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Recent studies on quantum transport in metals have revealed that a gauge field acting on the
electron wavefunction yields a peculiar Hall or Nernst effect. When topologically nontrivial spin
textures are present, a gauge field appears in real space and affects the electron transport. However,
the understanding of the Nernst effect emerging from a real-space gauge filed (topological Nernst
effect) remains qualitative, and moreover, the influence of thermal fluctuations has been elusive.
Here, we report a pronounced temperature-dependent topological Nernst effect in a metastable
skyrmion lattice in MnSi. Our density functional theory assuming a temperature-independent gauge
field is successful in an order-of-magnitude estimate of the Nernst signal, whereas the experimental
values decrease even significantly with increasing temperature. Similar tendency is also observed
for the topological Hall effect, thus indicating that pronounced reduction of the real-space gauge
field is crucial for the quantitative understanding of the topological-spin-texture-induced quantum
transport at finite temperatures.

I. INTRODUCTION

Recent developments in the Berry phase formalism
have revealed a key role of the momentum-space gauge
field in understanding transverse electron transport per-
pendicular to an applied electric field or thermal gradient
in metals with broken time-reversal symmetry [1]. When
an electron moves in crystal momentum space with con-
straints on the electronic band structure, it feels a gauge
field and acquires the Berry phase depending on its tra-
jectory. Such phase acquisition causes transverse mo-
tion of conduction electrons, experimentally manifested
in the anomalous Hall and Nernst effects (AHE and ANE,
respectively)[1–9]. Analogous Berry phase acquisition
may also occur when an electron moves in a topological
spin texture matrix with net scalar spin chirality [10–19]
. In this case, a gauge field may arise in real space due to
the constraint that the conduction electron spin is aligned
with the spatially slowly varying local spins, a condition
often referred to as the adiabatic limit. In fact, in materi-
als hosting magnetic skyrmions, a topologically nontriv-
ial magnetic texture (Fig. 1(a)), peculiar Hall and Nernst
effects were experimentally demonstrated in a magnetic
skyrmion lattice (SkL) phase [10–19]. These Hall and
Nernst effects are often called the topological Hall effect
(THE) and the topological Nernst effect (TNE).
When the THE was first discovered, its understanding

was phenomenological [10], but it was later supported
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microscopically by DFT calculation for the skyrmion-
hosting chiral magnet MnSi [13], which exhibits a SkL
with moderately long magnetic periodicity, λm ≈ 19 nm
[20]. To be more specific, however, because DFT calcu-
lation for the SkL phase requires impractically high nu-
merical cost, the microscopic approach in the literature
was still based on some approximation; namely, it consid-
ered the electronic band structure of the ferromagnetic
state, instead of the SkL phase, and then calculated the
spin-resolved Hall effect under the influence of the effec-
tive gauge field. Although this microscopic approach was
successful in reproducing the magnitude and the doping
dependence of the THE for Mn1−xFexSi at the ground
state [13], it is important to test whether the same frame-
work can capture other topological transport phenomena,
such as the TNE. However, in MnSi, the TNE has never
been reported, and as a matter of fact, no microscopic de-
scription based on the spin-resolved band structure has
been attempted for a TNE in any skyrmion-hosting ma-
terial. Thus, observing the TNE as well as the THE
in MnSi and comparing the results with DFT calculation
would be a stringent test for the microscopic understand-
ing of the topological transport phenomena. As a more
nontrivial issue, a finite temperature effect on the real-
space gauge field also remains poorly understood. For
non-doped MnSi under pressure, for instance, the mag-
nitude of the THE is sensitive to temperature [12–14],
but such a finite temperature effect has not been well
explained from DFT calculation. Moreover, it is also un-
clear whether such pronounced temperature dependence
is specific to the THE or common to the TNE.

