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We discuss quantum dynamics in the transverse field Ising model in two spatial dimensions. We show that,
up to a prethermal timescale, which we quantify, the Hilbert space ‘shatters’ into dynamically disconnected
subsectors. We identify this shattering as originating from the interplay of a U(1) conservation law and a one-form
Z2 constraint. We show that the number of dynamically disconnected sectors is exponential in system volume,
and includes a subspace exponential in system volume within which the dynamics is exactly localized, even in the
absence of quenched disorder. Depending on the emergent sector in which we work, the shattering can be weak
(such that typical initial conditions thermalize with respect to their emergent symmetry sector), or strong (such
that typical initial conditions exhibit localized dynamics). We present analytical and numerical evidence that a
first order-like ‘freezing transition’ between weak and strong shattering occurs as a function of the symmetry
sector, in a non-standard thermodynamic limit. We further numerically show that on the ‘weak’ (melted) side of
the transition domain wall dynamics follows ordinary diffusion.

1. INTRODUCTION

Motivated by recent advances in experimental capability [1–
7], the far-from-equilibrium dynamics of quantum many-body
systems has emerged as one of the central problems for contem-
porary physics. A key question relates to whether an isolated
quantum system will thermalize under its own dynamics, and
continues to produce surprising answers. Starting from generic
initial conditions, an isolated system may robustly fail to reach
local equilibrium through the mechanism of “many-body local-
ization” (MBL) in the presence of sufficiently strong quenched
disorder [8–12]. The origin of this ergodicity breaking in
MBL systems is the existence of an extensive set of emergent,
local integrals of motion [13–15]. While the MBL phase is
predicated on the existence of quenched disorder, a number of
new avenues for avoiding thermalization in systems possessing
translational invariance have recently come to light. These
include quantum many-body “scarring” [16–20], where a small
number of area-law entangled, athermal states are embedded
in an otherwise thermalizing spectrum, disorder-free local-
ization [21–29], where local symmetries emulate the effects
of disorder in typical symmetry sectors, and Hilbert space
shattering [30, 31]. In models that exhibit Hilbert space shat-
tering, a finite list of additional constraints on the mobility of
excitations – typically arising in ‘fractonic’ systems [32–40]
– lead to an exponential number of dynamically disconnected
Krylov sectors [20, 30, 31, 41–47].
The typical size of these dynamically disconnected sec-

tors relative to their corresponding global symmetry sectors
gives rise to two distinct flavors of shattering: ‘weak’ and
‘strong’ [30, 31]. For weak shattering, a state selected at ran-
dom from a typical symmetry sector will, with probability
one, belong to the largest Krylov sector therein. Atypical,
area-law entangled states are therefore measure zero in the
thermodynamic limit, and the system will almost surely reach
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a local equilibrium state. In contrast, in systems exhibiting
strong shattering, the largest Krylov sector does not include
almost all of the corresponding global symmetry sector, and
the system can then exhibit localized dynamics from typical
low-entanglement initial conditions, failing to explore an ap-
preciable fraction of states with the same quantum numbers,
thereby evading thermalization. It is also possible for different
symmetry sectors to exhibit disparate shattering properties. For
instance, one-dimensional spin-1 lattice models that conserve
both charge and dipole moment with strictly local dynamics
exhibit weak shattering at half-filling, at least for 𝑘-local gates
(or Hamiltonians) with 𝑘 ≥ 4 [30, 31, 42]. However, as the
charge density is altered from its infinite temperature value, a
critical density is reached, beyond which the system freezes:
For sufficiently high and sufficiently low charge densities, the
system suffers a breakdown of connectivity between its various
states, and the corresponding symmetry sectors exhibit strong
shattering [42].
In this manuscript we analyze the shattering properties and

the putative freezing transition in the two-dimensional trans-
verse field Ising model (TFIM) deep within its ferromagnetic
phase. In a similar manner to the tilted Fermi-Hubbard model,
where a large tilt imposes strong kinetic constraints that give rise
to emergent charge and dipole conservation [30, 31, 44, 48, 49],
Ref. [50] showed that a strong ferromagnetic Ising coupling
imposes restrictions on domain wall motion in the TFIM in
spatial dimensions 𝑑 ≥ 2 (illustrated for 𝑑 = 2 in Fig. 1). We
argue that it is the combination of (i) domain wall number
conservation, (ii) a local Z2 constraint on domain wall configu-
rations (which may alternatively be phrased as a Z2 one-form
constraint), and (iii) strict locality, which are ultimately respon-
sible for the shattering of Hilbert space. This is notably in
contrast to other instances of shattering, which typically rely
on the presence of two mutually commuting global U(1) sym-
metries (e.g., charge and dipole moment [30, 31], two species
of fermion [41], or domain wall number and the commuting
component of total magnetization [51, 52]). At half-filling for
domain walls, we show using exact enumeration of states that
the system exhibits weak shattering, in spite of an exponential
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(in volume) number of fully frozen states. Since shattering
occurs in a tensor product basis, the restrictions on domain
wall motion are essentially classical in nature [45], and can
be phrased as kinetic constraints [53, 54]. This allows us to
efficiently simulate the system numerically using stochastic
cellular automaton circuits [55, 56], using which we show that
transport of domain walls is diffusive in the weak shattering
regime. It also allows us to view the ‘freezing’ transition as an
irreducibility transition of the corresponding classical Markov
process [53].
In contrast to Ref. [42] we show that the 2D TFIM exhibits

no freezing transition for any nonzero density of domain walls
in the strict thermodynamic limit, i.e., where the number of
domain walls scales with system volume, 𝑁DW ∝ 𝐿2. However,
we provide analytical and numerical evidence in favor of a
genuine transition between weak and strong shattering that
occurs in a nonstandard thermodynamic limit. Specifically,
there exists a sharp freezing transition when domain wall
number scales in a subextensive manner with system size
as 𝑁DW ∝ 𝐿2/ln 𝐿. We argue that the origin of the slow,
logarithmic decay of the critical domain wall density is a
consequence of so-called ‘large void instabilities’, known to
occur, for instance, in bootstrap percolation [57, 58] and other
models with kinetic constraints [53]. This propensity for
weak shattering is further confirmed by a strong even-odd
effect in the presence of periodic boundary conditions. For
antiferromagnetic coupling, the system exhibits ring frustration
on the square lattice, which guarantees a subextensive number
of defects in the classical ground state. This is another context
in which a subextensive number of defects, here 𝑁DW ∝ 𝐿,
is sufficient to prevent the system from being frozen. By the
same token, we additionally show that no freezing transition
occurs for geometrically frustrated lattices (e.g., the triangular
lattice) with antiferromagnetic coupling, since the system
always possesses a nonzero density of defects in its classical
ground states. We work throughout on the lattice, avoiding the
complications inherent with analyses of quantum dynamics in
the continuum [59–61].
The manuscript is structured as follows. We begin by

introducing the model in Sec. 2. We discuss the limit of strong
Ising coupling and the corresponding effective Hamiltonian
that can be obtained in this limit by means of a Schrieffer-Wolff
transformation. When the Schrieffer-Wolff transformation
is truncated at first order in the transverse field, we discuss
the kinetic constraints on domain wall motion, the resulting
frozen states, and the relevant timescales for melting and for
thermalization. In Sec. 3 we perform an exact enumeration of
the system’s Krylov sectors. When the enumeration is resolved
by symmetry sector, we show that a finite size freezing transition
occurs for a sufficiently low density of domain walls. Section 4
is concerned with quantifying “sufficiently low”. First, we
benchmark the automaton circuits by showing that domain wall
density diffuses when the system is weakly shattered, and then
move on to characterizing the freezing transition numerically.
In Sec. 5, we provide analytical evidence that the (un)freezing
transition observed numerically in Sec. 4 is a consequence of
‘large void instabilities’. Finally, we discuss our results and
their experimental implications in Sec. 6.

(a)

(b)

FIG. 1. Domain wall conserving moves. (a) ‘Diagonal’ domain wall
motion (kink propagation) preserves the total number of domain walls
and the number of domain walls intersecting each line (𝑥 = const.
or 𝑦 = const.) on the direct lattice. (b) Plaquette flipping motion
preserves the number of domain walls emanating from each dual
lattice site, and the parity of domain walls intersecting each line on
the direct lattice. The empty (red) circles denote positive (negative)
spins, while the solid red lines denote domain walls, which live on the
dual lattice.

