same token as in the normal state in a rod ge-
ometry, due to the filling anomaly, as long as the side
surfaces are gapped (see further discussion on this in
Sec. III D), there should be HOMAs in the rod Hamil-
tonian HBdG(x, y, kz) in these kz regions. However, here
due to an effective 2D particle-hole symmetry P̃ ′ ≡ P̃Mz

of the BdG Hamiltonian, the HOMAs are pinned exactly
at zero energy.

We numerically solve the BdG Hamiltonian Eq. (24)
and the results that visualize the corner Majorana modes
are shown in Fig. 6. At kz = 0, the gapless surface modes
are due to the mirror Chern number, as we mentioned
(see Fig. 6(a)). The 3D rod Hamiltonian HBdG(x, y, kz)
displays hinge HOMAs that terminate at the projections
of bulk BdG Dirac points, together with surface Majo-
rana helical states at the nontrivial mirror plane kz = 0.
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FIG. 6. (a)Energy spectrum of the BdG rod Hamilto-
nian HBdG(x, y, kz) as a function of kz for N = 20. Red
lines represent the mid-gap Majorana zero modes on hinges.
(b)Wavefunction distributions of the Majorana corner states
on a 2D slice in (a) at kz = 2π/3. Parameters are M0 = 1.5,
txy = tz = η = λ1 = 1, λ2 = 0 and µ = ∆1 = 0.4.

Generally the HOMAs in this C4 symmetric Dirac super-
conductor are disconnected (see Fig. 7).

As a comparison, a higher-order topological Dirac su-
perconductor phase protected by C6 rotation and inver-
sion symmetry is introduced in Ref. [90], which hosts
3D bulk Dirac nodes, 2D gapped surface states and 1D
HOMAs simultaneously in the BdG spectrum. The au-
thors also propose an inversion symmetry indicator κ2d
at kz = 0 to characterize the 1D HOMAs. However,
this symmetry indicator as a justification of HOMAs does
not apply to our case because HOMAs do not cross the
kz = 0 plane in general. The Z2 higher-order topological
invariant on a kz slice Hamiltonian defined in Eq. (31)
is sufficient to diagnose the HOMAs, as long as the sur-
face is gapped. Our C4 symmetric Dirac superconductor
instead displays a hybrid higher-order topology [97].

FIG. 7. A schematic plot of the C4 symmetric Dirac supercon-
ductor phase with hybrid higher-order topology. Two brown
spheres represent a pair of disjointed FSs and four blue dots
denote the bulk BdG Dirac points on the North poles and
South poles of two FSs. Red lines denote HOMAs which sink
into the bulk at hinge projections of the four Dirac points.
The cyan plane at kz = 0 carries a nontrivial mirror Chern
number, ensuring surface Majorana zero modes.

C. Irremovability of HOMAs due to additional
Z-valued monopole charges

In Sec. III B we have identified a nontrivial Z2
monopole charge hosted by each of the four BdG Dirac
points. If that were the only the monopole charge hosted
by a BdG Dirac point, then any of the two Dirac points
could annihilate each other. In particular, if the BdG
Dirac points at (0, 0, k1) and (0, 0, k2) annihilated, the
HOMA terminating at kz = k1 and kz = k2 would disap-
pear. Since for small Fermi surfaces (small µ) k1 and k2
are close, this naturally raises the question whether the
BdG Dirac points and HOMAs are stable beyond small
perturbations.

Fortunately, the BdG Dirac points are stabilized by
an additional monopole charge ∈ Z protected by the C4
symmetry. To this end, we note that for each kz layer

λ(kz) = NJ=1/2(0, 0, kz) ∈ Z, (34)

i.e., the occupation number of the band with J = 1/2 at
Γ point, is a topological invariant which cannot change
without a gap closing. From Fig. 4(a) it is straightfor-
ward to read off that for λ = 0 for |kz| < k1, λ = 1 for
k1 < |kz| < k2, and λ = 2 for |kz| > k2.

We can thus similarly assign a monopole charge ∆λ =
1 for the BdG Dirac points at kz = k1,2, and ∆λ = −1
for kz = −k1,2 to the BdG Dirac points. Importantly,
we see that the BdG Dirac points originating from the
same normal state Dirac point, e.g., with kz = k1 and k2,
cannot annihilate, since they carry a total Z monopole
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charge ∆λ = 2 [98]. Just like the Z2 = 1 monopole
charge ∆ν we showed in Sec. III B, the origin of ∆λ = 2
can be traced back to the nonzero angular momentum
carried by the B1u and B2u pairing order.