In this Letter, targeting MnSi, we aim to observe the
TNE of a skyrmion host in a wide temperature range
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FIG. 1. Large Nernst effect emerging from a metastable skyrmion lattice. (a) Schematic representation of a magnetic skyrmion.
(b) Magnetic phase diagram of MnSi. The temperature field region, in which the thermal-quenching-induced metastable
skyrmion lattice (SkL) can persist with a prolonged lifetime, is also shown. (c),(d) Magnetic-field dependence of Hall (c)
and Nernst (d) signals with/without creating a metastable SkL. Blue curves are the data measured before application of the
SkL-creating current pulse to the specimen, whereas the red and balck curves are those after the pulses applied at 0.225 T and
−0.225 T, respectively.

and to establish a quantitative description of the TNE in
terms of density functional theory (DFT) calculations.
In contrast to a previous study [21] that reported the
absence of a TNE in a thermodynamically stable SkL
phase emergent at 27–29 K, the present study focuses on
a metastable SkL that can persist below 23 K down to
the lowest temperature [14, 22] (Fig. 1(b)). There are
three advantages to studying the metastable SkL. First,
the THE signal accompanying the metastable SkL at the
lowest temperature is one order of magnitude larger than
that accompanying the thermodynamically stable SkL at
27–29 K [14]; therefore, one can expect a large TNE sig-
nal for the metastable SkL. Second, one can choose to
either create or not create the metastable SkL, poten-
tially leading to ON/OFF tunability of the TNE. As
described in the literature [14], on-demand creation of
the metastable SkL is possible by performing thermal
quenching under 0.20–0.24 T from a high temperature
above 29 K to a low temperature. Such thermal quench-
ing is implemented in practice by applying an intense
electric current pulse followed by rapid thermal diffu-
sion [14, 23]. Third, the temperature range in that the
metastable SkL can exist is wide (0–23 K), thus facil-
itating the systematic study on the finite temperature
effect, which is unknown for the TNE. In this study, we

took care to eliminate a potential impact of the experi-
mental procedures on the transport results and therefore
performed the Nernst and Hall measurements with the
same sample and configuration.

II. RESULTS AND DISCUSSIONS

A. Topological Nernst and Hall effects

A main finding of this study is that a topologi-
cal Nernst signal accompanies the thermal-quenching-
induced metastable SkL with overall behavior quite sim-
ilar to that of the topological Hall resistivity, ρTHE

yx

(Figs. 1(c) and 1(d)). Here, let us focus on the Nernst
behavior (Fig. 1(d)), Sxy, at a low temperature, 10 K,
for clarity. The key characteristics are summarized as
follows: (i) Without thermal quenching, the SkL does
not appear in magnetic field sweeps, and only a vanish-
ingly small Nernst signal, ≈ 0.0 µV K−1, is observed
(blue curve in Fig. 1(d)), which is ascribed to the sum
of anomalous and ordinary Nernst effects; (ii) after ap-
plying a current pulse under 0.225 T, a relatively large
Nernst signal, −0.21 µVK−1, emerges as a result of phase
conversion, perhaps partial, from a thermodynamically
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FIG. 2. Temperature dependence of the Nernst and Hall effects emerging from the metastable skyrmion lattice. (a)–(c) Nernst
signal Sxy (a), Hall resistivity ρyx (b), and Nernst conductivity divided by temperature αxy/T (c) in the presence/absence
of the metastable skyrmion lattice (SkL). Blue curves are the data measured before application of the SkL-creating current
pulse to the specimen, whereas the red curves are those after. (d)–(f) Nernst signal (d), Hall resistivity (e), and Nernst
conductivity divided by temperature (f) hosted by the metastable SkL. The temperature dependences below 21 K shown in
blue or red represent the transport coefficients in the presence or absence of the metastable SkL, respectively. The collapse of
the metastable SkL with time is negligible below 21 K, whereas the agreement of the two curves (blue and red) above 23 K is
due to collapse of the metastable SkL.

stable conical phase to the metastable SkL; and (iii) the
metastable SkL created at 0.225 T (−0.225) is robust
against a subsequent field sweep in the range of 0.2–0.4
T (−0.4–−0.2 T), whereas outside this range, it relaxes
into topologically trivial magnetic phases, thus result-
ing in the disappearance of the Nernst signal (red and
black curves in Fig. 1(d)). These observations demon-
strate that this Nernst signal, unique to the metastable
SkL, is identified as the TNE. Our measurements are also
successful in detecting a possible TNE signal even for the
thermodynamically stable SkL phase at 28 K; however,
the magnitude is far smaller, ≈ −0.035 µV K−1 (Fig. S1
[23]), suggesting a pronounced temperature dependence
of the TNE.