2. MODEL

We consider the transverse field Ising model (TFIM), deep
in the ferromagnetic phase

�̂� = −𝐽
∑︁
〈𝑖 𝑗 〉

�̂�𝑧
𝑖
�̂�𝑧
𝑗
− ℎ

∑︁
𝑖

�̂�𝑥
𝑖 . (1)

In this manuscript, the spin-1/2 degrees of freedom �̂�𝑖 live
on the sites of either a square or a triangular lattice in 𝑑 = 2
spatial dimensions, as canonical examples of bipartite and
nonbipartite lattices, respectively. In contrast to 𝑑 = 1, where
the Hamiltonian can be mapped to free fermions [62, 63], the
model is interacting in 𝑑 ≥ 2. Unless otherwise specified,
we will impose periodic boundary conditions on the spins
throughout. Absent the transverse field, i.e., ℎ = 0, the Hamil-
tonian (1) is diagonalized by �̂�𝑧

𝑖
product states |{𝜎𝑧

𝑖
}〉 (col-

loquially, the ‘computational basis’). The eigenstates |{𝜎𝑧
𝑖
}〉

have a definite number of domain walls. It is therefore conve-
nient to define charges �̂�𝑖 𝑗 living on the links 〈𝑖 𝑗〉, defined by
�̂�𝑖 𝑗 =

1
2 (1 − �̂�𝑧

𝑖
�̂�𝑧
𝑗
), such that a link hosting a ferromagnetic

(antiferromagnetic) arrangement of neighboring spins satisfies
𝑄𝑖 𝑗 = 0 (𝑄𝑖 𝑗 = 1) [operators (eigenvalues) are distinguished by
the presence (absence) of a ‘hat’]. Equivalently, the idempotent
operator �̂�𝑖 𝑗 counts the number of (bare) domain walls living
on the link 〈𝑖 𝑗〉. For sufficiently weak magnetic fields, ℎ � 𝐽,
we may apply a Schrieffer-Wolff transformation that is chosen
in such a way that the number of (dressed) domain walls is
conserved.
The transverse field contribution can be written in terms of

operators 𝑇𝑛 that increment the number of domain walls by
𝑛 [64–66]. Up to a trivial energy shift,

�̂� = 2𝐽�̂� − ℎ
∑︁
𝑛∈N

𝑇𝑛 , (2)
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where N is the set of permitted changes in the domain wall
number (e.g., for the square lattice, N = {0,±2,±4}), the total
number of domain walls is denoted �̂� =

∑
〈𝑖 𝑗 〉 �̂�𝑖 𝑗 , and the op-

erators 𝑇𝑛 satisfy [�̂�, 𝑇𝑛] = 𝑛𝑇𝑛. As described in Appendix A,
the effective Hamiltonian that conserves the number of dressed
domain walls up to second order in the magnetic field is given
by

�̂� ′ = 2𝐽�̂� − ℎ𝑇0 +
ℎ2

4𝐽
[𝑇2, 𝑇−2] +

ℎ2

8𝐽
[𝑇4, 𝑇−4] + . . . . (3)

This procedure can, in principle, be carried out to very high
orders in the field using the method of perturbative continuous
unitary transformations [64, 67, 68]. If the higher order terms
denoted by the ellipsis are dropped, the effective Hamiltonian
by construction commutes with total domain wall number:
[�̂� ′, �̂�] = 0. The operators 𝑇𝑛 can be written in terms of the
spins as

𝑇𝑛 =
∑︁
𝑖

�̂�𝑥
𝑖 Π̂𝑛 (𝑖) , (4)

where the local projector Π̂𝑛 (𝑖) projects out spin configurations
that violate the constraint 𝜎𝑧

𝑖

∑
𝑗:〈𝑖 𝑗 〉 𝜎

𝑧
𝑗
= 𝑛, where 𝑗 : 〈𝑖 𝑗〉 de-

notes the nearest neighbors of the 𝑖th spin. For a 𝑑-dimensional
hypercubic lattice, the projector Π̂0 (𝑖) can be written explicitly
as [50]

Π̂0 (𝑖) =
𝑑∏

𝑚=1

1
(2𝑚)2

(2𝑚)2 −
( ∑︁
𝑗:〈𝑖 𝑗 〉

�̂�𝑧
𝑗

)2 . (5)

The generalization of (5) to the triangular lattice is straight-
forward: Spin configurations satisfying ∑

𝑗:〈𝑖 𝑗 〉 𝜎
𝑧
𝑗
= 𝑛 with

𝑛 ∈ N \ {0} must be projected out. First, we keep only the
leading order term ∝ 𝑇0 [note that since the effective Hamilto-
nian �̂� ′ conserves �̂�, the first term in (3) is trivial and can be
dropped without consequence, at least for states with a definite
number of quasi-domain walls]. We are therefore left with the
effective Hamiltonian

�̂�1 = 2𝐽�̂� − ℎ𝑇0 . (6)

We will work throughout the manuscript with the effective
Hamiltonian �̂�1, truncated at first order in the magnetic field,
which may be considered as a two-dimensional generalization
of the domain wall conserving model in Ref. [69]. Much of
the phenomenology that we will discuss hinges on the strictly
finite support of the local operators in (4).

We now comment on timescales. The Schrieffer-Wolff
transformation procedure is valid up to an order 𝑛∗ set by
𝑛∗ ∼ 𝐽/ℎ, up to logarithmic corrections, which determines
a prethermal timescale that is exponentially large in 𝑛∗, i.e.,
𝜏 ∼ 𝑒Υ𝑛∗ for some Υ > 0, as shown in Ref. [70]. For times
beyond 𝜏, the conservation of quasi-domain wall number breaks
down and the system is able to thermalize. However, the
truncation of the Schrieffer-Wolff transformation to leading
order inmagnetic fields is only valid up to a timescale 𝜏′ ∼ 𝐽/ℎ2.
Nevertheless, we expect some of our results to remain applicable

FIG. 2. Growth of a minority cluster. The domain wall conserving
dynamics permits a minority spin cluster to grow in area, but the
maximum extent of the domain is set by the perimeter of the cluster,
which is fixed by energy conservation.

up to the true (exponentially long) prethermal timescale 𝜏, and
we will discuss the relevant timescales as we present our results.
The dynamics implied by an application of the term 𝑇0 on

a computational basis state |{𝜎𝑧
𝑖
}〉 on the square lattice is

depicted in Fig. 1. A given spin is flippable if and only if its
neighboring spins sum to zero. If this constraint is satisfied,
there are two possibilities: (i) spins of opposite sign are
diametrically opposite one another with respect to the central
spin, or (ii) the spins of opposite sign neighbour one another.
For case (i) [Fig. 1(a)] the domain walls move ‘diagonally’
across the central spin (giving rise to propagation of domain
wall ‘kinks’), and the update to the domain wall configuration
therefore preserves∑︁

〈𝑖 𝑗 〉𝑥 :
𝑦=const.

𝑄𝑖 𝑗 and
∑︁
〈𝑖 𝑗 〉𝑦:

𝑥=const.

𝑄𝑖 𝑗 , (7)

where, e.g., 〈𝑖 𝑗〉𝑥 denotes an 𝑥-oriented bond. The conservation
laws (7) therefore correspond to a subsystem symmetry, which
commonly appear in the context of fractonic systems [32–39].
For case (ii) [Fig. 1(b)] the domainwalls exhibit a dimerlike [71]
flipping motion across a plaquette, and the update preserves
the number of domain walls emanating from each dual lattice
site. When (i) and (ii) are combined, however, they conserve
only the parity of domain walls intersecting any closed loop
𝛾 on the direct lattice, although this follows directly from the
definition of domain walls in terms of the underlying spins:∏

〈𝑖 𝑗 〉∈𝛾 �̂�
𝑧
𝑖
�̂�𝑧
𝑗
=

∏
𝑖∈𝛾 �̂�

2
𝑖
= 1. Since we are able to write∏

〈𝑖 𝑗 〉∈𝛾 𝜎
𝑧
𝑖
𝜎𝑧
𝑗
= exp(𝑖𝜋∑

〈𝑖 𝑗 〉∈𝛾 𝑞𝑖 𝑗 ), the constraint can be
rephrased as ∑

〈𝑖 𝑗 〉∈𝛾 𝑞𝑖 𝑗 = 0 mod 2, and can therefore be
thought of as a one-form Z2 constraint on the Hilbert space
of domain wall configurations. Additional discrete global
symmetries possessed by the Ising model, such as the Z2 Ising
symmetry ∏

𝑖 �̂�
𝑥
𝑖
, and various mirror symmetries (see, e.g.,

Ref. [72]) do not affect the shattering properties, and as a result
we will not discuss them further.
An alternative way to view this constraint makes use of

the duality between the two-dimensional transverse field Ising
model and Z2 lattice gauge theory [73, 74]. If we introduce
gauge spins 𝜏𝑖 𝑗 living on the links 〈𝑖 𝑗〉 of the lattice, satisfying
�̂�𝑥
𝑖
=

∏
𝑗:〈𝑖 𝑗 〉 𝜏

𝑥
𝑖 𝑗
, and 𝜏𝑧

𝑖 𝑗
= �̂�𝑧

𝑖
�̂�𝑧
𝑗
, then the Hamiltonian (1)
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becomes

�̂� = −ℎ
∑︁
𝑖

∏
𝑗:〈𝑖 𝑗 〉

𝜏𝑥𝑖 𝑗 − 𝐽
∑︁
ℓ

𝜏𝑧
ℓ
. (8)

The Hamiltonian exhibits a Z2 gauge symmetry, [�̂�, �̂�𝑝] = 0,
where �̂�𝑝 =

∏
〈𝑖 𝑗 〉∈𝑝 𝜏

𝑧
𝑖 𝑗
, for each plaquette 𝑝 of the lattice.