Thus we conclude that the BdG Dirac points are stable
due to the additional Z monopole charge protected by C4
symmetry. As a result, the HOMA connecting the BdG
Dirac points is a stable spectral feature that cannot be
removed by perturbations. Indeed, in the BdG Hamilto-
nian Eq. (24), as µ → 0 the two BdG Dirac points with
the same sign of kz coincide, but as µ changes sign the
two BdG Dirac points simply cross each other without
annihilating each other.

In spirit, our argument here is similar to the doubly-
charged topological nodes studied in Ref. [22] with
inversion symmetry only, where an additional topo-
logical monopole charge protects the nodal structure
from annihilating itself. Our argument goes beyond the
classification there, since the C4 rotation symmetry plays
an important role in defining the additional monopole
charge and protecting the HOMAs.

D. Mirror-protected gapless surface states and
HOMAs

While the higher-order topology and BdG Dirac points
are protected by C4 and T I symmetries alone, the system
has many additional spatial symmetries, such as mirror
symmetries. As the existence of HOMAs requires the sur-
face states to be gapped, the surfaces need to avoid the
orientations in which there are mirror-protected gapless
surface states. In this subsection, we show that B1u state
exhibits robust gapless states on the side surfaces in the
(x± y), z (diagonal) direction, and similarly for the B2u
state on surfaces in the xz and yz direction. Therefore,
B1u and B2u states exhibit HOMAs in different geometri-
cal configurations. Moreover, we show that the HOMAs
obtained previously have a close relationship to these sur-
face states from the perspective of mirror symmetries.

Let us first focus on the B2u state. For definiteness,
we consider a 2D subsystem with kz = k0, a plane that
contains the normal-state Dirac point and is topologically
nontrivial. Without loss of generality, we set µ = 0, and
from Eq. (24), the BdG Hamiltonian can be written as

HBdG,2D(kx, ky) =(2− cos kx − cos ky)σzτz + ∆2σyszτx

+ sin kxσxsz − sin kyσyτz
+ λ′1(cos ky − cos kx)σxsx
+ λ′2 sin kx sin kyσxsy, (35)

where M ′0 = 2 at kz = k0. We consider the edge of the
system along x and y direction. For the x-edge, ky is
a good quantum number and we set ky = 0. The 1D

Hamiltonian is

H1D(kx) =(1− cos kx)σzτz + ∆2σyszτx

+ sin kxσxsz + λ′1(1− cos kx)σxsx, (36)

which is symmetric under several composite symmetries,
including an effective time-reversal symmetry

T̃ ′ = T̃ M̃xM̃yĨ = sxK (37)

and an effective particle-hole symmetry

P̃ ′ = P̃M̃xĨ = σzsxτxK (38)

satisfying T̃ ′2 = +1 and P̃ ′2 = +1. The two symme-
tries together place the 1D subsystem H1D(kx) in class
BDI [66, 99–103], which admits a Z classification given
by a winding number. Via a direct computation (see Ap-
pendix C), we find that the winding number is w = 2,
corresponding to two Majorana zero modes. Extended
to finite ky, this indicates that the x-edge hosts helical
Majorna states. Therefore, the yz and xz (related to yz
by a C4 rotation) surfaces for the B2u state are gapless.

Similar considerations show that the B1u state also
hosts gapless surfaces. While B1u and B2u order pa-
rameters transform differently under mirror reflection, it
can be directly verified that the (x ± y), z surfaces are
gapless, protected by the diagonal reflection symmetries
M̃x±y ≡ M̃x,yC4.

As the existence of HOMAs requires gapped surfaces,
we conclude that theB1u state hosts HOMAs in a “square
cut” (with xz and yz surfaces), and the B2u state hosts
HOMAs in a “diamond cut” (with (x ± y), z surfaces).
This is the central result of this work, illustrated in Ta-
ble I.

We note that the existence of HOMAs can be analyti-
cally understood from the gapless surfaces as well, using
an argument similar to that in Sec. II B. Namely, one can
view the hinge as a curved surface in the extreme limit.
For the B2u state, as the surface curls away from the yz
direction, the surface helical states acquire a mass, and
by continuity the induced mass should change sign as the
curved surfaces turn from (x+y), z direction to (x−y), z
direction. Therefore at the mass domain wall there exists
a Majorana zero mode, which is localized at the hinge.