The Hamiltonian is therefore supplemented by the Gauss law
constraint �̂�𝑝 |Ψ〉 = |Ψ〉, which restricts the Hilbert space
to gauge-invariant states (equivalently, states of the gauge
spins that correspond to configurations of the local degrees of
freedom, �̂�𝑧

𝑖
). Since we consider the ferromagnetic phase of

the Ising model, 𝐽 � ℎ, this maps to the confining phase of
the Z2 lattice gauge theory [75]. Indeed, we will show that it is
the combination of nonzero line tension (the defining feature
of the confining phase) and strict locality that are responsible
for the ‘shattering’ of Hilbert space.
The dynamics depicted in Fig. 1 differs fundamentally from

the behaviour of pointlike quasiparticles. This may be illus-
trated by the behaviour of (1) in the paramagnetic phase, ℎ � 𝐽,
or, alternatively, by (8) in its deconfined phase, where the toric
code [76] emerges perturbatively. In this opposite limit, the
quasiparticles are not domain walls but isolated flipped spins
relative to the state |{𝜎𝑥

𝑖
}〉 aligned with the magnetic field.

Repeating the Schrieffer-Wolff transformation in this limit, we
obtain a simple two-dimensional tight-binding model, which by
construction conserves the number of quasiparticles (the Ising
interaction ∝ �̂�𝑧

𝑖
�̂�𝑧
𝑗
hops the flipped spin to a neighboring site

along the bond 〈𝑖 𝑗〉). An isolated flipped spin can therefore
propagate freely throughout the lattice, since particle number
conservation alone imposes no restrictions on the mobility of
quasiparticles. In contrast, in the ferromagnetic regime, an
isolated domain of minority spins can only grow to be as large
as its perimeter allows, under dynamics generated by the effec-
tive Hamiltonian �̂�1, since the number of domain walls must
remain fixed. This phenomenon is illustrated in Fig. 2. Infinite
line tension, which fixes univocally the length of domain walls,
leads to ‘frozen states’, which exhibit no dynamics under �̂�1,
as we will shortly show.

2.1. Frozen states

A state |𝝈f〉 is fully frozen if it is not dynamically connected
to any other states, i.e., 〈𝝈′ |�̂�1 |𝝈f〉 = 0, ∀𝝈′ ≠ 𝝈f [30, 31].
If the state |𝝈f〉 satisfies this condition, it is an eigenstate
of �̂�1, and it belongs to its own one-dimensional Krylov
sector [44]. If the system is initialized in such a state, it
will retain the same spin configuration for all times thereafter,
under time dynamics generated by �̂�1. One may immediately
observe that ferromagnetic spin configurations, with all spins
pointing along ±ẑ, correspond to completely frozen states
of the Hamiltonian (6), since 𝜎𝑧

𝑖

∑
𝑗:〈𝑖 𝑗 〉 𝜎

𝑧
𝑗
= 𝑧 > 0 (the

coordination number of the lattice). For the square lattice,
fully antiferromagnetic configurations of spins are also fully
frozen, since ∑

𝑗:〈𝑖 𝑗 〉 𝜎
𝑧
𝑗
= ±4, where the sign depends on

the sublattice to which the central spin belongs. No such
antiferromagnetic configuration is possible for the triangular

(a) (b)

(c) (d)

FIG. 3. Frozen and active spin configurations. (a) A region of
spins on the square lattice surrounded by ‘crenellations’ is fully frozen.
(b) For the triangular lattice, one can similarly construct frozen states
from enclosed regions of flipped spins. Again, the region can be
compact, as long as the domain walls make coarse-grained 120°turns
only. The number of such configurations scales with the volume of the
system. On the other hand, if any spins are surrounded by exactly 𝑧/2
domain walls, then they are active. In (c) and (d) we show examples
of spin configurations that contain active spins for the square and
triangular lattices, respectively. Spins that can be flipped are shaded
in light gray.

lattice, a consequence of geometric frustration [77]. Such
translationally invariant spin configurations do not however
exhaust the list of fully frozen states. Alternative stripes of
‘all up’ and ‘all down’ ferromagnetic domains, with perfectly
straight domain boundaries, will also be frozen, yielding a
number of frozen states exponential in linear system size, as
anticipated in Ref. [50]. Other possibilities are shown in the
top row of Fig. 3: a ‘snaking’ pattern of domain walls along the
boundary of a compact closed region of the lattice also leads to
fully frozen states of �̂�1 in (6). Since such compact regions can
tile the lattice, e.g., Fig. 3 can be regarded as a unit cell that tiles
the lattice periodically, the number of frozen states that such
a configuration can give rise to is ∼ 2𝑁 /𝑁𝑎 , where 𝑁𝑎 is the
number of spins per frozen lattice animal, since each animal can
be either present or absent in every location. Hence, the number
of frozen states, 𝑁f, scales exponentially with the volume of
the system, although at a slower rate than the total dimension
of the Hilbert space, i.e., 𝑁f ∝ exp(𝛼𝑁), up to polynomial
corrections, with 0 < 𝛼 < ln 2. This phenomenology is quite
similar to the ‘shattering by charge and dipole conservation’
discussed in Refs. [30, 31], but generated by the combination of
a global U(1) conservation law (on domain wall number) and a
Z2 one-form constraint, instead of two global U(1) conservation
laws as in the dipole conserving case. Since the shattering
occurs in a product state basis, it is “classical” in nature in the
sense of Ref. [45], a feature that we will exploit to efficiently
simulate the model in Sec. 4.
As in other models that exhibit Hilbert space shattering [51],

the number of frozen states depends on the order at which the
Schrieffer-Wolff transformation is truncated. Spin configura-
tions that are frozen at a particular order in the Schrieffer-Wolff
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FIG. 4. Exact enumeration of Krylov sectors. Ratio of largest
Krylov sector size to the dimension of its corresponding symmetry
sector for the Hamiltonian �̂�1 (6) on the square lattice. There is no
appreciable variation of the ratio with system size for a fixed aspect
ratio, consistent with weak shattering of Hilbert space. The inset
shows the absolute value of the maximum Krylov sector dimension,
which is consistent with the scaling max 𝑗 ,𝑛 𝐷

( 𝑗)
𝑛 ∝ 2𝑁 (gray dashed

lines).

transformation may become active in the presence of higher
order terms that act on larger regions of the lattice, e.g., an
isolated flipped spin surrounded by four domain walls becomes
mobile at second order in the magnetic field. In contrast, a
‘stripelike’ pattern, with perfectly straight domain walls at least
a distance ℓ � 1 apart, will only become mobile at order ∼ ℓ.
Generically, if a spin configuration becomes mobile at order
𝑛 in the Schrieffer-Wolff transformation, then this movement
will manifest at times ℎ𝑡 ∼ (𝐽/ℎ)𝑛−1. If 𝑛 > 𝑛∗ ∼ 𝐽/ℎ then
the timescale will be set by the prethermal timescale associ-
ated with the breakdown of the Schrieffer-Wolff procedure,
𝜏 ∼ exp(Υ𝑛∗).
Even if the state of the system is not fully frozen, there may

be distinct frozen and active regions. A simple example is a
minority spin cluster embedded in an otherwise ferromagneti-
cally ordered system, as shown in Fig. 2: All flipped spins in
the right panel are ‘active’ (flippable), and the remainder are
frozen (unflippable). Since each symmetry sector (i.e., the set
of states with fixed domain wall number) contains many dis-
connected Krylov sectors, the Hamiltonian (6) exhibits Hilbert
space shattering [30] (also known as fragmentation [31]). We
may quantify the extent to which the system is ‘shattered’ by
inspecting the distribution of Krylov sector sizes within each
symmetry sector. In all that follows, we will be working with
the effective Hamiltonian in Eq. (6).