E. Symmetry breaking effects

Like those in the normal state, the BdG Dirac points
and the HOMAs are stabilized by T I and C4 symmetries.
The mirror symmetries we discussed in Sec. III D can be
broken by adding a small sin kx sin ky sin kz component
to the λ1 term, or by mixing B1u and B2u states, and
gapless surface modes will be removed. Nevertheless, the
BdG Dirac points and the HOMAs remain robust due to
the remaining C4 symmetry.

In a system with an additional inversion breaking term
such as sin kzsz, or an additional time-reversal break-
ing Zeeman term [87] such as mszτz, the BdG Dirac
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Representative pairing order Irrep C4 = isze
iπ4 σzsz I = σz Mx = isx My = iσzsy Mz = isz

∆1σy B1u − − − − −
∆2σysz B2u − − + + −

∆3kzsx,∆4kzσzsx A1u + − − − −
∆5kxkyσy,∆6(k2

x − k2
y)σysz A2u + − + + −

∆7(σysx, σxsy),∆8kz(σz, sz) Eu 0 − 0 0 +
∆9kzσxsz B1g − + + + +
∆10kzσx B2g − + − − +

∆11sy,∆12σzsy A1g + + + + +
∆13kz(k2

x − k2
y)σx,∆14kzkxkyσxsz A2g + + − − +

∆15kz(σxsx, σysy) Eg 0 + 0 0 −

TABLE III. List of representative pairing orders (to the lowest order in k) for all irreducible representations of D4h, and their
corresponding characters. Entries with 0 correspond to 2D representations with opposite eigenvalues.

points spilt into two Weyl points with opposite chiral-
ities along the z axis. Surface Majorana arcs appear in
kz regions between Weyl points with opposite chiralities
because the corresponding 2D subsystem carries a non-
trivial Chern number and it is not Wannier representable.
Since HOMAs are locally protected by a 2D version of
particle-hole symmetry PMz, the hinge modes are stable
under time reversal breaking perturbations. Therefore,
the T breaking phase is a higher-order Weyl supercon-
ductor defined in Ref. [90], in which HOMAs and surface
Majorana arcs coexist. On the other hand, an inversion
breaking term breaks Mz, and correspondingly destroys
HOMAs.

Moreover, C4 symmetry can be broken down to C2, e.g.,
by mixing a A1u pairing term sin kzsxτx with B1u, which
gaps out the bulk BdG Dirac points. The 2D slice Hamil-
tonian thus becomes a boundary obstructed topological
superconductor [42], in which corner Majorana modes
still exist and are protected by the surface gap instead
of the bulk gap. In this case the bulk is fully gapped
and the HOMA terminates at a surface gap closing point
instead.

IV. TOPOLOGICAL PROPERTIES OF OTHER
PAIRING STATES

So far we have focused on the B1u and B2u pairing
channels in a Dirac semimetal. Remarkably, we have
shown the topological properties are largely determined
by their symmetry properties, in particular the transfor-
mation of the pairing order under the C4 rotations. In
this section we briefly discuss the topological properties
of the system in other pairing channels.

In Table III we list all irreducible representations of the
point group D4h and their representative order parame-
ters to the lowest orders in k. However, as is the case
for B1u and B2u, the analysis of their topological prop-
erties does not depend on the detailed k-dependence of
the order parameters but rather only on their symmetry
properties, unless there are accidental nodes.

(a) (b)

FIG. 8. Schematic plots of bulk nodal cages(marked blue) in
the 3D BZ for (a)B1g and (b)B2g channels, both C4 symmet-
ric. Brown spheres denote Fermi surfaces.

We note that B1g and B2g orders transforms under
C4 the same way as B1u and B2u, but are of even par-
ity. Direct diagonalization of the corresponding BdG
Hamiltonians shows that the system exhibits C4 symmet-
ric cages of nodal lines [25] in both pairing states between
k1 < |kz| < k2, shown in Fig. 8. These nodal lines are
four-fold degenerate, and are protected by a 2Z topolog-
ical invariant in the AZ+I classification table [22]. The
gaplessness of the 2D subsystem for k1 < |kz| < k2 ren-
ders the higher-order topological invariant ν, and conse-
quently the HOMAs, ill-defined. However, the monopole
charge ∆λ = λ(k > k2)−λ(k < k1), is still valid. As λ in
Eq. (34) is solely determined by C4 operations, which is
identical for B1g/B2g and for B1u/B2u, we conclude, by
a similar analysis to that in Secs. III B and III C, that the
nodal cage also carries a monopole charge of ∆λ = 2. For
this reason, the nodal cages are stable and cannot self-
annihilate. Indeed, as µ goes through zero, the nodal
cages shrink to a point but then reemerges. In this case
they are protected by a doubly charged monopole beyond
the classification in Ref. [22].
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The entries (Eu and Eg) with characters 0 indicates
these irreps are two-dimensional. Indeed they have an-
gular momenta ±1, each of which breaks time-reversal
symmetry. In these cases the system either breaks time-
reversal or C4 symmetry, but cannot preserve both. Yet,
they may still exhibit interesting topological properties.
However, we will restrict ourselves to time-reversal and
C4 invariant system in this work and leave a detailed anal-
ysis of the Eu and Eg states to a future study.

All other pairing channels transform trivially under C4
rotation, and it is straightforward to show that they do
not carry any nontrivial Z2 or Z monopole charges in rela-
tion to HOMAs studied here. A recent study [104] inves-
tigated a A1g pairing channel with a special form factor
in doped Dirac semimetals. The authors found a second-
order topological superconducting phase with helical Ma-
jorana modes on the top and bottom hinges. However,
this nontrivial phase requires a fine tuning of model pa-
rameters. The conclusion that a Dirac semimetal is topo-
logically obstructed only for certain pairing channels was
also obtained in Ref. [88]. However, the symmetries in
consideration are different from those in our case.

Finally, while we demonstrated from a microscopic cal-
culation that B1u and B2u pairing orders are naturally
induced by Ising-ferromagnetic fluctuations, an interest-
ing open problem is what microscopic interactions pro-
mote other nontrivial pairing channels, such as B1g and
B2g.

V. SUMMARY

In this work, we analyzed the higher-order topology in
superconducting Dirac semimetals protected by fourfold
rotation, spatial inversion and time reversal symmetries.
In the normal state, the Dirac semimetal is known [79–
81] to exhibit HOFAs. We showed that in certain pairing
channels the normal state topology gets inherited in the
superconducting state.

First, we showed that in the presence of an Ising-
ferromagnetic fluctuations, the leading pairing instabil-
ity of the system is toward B1u or B2u pairing orders.
These pairing states display Dirac nodal points in the
BdG spectrum. In a rod geometry, they display HOMA
states at the hinges that terminate at the projections of
bulk BdG Dirac points onto the hinges. While HOFAs
are generally dispersive in the energy spectrum, HOMAs
are pinned at zero energy due to the particle-hole symme-
try. Importantly, the BdG Dirac points and the HOMAs
are protected by an additional Z valued monopole charge
defined via the C4 symmetry.

Moreover, the recipe for diagnosis of higher-order
topology and monopole charge here can be directly ap-
plied to all other pairing orders, which are irreps of the
D4h group. In particular, we found that B1g or B2g dis-
plays nodal cages with a monopole charge, each of which
is stable under C4 symmetric perturbations.

In this work we showed that Dirac semimetals are

+1+1

+1 +1

(a) Γ

+1-1

+1 -1

(b) M

FIG. 9. The relative phases (marked red) of spatial parts
of Wannier functions centered at Wyckoff positions r =
(± 1

2 ,±
1
2 ) at (a)Γ and (b)M . The blue square is a unit cell

and we assume no edges.

promising “parent states” for higher-order topological su-
perconducting states. Since HOFAs have been experi-
mentally confirmed in the Dirac semimetal Cd3As2 [105,
106], it would be interesting to search for nontrivial pair-
ing states in these systems.
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Appendix A: Wyckoff positions from C4 eigenvalues
at Γ and M

In this Appendix, we briefly explain how to get Fig. 1
from C4 eigenvalues at high symmetry points Γ and M
in BZ. For Wannier functions centered at the Wyckoff
position r = ( 1

2 ,
1
2 ), we plot the relative phases of spatial
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parts of Wannier functions at four C4 related corners of
the unit cell in Fig. 9, for Γ and M separately. Under C4
rotation, the spatial part of the Wannier function at M
acquires a minus sign compared with Γ.