3. EXACT ENUMERATION

To quantify the extent to which the Hilbert space shatters, we
begin with exact enumeration: For sufficiently small systems, it
is possible to explicitly construct all Krylov sectors within each
symmetry sector. We denote the size of the symmetry sector
defined by a domain wall density 𝑛 by 𝐷𝑛, and the individual

Krylov sectors that live within this symmetry sector by 𝐷 ( 𝑗)
𝑛 ,

labelled by the index 𝑗 . When defined in this way, the dimen-
sions satisfy ∑

𝑗 𝐷
( 𝑗)
𝑛 = 𝐷𝑛. Technically, this is carried out

by performing a breadth first search of the system’s adjacency
matrix graph (i.e., the system’s Hamiltonian represented in
the basis of |{𝜎𝑧

𝑖
}〉 tensor product states) to find all connected

sub-graphs of �̂�1.
If the Hamiltonian exhibits strong shattering, then

max 𝑗 [𝐷 ( 𝑗)
𝑛 ]/𝐷𝑛 vanishes for typical values of 𝑛 as system

size is increased, 𝐿 → ∞ [30, 31]. That is, the largest Krylov
sector comprises a vanishingly small fraction of its correspond-
ing symmetry sector, and a typical initial state will be unable
to efficiently explore an appreciable fraction of the symmetry
sector (correspondingly, the time-evolved state will exhibit an
anomalously high overlap with the initial state). This scenario
is illustrated in the top left panel of Fig. 5, where all states in the
symmetry sector are dynamically disconnected. If, conversely,
the system exhibits weak shattering then max 𝑗 [𝐷 ( 𝑗)

𝑛 ]/𝐷𝑛 → 1
as 𝐿 → ∞ [30, 31] for typical 𝑛. Now, a state selected at
random from a typical symmetry sector will, with probability
one, belong to the largest Krylov sector, and – given sufficient
time – will explore the states belonging to the symmetry sector
densely. This scenario is demonstrated in the top right panel
of Fig. 5. Note that the number of states that do not belong
to the largest Krylov sector can still be exponentially large in
the volume of the system, as long as they still correspond to a
vanishingly small fraction of total states in the thermodynamic
limit: ∑ 𝑗≠ 𝑗𝑚 𝐷

( 𝑗)
𝑛 /𝐷 ( 𝑗𝑚)

𝑛 → 0 as 𝐿 → ∞, where 𝑗𝑚 denotes
the index of the largest Krylov sector.
The results obtained by performing an exact enumeration

of sectors for systems of size up to and including 𝑁 = 30 are
shown in Fig. 4. Since we work directly with the system’s
Hamiltonian, which is sparse, rather than with its eigenstates,
we are able to reach significantly larger system sizes than
those accessible to exact diagonalisation (as in, e.g., Ref. [50]).
Further details pertaining to the numerical simulations are
presented in Appendix B. We note in passing that Ref. [42]
presented analogous results on a spin-1 chain with 𝑁 = 18,
which corresponds to a similar Hilbert space size to 𝑁 = 30
with spin-1/2 degrees of freedom.
We observe that there is no appreciable variation in the ratio

max 𝑗 ,𝑛 [𝐷 ( 𝑗)
𝑛 ]/𝐷𝑛 with system size, at least for a fixed aspect

ratio. Note that while we plot the results for the largest Krylov
sector, where the maximum is taken over all symmetry sectors,
the obtained ratio is not atypical; analogous results are found
by averaging over symmetry sectors at infinite temperature1
(see the middle panel of Fig. 5 in the vicinity of 𝑛 = 1/2, the
infinite temperature value).
We can gain further insight into the behaviour of the system

by looking at the ratio max 𝑗 [𝐷 ( 𝑗)
𝑛 ]/𝐷𝑛 resolved by symmetry

sector, parameterized by 𝑛. As explained in Sec. 2.1, in the
limit of low domain wall density, in which domain walls form

1 Here, by infinite temperature average we mean that the probability of picking
a given symmetry sector is proportional to the number of states that it
contains.
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FIG. 5. Finite size freezing transition. Top: adjacency graph of the
𝑁DW = 4, 12 symmetry sectors for a system of size 3×3. Middle: ratio
of maximum Krylov sector dimension to corresponding symmetry
sector dimension, resolved by domain wall density (symmetry sector).
Bottom: active site density 𝜌A = 1 − 𝜌F resolved by symmetry
sector. Domain wall density is normalised per bond such that an
(anti)ferromagnetic spin configuration has density 0 (1). Odd linear
system size gives rise to ring frustration, forbidding the frozen Néel
spin configuration.

small, isolated clusters, we expect that the states should be pre-
dominantly frozen and therefore the corresponding symmetry
sectors should exhibit strong shattering. This intuition is borne
out in the middle panel of Fig. 5. Note however that the ratio
assumes the value 1/2 at zero domain wall density: The two
ferromagnetic spin configurations both belong to the 𝑛 = 0
sector and are dynamically disconnected from one another.
We additionally plot the average density of active sites, the
complement of the frozen site density. A site is frozen if it is
not dynamical, i.e., a given spin is frozen in the context of a
Krylov sector if all states belonging to the Krylov sector share
the same spin direction. A site that is not frozen is active;
once all states within the Krylov sector have been explored, the
spin will have flipped. The average is over all Krylov sectors,
with each Krylov sector weighted by the number of states that
it hosts. In both plots we observe a crossover from strong
shattering (where a vanishing density of spins are active) at
low domain wall density to weak shattering (where a given
spin is active with probability one) at high densities. However,
the system sizes accessible to exact enumeration are rather
limited, and the existence of a putative weak–strong transition
versus a smooth crossover cannot be established from the data
in Fig. 5 alone. That the crossover appears to drift towards
smaller values of domain wall density 𝑛 with increasing system
size is worthy of note, and will be explained in detail in Sec. 5.
Observe that Fig. 5 is not symmetric under 𝑛 → 1 − 𝑛, as

one might have expected. The origin of this asymmetry is ring
frustration; since we plot systems with both 𝐿𝑥 and 𝐿𝑦 odd, and
periodic boundary conditions are applied, it is not possible for
the system to exhibit perfect Néel order. Instead, each row and
each columnmust have (at least) one ferromagnetic bond, which
bridges two antiferromagnetic regions with opposite parity. If
even 𝐿𝑥 , 𝐿𝑦 are used instead then Fig. 5 becomes exactly
symmetric under 𝑛 → 1 − 𝑛. Typically, this even-odd effect is
inconsequential in the thermodynamic limit, since the minimal
number of ferromagnetic bonds scales as ∼ 𝐿𝑥 + 𝐿𝑦, so that
the density of ‘defective’ ferromagnetic bonds is subextensive,
∼ 𝐿−1. In the context of the existence of a finite size freezing
transition, however, ring frustration plays an important role.
With both 𝐿𝑥 , 𝐿𝑦 odd, the state that maximizes the number of
domain walls has two straight winding loops of ferromagnetic
bonds that intersect at a point. It is possible to show that the
linear number of defective bonds in this state are sufficient to
make all sites active, as is observed in Fig. 5. Consequently,
there is no freezing transition as 𝑛 → 1 for both 𝐿𝑥 , 𝐿𝑦 odd. If
exactly one of 𝐿𝑥 , 𝐿𝑦 is odd, then the state that maximizes the
domain wall density now has a single winding ferromagnetic
loop. Since an intersection point is no longer present, the
single winding loop remains frozen, and a finite size freezing
transition can again occur in the vicinity of both 𝑛 → 0 and
𝑛 → 1.2
The triangular lattice does not support antiferromagnetic

Néel order, irrespective of the parity of its linear dimensions;
geometric frustration gives rise to a nonzero density of ferro-
magnetic bonds in the classical antiferromagnetic ground states.
This results in behaviour analogous to that shown in Fig. 5,
whereby no freezing transition occurs for the largest attainable
values of domain wall density (𝑛 = 2/3). No such obstruction
exists as 𝑛 → 0, however, and a finite size freezing transition
can occur, which will be explored in further detail in the next
section.

4. AUTOMATON NUMERICS

To analyze the putative weak–strong shattering transition
that occurs at low domain wall density, we make use of classical
cellular automaton circuits, following Ref. [55]. This allows us
to access significantly larger system sizes than those accessible
to the exact enumeration performed in Sec. 3. While finite size
no longer represents an insurmountable barrier, the automaton
numerics are instead limited principally by finite time – while
the automaton circuits will sample a representative selection of
states, the Hilbert space dimensions (2𝑁 ) are so large that not
all states will be sampled.
Cellular automaton dynamics is a class of discrete, unitary

time evolution in which entanglement does not grow in a
particular, privileged basis. In this manuscript, the privileged

2 While the classical ground states with antiferromagnetic coupling are frozen
when exactly one of 𝐿𝑥 and 𝐿𝑦 is odd, the fraction of frozen sites is still not
symmetric under 𝑛 → 1 − 𝑛 due to the presence of a macroscopic number
of ferromagnetic bonds in the ground states, equal to min(𝐿𝑥 , 𝐿𝑦) .
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FIG. 6. Diffusion of conserved charge. Autocorrelation function for
the bond variables 𝜏𝑧

𝑖 𝑗
≡ �̂�𝑧

𝑖
�̂�𝑧
𝑗
(blue), which are locally conserved by

the dynamics, and for the spins �̂�𝑧
𝑖
(red). The bond variables exhibit

a diffusive ∝ 1/𝑡 decay (dashed line), while the nonconserved �̂�𝑧
𝑖

correlator decays exponentially in time, as shown in the inset. The
dynamics makes use of the gate𝐺3 in a system of size 𝐿𝑥 = 𝐿𝑦 = 256.

basis corresponds to the ‘computational’ basis |{𝜎𝑧
𝑖
}〉. An

automaton gate �̂� acts as a permutation operator when acting
on states belonging to the privileged basis, returning another
state belonging to the same basis, up to a phase: �̂� |{𝜎𝑧

𝑖
}〉 =

𝑒𝑖 𝜃 |{�̃�𝑧
𝑖
}〉. In this manuscript we make use of stochastic

automata, in which the permutations are chosen stochastically.
The simplest dynamics that one can implement is ‘single

spin flip’ (SSF). In SSF dynamics, a candidate spin is chosen
at random, and it is flipped only if its neighboring spins sum to
zero: This corresponds to a stochastic automaton with five-site
gates (for the square lattice). On the triangular lattice, the 𝑧 = 6
neighboring spins determine whether the central spin can be
flipped. To help ameliorate the finite time limitation, we work
with gates of larger size. On the square lattice, we can consider
gates of size 𝐺𝑛 = 𝑛2 + 4𝑛, i.e., 𝑛2 flippable spins, and 4𝑛
boundary spins that determine which of the ‘bulk’ spins are
flippable (SSF dynamics then corresponds to the choice 𝑛 = 1).
For each state of the 4𝑛 boundary spins, we find all spin states
that can, in principle, be accessed by applying the fundamental
SSF gates. More precisely, we find the Krylov sectors of
the subregion of size 𝐺𝑛 that can be accessed by flipping
the 𝑛2 ‘bulk’ spins, subject to the domain-wall-conserving
constraints in Fig. 1. The dynamics then proceeds by picking
with uniform probability a random state from the configurations
that are dynamically accessible. This procedure is equivalent
to performing infinite temperature Monte Carlo on the gate
subregion for infinite time, and then selecting the output: each
state – if it is dynamically connected to the initial state – is
selected with equal probability, including the initial state. In
this way, the dynamics satisfies detailed balance.

4.1. Autocorrelation functions

In Fig. 6 we plot the autocorrelation functions for the spins
�̂�𝑧
𝑖
, and for the locally conserved operators 𝜏𝑧

𝑖 𝑗
≡ �̂�𝑧

𝑖
�̂�𝑧
𝑗
=

2�̂�𝑖 𝑗 − 1, related to the local density of the conserved charge

�̂�. Before presenting our results, we place some bounds on
what could happen. In the absence of a one-form constraint,
we would expect the locally conserved operators to relax via
diffusion. With a subsystem U(1) conservation law in addition
to the global U(1) conservation law, we would expect 𝑘4
subdiffusion à la ‘fracton hydrodynamics’ [55, 78]. A global
U(1) conservation law plus a subsystem Z2 constraint should
presumably produce relaxation no faster than diffusion and no
slower than 𝑘4 subdiffusion.
We now determine numerically what obtains. We use the

operators 𝜏𝑧
𝑖 𝑗
in place of the charges �̂�𝑖 𝑗 since the average 〈𝜏𝑧𝑖 𝑗〉

vanishes at infinite temperature. Since the autocorrelation func-
tion can be interpreted as a return probability, normalization of
the domain wall density distribution gives rise to the asymptotic
behaviour 〈𝜏𝑧

𝑖 𝑗
(𝑡)𝜏𝑧

𝑖 𝑗
(0)〉 ∼ 1/𝑡𝑑/2 = 1/𝑡 if domain wall density

spreads diffusively, as is observed in Fig. 6. The numerics
therefore shows that the weak one-form Z2 constraint on the
Hilbert space of domain wall configurations,∏〈𝑖 𝑗 〉∈𝛾 𝜏𝑖 𝑗 = 1
for all closed loops 𝛾, has no measurable impact on the decay of
the autocorrelation function, which follows ordinary diffusion.
This result is to be contrasted with the behaviour of the auto-
correlation function of the local magnetization, 〈�̂�𝑧

𝑖
(𝑡)�̂�𝑧

𝑖
(0)〉:

Since �̂�𝑧
𝑖
is not locally conserved, its associated autocorrelation

function instead (asymptotically) decays exponentially in time,
as shown in the inset of Fig. 6.

4.2. Frozen sites

4.2.1. Definition of frozen site density

To study in further detail the crossover from weak to strong
shattering as domain wall density is reduced from 𝑛 = 1/2, as
observed in Fig. 5, wemust introduce a finite time generalization
of the frozen site density. We make use of the definition
proposed in Ref. [42]. At time 𝑡 = 0, all sites are classified as
frozen. At a later time, a site is classified as frozen if it has
flipped in any of the prior configurations that the system has
passed though:

𝜌F (𝑡) =
1
𝑁

��{𝜎𝑧
𝑖
| 𝜎𝑧

𝑖
(𝑡) = 𝜎𝑧

𝑖
(𝑡 − 1) = · · · = 𝜎𝑧

𝑖
(0)}

�� . (9)

Correspondingly, the number of active sites is given by the
complement: 𝜌A (𝑡) ≡ 1 − 𝜌F (𝑡). When defined in this way, a
frozen site can become active, but the converse is not true: an
active site can never become frozen. If it were possible to run
the automaton circuits for infinite time, the the definition (9)
would agree exactly with the definition used previously in
Sec. 3. Note also that lim𝑡→∞ 𝜌F (𝑡) does not depend on the
size of the gate 𝐺𝑛 chosen to evolve the system. In practice,
we run the automaton circuits until 𝜌F (𝑡) has plateaued. This
does not, however, rule out the existence of states with a
significantly higher density of active sites, although such states
would need to be atypical. To mitigate the possibility of a
diverging timescale – invisible to large automaton simulations –
after which the behaviour of 𝜌F (𝑡) changes drastically, we start
with system sizes that can be accessed using exact enumeration,
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FIG. 7. Finite size scaling of frozen site density. Asymptotic value
of the frozen site density obtained from the square lattice automaton
circuit as a function of the initial magnetization density 𝑚. The data
are for systems of size 𝐿𝑥 = 𝐿𝑦 = 12, 16, . . . , 36 in equally spaced
intervals. The data are collapsed as a function of 𝛿 = (1 − 𝑚)/2
in the inset using a system-size-dependent critical magnetization
density, 𝑚𝑐 (𝐿) = 1 − 2𝜆/ln 𝐿. Each data point is taken once 𝜌F has
equilibrated, and is averaged over at least 213 independent histories.

and show that there exists a unique plateau (i.e, no metastable
behaviour) in 𝜌F (𝑡), whose value coincides with the exact result
obtained using the enumeration results from Sec. 3. While
this procedure does not rigorously rule out the existence of a
diverging timescale that only manifests in larger system sizes, it
makes it plausible that the plateaux observed in our simulations
do indeed coincide with the true asymptotic behaviour of the
frozen site density 𝜌F (𝑡).

4.2.2. Initial state distribution

To access states with domain wall density 𝑛 < 1/2, i.e., away
from infinite temperature, we must specify a distribution of
initial states with unequal weighting. We choose to work with
uncorrelated states in the computational basis with nonvanish-
ing magnetization density. That is, each spin is drawn from a
biased, bimodal probability distribution 𝑃(𝜎𝑧

𝑖
) = 1

2 (1 + 𝜎𝑧
𝑖
𝑚),

such that each spin individually satisfies 〈𝜎𝑧
𝑖
〉 = 𝑚 in the initial

state. Since the distribution of domain walls is symmetric
under 𝑚 → −𝑚, we work without loss of generality with initial
states satisfying 𝑚 > 0. An alternative choice would be to
work with eigenstates of �̂�0 = 2𝐽�̂�, weighted according to the
Boltzmann distribution ∝ exp(−𝛽�̂�0), where the temperature
𝑇 = 𝛽−1 controls the density of domain walls. However, at low
temperatures, 𝑇 � 𝐽, where the correlation length is 𝑂 (1), the
two distributions should agree quantitatively with one another.

4.2.3. Automaton results

The asymptotic frozen site density obtained using the au-
tomaton circuit is shown in Fig. 7. It is clear from Fig. 7
that the crossover from strong to weak shattering (i) becomes

sharper with increasing system size, and (ii) drifts towards
larger values of the magnetization density 𝑚 (smaller values
of the domain wall density). These two features are verified
quantitatively in the scaling collapse shown in the inset of Fig. 7,
which establishes that 𝜌F (𝑚, 𝐿) ' F [(𝛿 − 𝛿𝑐 (𝐿))𝐿𝜎], where
𝛿 parametrizes the number of domain walls via 𝑚 ≡ 1 − 2𝛿,
𝜎 = 1.0(1), and 𝛿𝑐 (𝐿) = 𝜆/ln 𝐿, with 𝜆 = 0.22(2). This
scaling of the critical domain wall density will be justified
analytically in Sec. 5. We therefore conclude that there is no
phase transition at nonzero excitation density in the standard
thermodynamic limit, i.e., lim𝐿→∞ 𝜌F (𝑚, 𝐿) = 0 for all 𝑚 < 1
(i.e., 𝛿 > 0). While there exists no transition in the standard
thermodynamic limit, two comments are in order. First, the
slow decay of 𝛿𝑐 (𝐿) with system size 𝐿 implies that finite size
effects are extremely important; even macroscopically large
systems will exhibit a finite size transition due to the slow
(logarithmic) dependence of 𝛿𝑐 on 𝐿. Second, the transition
becomes sharp as a function of the rescaled density 𝛿 ln 𝐿. Al-
though the critical density of domain walls vanishes in the strict
thermodynamic limit, the system requires a macroscopic num-
ber of defects relative to the ferromagnetic spin configurations
to lead to melting. One may therefore view the behaviour in
Fig. 7 as a freezing transition in a nonstandard thermodynamic
limit.
Equivalent results for the triangular lattice are shown in

Fig. 8, which also exhibits a finite size freezing transition
as 𝑚 → 1. We observe that the data again exhibit a high
quality collapse upon rescaling the magnetization density 𝑚 →
[𝑚−𝑚𝑐 (𝐿)]𝐿𝜎 , with𝜎 ≈ 0.9(1) and a system-size-dependent
𝛿𝑐 (𝐿) = (1 − 𝑚𝑐)/2 = 𝜆/ln 𝐿, with 𝜆 = 0.34(2). While 𝜆
differs substantially between the square and triangular lattices,
the values for 𝜎 are consistent with one another.