From Eq. (6), we obtain that the nontrivial phase
(ν = 1 defined in Eq. (8)) corresponds to C4 = e±i

π
4

for the two occupied bands at Γ and C4 = e∓i
3π
4 for the

two occupied bands at M . With a relative minus sign
for C4 eigenvalues at Γ and M , the real space picture
matches the configuration plotted in Fig. 9. Note that
the exact eigenvalue of C4 comes from both the spatial
part and the intrinsic part (e.g., orbital or spin indices)
of the Wannier function and the latter is not important
when determining the Wannier centers.

On the other hand, the trivial phase (ν = 0) corre-
sponds to the same C4 eigenvalues at Γ and M so that the
Wannier functions are centered at ionic sites r = (0, 0)
which is an atomic limit without filling anomaly.

Appendix B: Derivations of form factors F1,2(k)

We simplify the form of the normal state Hamiltonian
H0(k) in Eq. (1) as

H0(k) =f1(k)σz + f2(k)σxsz + f3(k)σy
+ f4(k)σxsx + f5(k)σxsy. (B1)

The Green’s function for finite µ is given by

G0(iωm,k) = [iωm −H0(k) + µ]−1

= (iωm + µ)σ0s0 +H0(k)
(iωm + µ)2 − ε2

, (B2)

where ωm = (2m+ 1)πT is the fermionic Matsubara fre-
quency and ε =

∑5
i=1
√
f2
i (k) is the dispersion. The

trace in Eq. (20) can be explicitly evaluated as (e.g., for
∆1)

Tr
[
σyG0(iωm,k)σyGT

0 (−iωm,−k)
]

=Tr {[(iωm + µ)σ0s0 + σyH0(k)σy]
× [(−iωm + µ)σ0s0 +HT

0 (−k)]
}

× 1
[(iωm + µ)2 − ε2][(−iωm + µ)2 − ε2]

=
Tr
{

(ω2
m + µ2)σ0s0 + σyH0(k)σyHT

0 (−k)
}

[ω2
m + (ε+ µ)2][ω2

m + (ε− µ)2]

=4[ω2
m + µ2 − ε2 + 2(f2

2 (k) + f2
3 (k) + f2

4 (k))]
[ω2
m + (ε+ µ)2][ω2

m + (ε− µ)2]

'2[f2
2 (k) + f2

3 (k) + f2
4 (k)]

µ2[ω2
m + (ε− µ)2] , (B3)

where we take ε ' µ in the last step. The sum over
Matsubara frequencies yields

Tc1
∑
ωm

2[f2
2 (k) + f2

3 (k) + f2
4 (k)]

µ2[ω2
m + (ε− µ)2]

=f2
2 (k) + f2

3 (k) + f2
4 (k)

µ2

tanh ε−µ
2Tc1

ε− µ
. (B4)

There are two nearly spherical Fermi pockets surround-
ing the Dirac points at (0, 0,±k0). By expanding f2(k),
f3(k) and f4(k) in lowest order of momentum, we obtain
the corresponding F1(k) in the main text. F2(k) can be
derived similarly.

Appendix C: Topological invariant of the 1D
Hamiltonian H1D(kx)

We follow Ref. [99] to derive the topological invariant
of the Hamiltonian in Eq. (36). Note that H1D(kx) has a
chiral symmetry defined as S̃ = T̃ ′P̃ ′ = σzτx, such that
S̃H1D(kx)S̃−1 = −H1D(kx). It can be made purely off-
diagonal by a unitary transformation in the particle-hole
space

H̃(kx) = UH1D(kx)U† =
[

A(kx)
A†(kx)

]
, (C1)

where U = e−i
π
4 τy and we obtain

A(kx) =(1− cos kx)s0νz + (sin kx + i∆2)szνx
+ λ′1(1− cos kx)sxνx, (C2)

where νx,y,z are Pauli matrices spanning the subspace
〈σzτz = 1|σiτj |σzτz = −1〉. The topological invariant in
BDI class is defined as the winding number of the phase
factor carried by detA(kx), which is

w = −i
π

∫ kx=π

kx=0

dz(kx)
z(kx) , (C3)

where z(kx) = eiθ(kx) = detA(kx)/|detA(kx)|. Note that

detA(kx) (C4)

=
[
(1 + λ′21 )(1− cos kx)2 + sin k2

x −∆2
2 + 2i∆2 sin kx

]2
and ∆2 � 1 in the weak pairing limit. Hence θ(kx)
shifts from kx = 0 to kx = π by 2π, which gives rise to a
winding number w = 2.
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M. Iraola, A. Bouhon, S. S. Tsirkin, M. G. Vergniory,
and T. Neupert, Fractional corner charges in spin-orbit
coupled crystals, Phys. Rev. Research 1, 033074 (2019).