4.2.4. Analyzing the transition

To gain further information about the weak–strong transition,
we perform an analysis of the system’s spin clusters once 𝜌F has
reached equilibrium. We will show that the freezing transition
coincides with a percolation threshold for minority spin clusters.
A cluster is defined as a contiguous region of spinswith the same
sign, separated from spins of the opposite sign by domain walls.
The system is percolating if it contains a so-called wrapping
cluster of minority spins (the analogue of spanning clusters in
the context of open boundary conditions). A wrapping cluster is
defined as a spin cluster that contacts itself around the periodic
boundary conditions in either direction, i.e., it has a nontrivial
winding number. The number of non-wrapping clusters of size
𝑠 per site is given by 𝑛𝑠 (𝑚), which implies that the probability
that a given spin belongs to a non-wrapping cluster of size 𝑠 is
given by

𝑤𝑠 (𝑚) = 𝑠𝑛𝑠 (𝑚)∑
𝑠 𝑠𝑛𝑠 (𝑚) . (10)

This probability distribution can then be used to define the
mean cluster size via 𝑆(𝑚) = ∑

𝑠 𝑠𝑤𝑠 (𝑚). Note that while we
parametrize the cluster properties by the initial state magnetiza-
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FIG. 8. Finite size scaling of triangular lattice frozen site density.
Asymptotic value of the frozen site density obtained from the triangular
lattice automaton circuit as a function of the initial magnetization
density 𝑚. The data are for systems of size 𝐿𝑥 = 𝐿𝑦 = 12, 16, . . . , 32
in equally spaced intervals. The data are collapsed in the inset using
a system-size-dependent critical magnetization density, 𝑚𝑐 (𝐿) =

1 − 2𝜆/ln 𝐿. Each data point is taken once 𝜌F has equilibrated, and is
averaged over at least 214 independent histories.

tion 𝑚, the measurements are made in the plateaux of 𝜌F where
the magnetization of the system is related nontrivially to 𝑚.
Finally, we introduce the percolation probability Π(𝑚) defined
by the fraction of histories that contain (at least) one wrapping
cluster. Since the mapping between spins and domain walls is
not one-to-one (i.e., there are two spin configurations |{𝜎𝑧

𝑖
}〉

and |{𝜍 𝑧
𝑖
}〉 for each configuration of domain walls, {𝜏𝑧

𝑖 𝑗
}, re-

lated by the Ising symmetry, |{𝜎𝑧
𝑖
}〉 = ∏

𝑗 �̂�
𝑥
𝑗
|{𝜍 𝑧

𝑖
}〉), the spin

species that is initially in the minority may, if the system is only
weakly fragmented, become the majority spin species. If the
minority species is able to percolate, we therefore expect the
percolation probability Π ' 1/2. That is, if 𝜌F � 1, we expect
that the system will be able to explore states with magnetization
' 𝑚 and ' 1 − 𝑚. If the system spends roughly equal amounts
of time in each configuration, then the probability that the
spin species that was initially in the minority has become the
majority species – at a particular point in time – is roughly 1/2.
The percolation probability Π as a function of initial state

magnetization 𝑚 for various system sizes is shown in Fig. 9.
The data exhibit a high quality collapse using parameters that
are consistent with those used to collapse the frozen site density
in Fig. 7. Figure 9 therefore suggests that the unfreezing
transition as domain wall number is increased can alternatively
be viewed as a percolation transition for the minority spin
clusters. For a density of excitations less than the critical value,
𝑛𝑐 ∼ 𝜆/ln 𝐿, isolated minority clusters remain disconnected,
with a finite mean size 𝑆(𝑚), and are unable to make the
system active. While the disconnected clusters may exhibit
dynamics, any active spins represent a vanishing fraction of
the total system volume. Conversely, above 𝑛𝑐 , the initially
disconnected clusters are able to grow under the domain-wall-
conserving dynamics, maintaining a constant perimeter, and
are able to coalesce to form a percolating cluster of spins that
covers a macroscopic fraction of the system, making it active in
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FIG. 9. Square lattice percolation probability. The fraction of
histories that contain a wrapping cluster, Π(𝑚), as a function of initial
state magnetization on the square lattice. In the inset, we observe an
excellent collapse of the data as a function of 𝛿 = (1 − 𝑚)/2 using
parameters consistent with Fig. 7. Each data point is taken once 𝜌F has
equilibrated, and is averaged over at least 213 independent histories.
The data are for systems of size 𝐿𝑥 = 𝐿𝑦 = 12, 16, . . . , 36 in equally
spaced intervals.

the process. In the next section we will propose a mechanism
by which this growth process is able to occur.

5. LARGE VOID INSTABILITIES

In the limit of low domain wall density, 𝛿 ≡ (1 − 𝑚)/2 � 1,
the average separation between flipped spins is large,∼ 𝛿−1/𝑑 �
1. However, in sufficiently large systems, there will exist rare
regions where the local density of flipped spins significantly
exceeds 𝛿. We will argue that such rare regions, which must
be present in an infinite system, provide a mechanism through
which the entire system is able to melt (i.e., become active).
Equivalently, for a fixed system size 𝐿, there will exist a domain
wall density 𝛿𝑐 (𝐿) above which there exists an appreciable
probability of such a rare region, allowing the system to melt.
Suppose that there exists a square of minority spins of size

ℓ × ℓ somewhere in the system. If the square is surrounded by
boundary layer of the majority spin species of width two, then
the square is unable to grow. Conversely, if there exists a single
flipped spin on one of its edges, creating a neighboring kink
and antikink,

, (11)

both the kink and the antikink can be propagated outwards,
away from the arbitrary initial position of the flipped spin,
increasing the width or height of the ℓ × ℓ square by one unit:

. (12)

If there is one flipped spin on each of the four edges [and
there are no spins in outer rows to obstruct the growth process
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shown in (12)], then the square can be grown from size ℓ× ℓ →
(ℓ + 2) × (ℓ + 2) using the moves in (12).
Having shown that a single flipped spin on every edge of

the square is able to enlarge the width and height of a square
by two units, all that remains is to show that flipped spins in
outer rows – required for further growth of the square – do not
significantly impede the growth of the minority cluster. We
perform this task in Appendix C, where we show constructively
that exactly one spin per row can allow the minority cluster to
grow and engulf the entire system.

5.1. Scaling of the critical magnetization

Given that exactly one flipped spin per edge is sufficient to
melt the system, we now bound the probability of melting by
assuming that additional flipped spins will help to facilitate
growth of the cluster, rather than impede it. This statement
is certainly true on average, since the frozen fraction 𝜌F (𝛿)
is a monotonic decreasing function of domain wall density,
parametrized by 𝛿, for all system sizes. It is therefore plausible
that at least one defect per side is required in order for the
square of size ℓ × ℓ to be able to grow to become infinitely
large in the thermodynamic limit 𝐿 → ∞. If this assumption
is satisfied, then the probability that a region of size ℓ × ℓ is
able to grow to size (ℓ + 2) × (ℓ + 2) is therefore

𝑃ℓ→ℓ+2 =
[
1 − (1 − 𝛿)ℓ

]4
. (13)

Analogous expressions for the growth probability arise in
the context of, e.g., self-diffusion [79], bootstrap percola-
tion [58], and other kinetically constrained models [53]. The
probability for the this process to be able to continue indefi-
nitely is given by iterating the above expression, implying that
𝑃ℓ→∞ =

∏∞
𝑘=0 𝑃ℓ+2𝑘→ℓ+2𝑘+2, or, using (13),

𝑃ℓ→∞ = exp

{
4

∞∑︁
𝑘=0
log

[
1 − (1 − 𝛿)ℓ+2𝑘

]}
. (14)

This expression should represent a lower bound on the proba-
bility for the entire system to be become active, since growth
can proceed via alternate, e.g., rectangular, pathways. For
sufficiently large ℓ, (1 − 𝛿)ℓ � 1, allowing the logarithm to be
expanded. This allows the summation to be performed exactly,
and leads to the approximate expression

𝑃ℓ→∞ ' exp
(
−4 (1 − 𝛿)ℓ
2𝛿 − 𝛿2

)
. (15)

As explained in, e.g., Ref. [53], for ℓ & ℓ∗ the probability
that the ℓ × ℓ minority cluster grows to envelop the whole
system saturates to unity; an “unstable void”. From Eq. (15),
we identify ℓ∗ = ln[(2𝛿 − 𝛿2)/4]/ln(1 − 𝛿) ' − log(𝛿/2)/𝛿.
The probability that such an unstable cluster is present in the
system’s initial condition is exponentially small in ℓ2∗ � 1.
Instead, it is more likely that a small cluster grows to become
unstable by reaching a size ℓ∗ × ℓ∗, after which its ability to
grow is guaranteed. The summation appearing in (14), for

growth beginning from a single site, 𝑃1→∞, can be bounded
from below by turning the summation into an integral [53, 80]

∞∑︁
𝑘=0
ln[1 − (1 − 𝛿)1+2𝑘 ] ≥ −1

2 ln(1 − 𝛿)

∫ ∞

0
𝑑𝑥 𝑔(𝑥) (16)

where 𝑔(𝑥) = ln[1 − 𝑒−𝑥]. The integral can be evaluated
exactly to give −

∫ ∞
0 𝑑𝑥 𝑔(𝑥) = Li2 (1) = 𝜋2/6, with Li𝑛 (𝑧)

the polylogarithm function. Combining the above results, the
probability that a single minority spin can grow to cover the
entire system is bounded by

𝑃1→∞ ≥ exp
{
𝜋2

3
1

ln(1 − 𝛿)

}
> 0 . (17)

The probability 𝑃1→∞ vanishes as 𝑃1→∞ ∼ exp{−const./𝛿} as
𝛿 → 0+. Nevertheless, it is still nonzero, and for sufficiently
large systems, there will exist such a nucleation site. The
probability that the system contains aminority spin that is able to
grow and melt the system is set by 𝛿𝐿2𝑃1→∞ [53] (alternatively,
the probability can be bounded more rigorously by subdividing
the system into 𝐿 independent

√
𝐿 ×

√
𝐿 regions [80, 81]), and

the critical value of 𝛿 is found by solving 𝛿𝐿2 exp(−𝜋2/(3𝛿)) =
𝑐 = 𝑂 (1) (valid for 𝛿 � 1), leading to a critical value of 𝛿 that
vanishes with increasing system size logarithmically

𝛿𝑐 (𝐿) =
𝜋2

3𝑊 ( 𝐿2 𝜋23𝑐 )
∼ 𝜋2

6 ln 𝐿
, (18)

where 𝑊 (𝑥) is the product-log function. In the context of
bootstrap percolation, the prefactor 𝜋2/6 appearing in Eq. (18)
is in fact provably asymptotically exact for 𝑑 = 2 [82]. However,
the subleading corrections as 𝛿 → 0+ can lead to sizable
corrections to the asymptotic behavior in system sizes that are
accessible numerically [58, 83].
The above provides a justification of the slow (ln 𝐿)−1 scaling

of 𝛿𝑐 (𝐿) observed in Figs. 7 and 9. Intriguingly, the more con-
strained triangular lattice appears to exhibit similar logarithmic
decay. To provide further numerical evidence that the above
mechanism is responsible for the melting transition, we plot in
Fig. 10 the frozen fraction as a function of time for a system
that (a) contains a nucleation site, and (b) has uncorrelated
initial states with the same magnetization as (a). We observe
that the nucleation site permits all sites to become active for
times 𝑡 & 104 (importantly, this time is system size dependent),
while the uncorrelated initial states lead to a substantial frac-
tion of asymptotically frozen sites. This figure confirms that
nucleation sites, if present, have the ability to melt the entire
system.

6. DISCUSSION

We have shown that the transverse field Ising model in
two space dimensions, deep within its ferromagnetic phase,
exhibits a rich and hitherto largely unappreciated structure to its
quantum dynamics. In particular, up to a prethermal timescale,
the Hilbert space shatters into a number of disconnected Krylov
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FIG. 10. Melting from nucleation site. The configuration in (a) has
a 2 × 2 square surrounded by one spin per row, while (b) is a typical
uncorrelated random state with the same magnetization (on average).
In (c) we plot the frozen fraction 𝜌F (𝑡) as a function of time for the
configuration (a) (solid line) and averaged over typical uncorrelated
states with 𝑚 ≈ 0.83 (dashed line). The initial state (a) saturates to
𝜌F = 0, while the average over random configurations has a nonzero
asymptotic frozen fraction. Both curves are computed for a system of
linear size 𝐿 = 24, and are averaged over 500 circuit realizations.

subsectors exponentially large in system volume. The precise
timescale on which the Krylov subsectors reconnect depends on
the particular patterns that are being tiled tomake the subsectors,
but could be as small as 𝐽/ℎ2, and large as∼ exp(Υ𝐽/ℎ),where
Υ > 0 is some undetermined numerical constant. An easy to
visualize example of a pattern for which the timescale saturates
the prethermal upper bound is a stripelike pattern with locally
ferromagnetic stripes of width greater than 𝐽/ℎ.
We have explored in detail the dynamics with the Hamil-

tonian obtained by truncating at leading non-trivial order in
Schrieffer-Wolff perturbation theory, and have provided numeri-
cal evidence that the resulting Hamiltonian exhibits at least one
weak–strong shattering ‘freezing’ transition as a function of
symmetry sector in a non-standard thermodynamic limit. We
have also provided analytical and numerical evidence that this
transition is linked to an instability of sufficiently large minority
spin clusters. It is also important to emphasize that the freez-
ing transition occurs for the effective Hamiltonian in Eq. (6).
Whether the transition survives the inclusion of corrections at
higher order in the Schrieffer-Wolff procedure, or whether the
‘strongly shattered’ phase disappears upon inclusion of higher
order terms (and the transition with it), remains to be resolved.
This paper has concentrated on Ising models in two space

dimensions. Our construction of exponentially many (in system
volume) Krylov subsectors by tiling compact motifs should
extend to arbitrary higher spatial dimensions as well, such that
we do expect that the transverse field Ising model in higher
spatial dimensions will also display an exponential in volume
shattering of Hilbert space. Whether a strong–weak freezing
transition exists in higher dimensions, and whether it can also
be described by the growth of unstable minority spin clusters,
remains to be explored.
It is interesting to wonder if the observations contained

herein could be probed in solid state experiments. Effective
Ising models are, of course, ubiquitous in solid state systems.
However, solid state systems also generically have phonons,

which open up ‘thermal’ relaxation pathways. We generically
expect thermal relaxation times for, e.g., the stripe-based scar
states to follow the Arrhenius law 𝜏th ∼ exp(−Δ/𝑇), where 𝑇 is
temperature and the activation gap Δ increases as we go deeper
into the ferromagnetic phase. This ‘thermal’ relaxation will
compete with the intrinsically quantum relaxation pathways
that we have discussed herein. As one lowers the temperature
and moves deeper into the ferromagnetic regime, however,
one would generically expect the ‘thermal’ relaxation channels
to become subleading to the intrinsically quantum relaxation
channels that we have discussed. For example, for a ‘striped’
configuration based on stripes of width ℓ, we estimated a
quantum lifetime of order ℎ𝜏q ∼ min[(𝐽/ℎ)ℓ−1, exp(Υ𝑛∗)]
where, we recall, 𝑛∗ ∼ 𝐽/ℎ, and exp(Υ𝑛∗) is the prethermal
timescale up to which domain wall number is conserved. If we
go to low enough temperatures that the thermal timescale is
longer than the quantum timescale, then the physics discussed
in this paper will apply to the relaxation of stripelike scar states.
Experimental probes of the dynamics deep in the ferromagnetic
phase may therefore be able to see signatures of the Hilbert
space shattering discussed herein. Of course, the precise
numerical values of the associated timescales would be highly
sensitive to the particular microscopic realization of the Ising
model (and also to how deep in the phase we were). In one well-
studied quantum Ising system [84] the characteristic dynamical
timescales were on the order of milliseconds, but this could
easily vary by multiple orders of magnitude with microscopic
realization and location in the phase diagram - for example,
in a recent structural realization [85, 86] the characteristic
timescales seem to be of order seconds. Needless to say, our
analysis applies to all microscopic realizations of the quantum
Ising model, regardless of the characteristic timescales therein.
Finally, it would be interesting to explore whether the ‘freez-

ing transition’ discussed herein could be obtained in realistic
models in a standard thermodynamic limit. Given that the
combination of a U(1) conservation law and a one-form Z2
constraint does not seem to be enough, it is tempting to at-
tempt to upgrade to a U(1) conservation law and a one-form
U(1) constraint, which lattice gauge theories could in principle
provide [74]. The mapping of the Ising model to the Ising
gauge theory suggests that such a transition, if it exists, would
exist in the confining phase of the gauge theory. Whether U(1)
lattice gauge theories in the confining phase do indeed support
a freezing transition in a conventional thermodynamic limit
would be another fruitful problem to explore in future work.
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A. SCHRIEFFER-WOLFF TRANSFORMATION

The operators 𝑇𝑛 can be expressed explicitly, if desired, in
terms of the orthogonal projectors Π̂1