[38] Z. Song, Z. Fang, and C. Fang, (d-2)-Dimensional Edge
States of Rotation Symmetry Protected Topological
States, Phys. Rev. Lett. 119, 246402 (2017).

[39] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents,
Impurity-bound states and Green’s function zeros as
local signatures of topology, Phys. Rev. B 92, 085126
(2015).

[40] A. Jahin, A. Tiwari, and Y. Wang, Higher-order topo-
logical superconductors from Weyl semimetals, SciPost
Phys. 12, 53 (2022).

[41] Y. Wang, M. Lin, and T. L. Hughes, Weak-pairing
higher order topological superconductors, Phys. Rev. B
98, 165144 (2018).

[42] A. Tiwari, A. Jahin, and Y. Wang, Chiral Dirac su-
perconductors: Second-order and boundary-obstructed
topology, Phys. Rev. Research 2, 043300 (2020).

[43] X. Zhu, Second-Order Topological Superconductors
with Mixed Pairing, Phys. Rev. Lett. 122, 236401
(2019).

[44] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and
P. W. Brouwer, Reflection-Symmetric Second-Order
Topological Insulators and Superconductors, Phys. Rev.
Lett. 119, 246401 (2017).

[45] E. Khalaf, Higher-order topological insulators and su-
perconductors protected by inversion symmetry, Phys.
Rev. B 97, 205136 (2018).

[46] M. Kheirkhah, Z. Yan, Y. Nagai, and F. Marsiglio,
First- and Second-Order Topological Superconductivity
and Temperature-Driven Topological Phase Transitions
in the Extended Hubbard Model with Spin-Orbit Cou-
pling, Phys. Rev. Lett. 125, 017001 (2020).

[47] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-
Temperature Majorana Corner States, Phys. Rev. Lett.
121, 186801 (2018).

[48] Z. Wu, Z. Yan, and W. Huang, Higher-order topological
superconductivity: Possible realization in Fermi gases
and Sr2RuO4, Phys. Rev. B 99, 020508 (2019).

[49] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Majo-
rana Kramers Pairs in Higher-Order Topological Insu-
lators, Phys. Rev. Lett. 121, 196801 (2018).

[50] T. Liu, J. J. He, and F. Nori, Majorana corner states
in a two-dimensional magnetic topological insulator on
a high-temperature superconductor, Phys. Rev. B 98,
245413 (2018).

[51] Y. Volpez, D. Loss, and J. Klinovaja, Second-Order
Topological Superconductivity in π-Junction Rashba
Layers, Phys. Rev. Lett. 122, 126402 (2019).

[52] R.-X. Zhang, W. S. Cole, and S. Das Sarma, Helical
Hinge Majorana Modes in Iron-Based Superconductors,
Phys. Rev. Lett. 122, 187001 (2019).

[53] Z. Yan, Higher-Order Topological Odd-Parity Super-
conductors, Phys. Rev. Lett. 123, 177001 (2019).

[54] X.-H. Pan, K.-J. Yang, L. Chen, G. Xu, C.-X. Liu, and
X. Liu, Lattice-Symmetry-Assisted Second-Order Topo-
logical Superconductors and Majorana Patterns, Phys.
Rev. Lett. 123, 156801 (2019).

[55] R.-X. Zhang, W. S. Cole, X. Wu, and S. Das Sarma,
Higher-Order Topology and Nodal Topological Super-
conductivity in Fe(Se,Te) Heterostructures, Phys. Rev.
Lett. 123, 167001 (2019).

[56] M. Kheirkhah, Y. Nagai, C. Chen, and F. Marsiglio,
Majorana corner flat bands in two-dimensional second-
order topological superconductors, Phys. Rev. B 101,
104502 (2020).

[57] Y.-T. Hsu, W. S. Cole, R.-X. Zhang, and J. D. Sau,
Inversion-Protected Higher-Order Topological Super-
conductivity in Monolayer WTe2, Phys. Rev. Lett. 125,
097001 (2020).

[58] B. Roy, Higher-order topological superconductors in P-,
T -odd quadrupolar Dirac materials, Phys. Rev. B 101,
220506 (2020).
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