𝑖 𝑗
= �̂�𝑖 𝑗 (Π̂0𝑖 𝑗 = 1 − �̂�𝑖 𝑗 ),

which project onto states whose bond hosts (doesn’t host) a
charge. In 2D, we will adopt the notation that �̂�𝑖1, �̂�𝑖2, �̂�𝑖3,
�̂�𝑖4 label the charges on the bonds surrounding the site 𝑖 on the
square lattice in a clockwise direction, starting from the top.
Then

𝑇4 =
∑︁
𝑖

�̂�𝑥
𝑖 Π̂
0
𝑖1Π̂

0
𝑖2Π̂

0
𝑖3Π̂

0
𝑖4 (19a)

𝑇2 =
∑︁
𝑖

�̂�𝑥
𝑖 Π̂
1
𝑖1Π̂

0
𝑖2Π̂

0
𝑖3Π̂

0
𝑖4 + 3 permutations (19b)

𝑇0 =
∑︁
𝑖

�̂�𝑥
𝑖 Π̂
1
𝑖1Π̂

1
𝑖2Π̂

0
𝑖3Π̂

0
𝑖4 + 5 permutations , (19c)

where the permutations are over the superscript indices. The
operators 𝑇−4 and 𝑇−2 are obtained from Eqs. (19a) and (19b),
respectively, by interchanging the projectors Π̂1

𝑖 𝑗
↔ Π̂0

𝑖 𝑗
. The

generalization to other spatial dimensions and other lattices is
transparent. The property �̂�𝑥

𝑖
�̂�𝑖 𝑗 = (1 − �̂�𝑖 𝑗 )�̂�𝑥

𝑖
implies that

the operators in (19) satisfy 𝑇†
𝑛 = 𝑇−𝑛. To construct an effective

Hamiltonian that conserves quasi-domain wall number, we
perform a Schrieffer-Wolff transformation parametrized by the
Hermitian operator 𝑆 = 𝑆†. That is,

�̂� ′ = 𝑒𝑖�̂� �̂�𝑒−𝑖�̂� = �̂� + [𝑖𝑆, �̂�] + 1
2!

[𝑖𝑆, [𝑖𝑆, �̂�]] + . . . (20)

The eigenstates of the effective Hamiltonian �̂� ′ are then dressed
by the operator 𝑒−𝑖�̂� to obtain the eigenstates of the original
Hamiltonian �̂�. The operator 𝑆 is chosen such that �̂� ′ conserves
the number of domain walls up to a particular order in ℎ/𝐽.
Specifically, we write 𝑆 =

∑
𝑘 𝑆

(𝑘) where 𝑆 (𝑘) is chosen such
that �̂� ′ conserves domain walls up to order (ℎ/𝐽)𝑘 . At leading
order, we find that

𝑖𝑆 ' 𝑖𝑆 (1) = − ℎ

4𝐽
(𝑇2 − 𝑇−2) −

ℎ

8𝐽
(𝑇4 − 𝑇−4) . (21)

Note that this expression does not derive from the specific
form of the operators 𝑇𝑛, only from their mutual commutation
relations and [�̂�, 𝑇𝑛] = 𝑛𝑇𝑛. The property 𝑇†

𝑛 = 𝑇−𝑛 ensures
that the operator 𝑖𝑆 is anti-Hermitian. The first order term in
𝑆 gives us access to the second order effective Hamiltonian
(since the second order term in 𝑆 is chosen in such a way as
to remove the terms generated at second order in ℎ that do
not conserve domain wall number, leaving only the number-
conserving terms that are generated by the first order 𝑆). We
are therefore left with the result

�̂� ′ = 2𝐽�̂� − ℎ𝑇0 +
ℎ2

4𝐽
[𝑇2, 𝑇−2] +

ℎ2

8𝐽
[𝑇4, 𝑇−4] + . . . . (22)

An isolated flipped spin, which is frozen at first order in the
field, becomes mobile at second order as a result of the term
[𝑇2, 𝑇−2], which allows an adjacent spin to flip followed by the
reversal of the original isolated spin.

B. NUMERICAL DETAILS

Here we provide some additional details relating to the exact
enumeration presented in Sec. 3 of the main text. To identify
the disconnected sub-graphs of the Hamiltonian, we make
use of a breadth first search of the system’s adjacency matrix.
Since the adjacency matrix is sparse, we only need to store
𝑂 (𝐿2𝐿) connections. Furthermore, the kinetic constraints
often forbid a substantial fraction of the 𝐿 possible states from
being connected (e.g., for the 5 × 5 square lattice, the average
number of connections per state is ≈ 9 of the possible 25).
To perform the classification of sectors, we keep track of

whether each state has been visited. In a loop over all states, if
the state has not yet been visited, then it acts as the root node
for a breadth first search. All neighbors of the root node are
added to a queue. For all states in the queue, their neighbors
are added to the queue if they have not yet been visited, and
the state is subsequently dequeued. This procedure is repeated
until the queue is empty, at which point all states that can be
reached from the root node have been classified and added to a
Krylov sector. The loop over all states ensures that all states
are classified as belonging to a unique Krylov sector.

C. MELTING FROM ONE SPIN PER EDGE

In the main text, we showed how a single flipped spin on
each edge of a rectangular minority cluster can increase the
width and the height of the cluster by two units. Here, we
explain with the use of explicit sequences of spin flips that
exactly one flipped spin per ‘row’ is sufficient to melt the entire
system. The spin flip pathways that we provide are certainly
not unique; there are other ways in which the minority spin
cluster can grow for a given initial condition of independent
and identically distributed (i.i.d.) spins. Also note that we
are not concerned with the timescale over which this growth
occurs, i.e., we characterize whether the system’s dynamics is
irreducible (two states selected at random will be connected
by the dynamics) as opposed to ergodic (two states selected
at random will be connected in finite time by the dynamics)3.
First, we consider the interaction of the kink structure in (11)
with spins in outer rows. Making use of reflection symmetry
of an edge and the ability to translate the isolated flipped
spin, there are just two situations that we need to consider
(up to corner cases considered in the supplemental material
(SM) [87]). First, consider the special case that the flipped
spins in adjacent rows are nearest neighbors. In this case, the
baseline can immediately be increased by one unit using only
the permitted local rearrangements of domain walls:

1 2 3123

. (23)

3 A nonzero frozen fraction is a sufficient condition for reducibility and the
breaking of ergodicity, but it is not necessary. E.g., the one magnon sector
of the XY model is reducible, but 𝜌F = 0.
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The spins have been flipped in the order 1, 2, 3, denoted by the
integers next to the spins on the right-hand side. The state of
the system has therefore been reduced that of state (11), and
requires no further classification. If the spins are not nearest
neighbors, then the bump can (almost) always be translated
such that the red spins are arranged with the following relative
positions (special cases, in which the spin in the top row hangs
over the corner of the square, are dealt with separately in the
SM [87]):

1 2 345

. (24)

In the above, the isolated flipped spin that is separated from
the cluster is attached by flipping the intervening spin. The
baseline is subsequently increased by one unit to produce a
new type of kink structure. We must therefore classify how the
new structure in (24) interacts with flipped spins in adjacent
rows. Note that, in the absence of spins in outer rows, the
structure on the right-hand side of (24) can be freely translated
perpendicular to the surface normal. First, we consider the case
where the flipped spin appears to the left of the kink structure

1234 5 6 . (25)

The isolated spin is incorporated into the cluster by first flipping
the spin underneath, and the baseline can then be increased by
propagating kinks outwards, as in (12). The configuration is
therefore reduced to that found in (11). While the void that is
left behind in the spin cluster may appear frozen in (25), note
that, for instance, the kink structure could have been translated
to the right prior to incorporating the isolated spin. If the
isolated spin instead appears to the right of the kink structure,

a more intricate rearrangement of domain walls is required

4 3 2 1

. (26)

The first step corresponds to bringing in a kink from the right
corner4. The ‘tower’ of minority spins can then be discon-
nected from the main cluster and subsequently reconnected in
a different location to allow the baseline to be increased by one
unit:

1

2

3 1

23

4

5

6

7

8

9 , (27)

reducing the configuration to (11) with a void. As above, the
spin in the void is not frozen, since the kink structure can be
translated to the left prior to incorporating the spin. The final
situation to consider corresponds to the case where the the spin
in the top row of either (25) or (26) is a nearest neighbor of the
spin in the row below. In this case, spins in rows above must
facilitate the inclusion of the ‘tower’ of spins into the cluster.
It is possible to use an analogous sequence of moves to those
presented in (25)–(27) to absorb a tower of arbitrary height
into the cluster. This sequence of moves is presented explicitly
in the SM [87], along with a number of special cases that occur
at the corners of the square. While it may appear that the
condition of exactly one spin per row is overly restrictive, and
could instead be relaxed to the condition that no two adjacent
rows are empty, there exist edge cases that do not permit growth
in the manner described in this section. If there exist pathways
that allow such edge cases to be melted, then the prefactor
in (18) below will be modified, but the scaling with system size
will remain unchanged.
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