To address the temperature (T ) dependence in more
detail, comparing Sxy–T profiles with and without the
SkL is helpful. This approach becomes possible by ex-
ploiting the ON/OFF tunability of the metastable SkL.
Figure 2(a) displays Sxy–T profiles recorded with in-
creasing temperature and a magnetic field of 0.225 T,
with and without performing thermal quenching, as rep-
resented by red and blue symbols, respectively. The two
Sxy–T curves are largely different, although the Sxx–

T profile varies little with the presence or absence of
thermal quenching (Fig. S2 [23]). Note that whereas
the blue curve tracks the magnetic phases of the ther-
mal equilibrium phase diagram in the absence of the
metastable SkL, the red curve is observed in the presence
of the metastable SkL up to 23 K. Such cooling-history-
dependent behaviors are also observed in the ρyx–T pro-
files (Fig. 2(b)). The temperature dependences of the
TNE and THE accompanying the metastable SkL is thus
derived by subtracting the blue curve from the red curve,
as shown in Figs. 2(d) and 2(e), respectively. Although
the metastable SkL starts to relax with time into the
conical state when the sample temperature reaches 23 K,
such a change is negligible below 21 K because of the
prolonged lifetime of the metastable SkL (≫ 105 s) [14].
We thus observe a TNE with a pronounced temperature
dependence; its extremal value is ≈ −0.28 µV K−1 at 7
K.

Having established the TNE in MnSi and aiming to
compare our data to theoretical calculations, we hereafter
consider a more intrinsic quantity describing a trans-
verse thermoelectric response, that is, the Nernst con-
ductivity divided by temperature, αxy/T , where αxy is
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given as αxy = σxxSxy + σxySxx. Thus, we present the
transverse thermoelectric response in terms of αxy/T in
Fig. 2(c), from which the contribution of the metastable
SkL to αxy/T (denoted as αTNE

xy /T ) is derived, as shown
in Fig. 2(f). The αxy/T profile in the presence of the
metastable SkL (red curve in Fig. 2(c)) is dominated by
αTNE
xy /T . Its value continuously increases with decreasing

temperature and exceeds 1 A K−2 m−1 at 5 K (Fig. 2(f)).
To the best of the authors’ knowledge, this is the largest
value of αxy/T ever found in magnetic materials.

Comparing the present observations with the αxy/T
values for other representative magnets [2, 4, 5, 7–
9, 17, 18, 21], as shown in Fig. 3, is instructive. Co3Sn2S2,
the previous record holder regarding magnetic αxy/T , is
a ferromagnetic Weyl semimetal, for which DFT calcu-
lation demonstrates a giant ANE originating from the
momentum-space gauge field accompanying Weyl points
in the electronic structure [7]. Both Gd2PdSi3 and MnGe
host a topological magnetic texture with a relatively
short period of λm ≈ 3 nm [19, 24]; Gd2PdSi3 is a
skyrmion-hosting material similar to MnSi [19], whereas
MnGe hosts a three-dimensional spin hedgehog crystal
[24]. In these topological magnets, however, a DFT-
based microscopic understanding of the THE and TNE
has not been attempted, and thus, whether either the
real-space or momentum-space gauge field plays a ma-
jor role in the emergent transverse motion of conduction
electrons remains to be determined.

B. DFT calculation

Below, we show how the αxy/T observed in MnSi can
be explained microscopically. When considering the real-
space gauge field, the adiabatic approximation is often
adopted; that is, the associated emergent effective mag-
netic field, Beff , is given as for the triangular SkL [12, 13],
and electrons with majority and minority spins (denoted
by ↑ and ↓, respectively) feel Beff of opposite sign, caus-
ing the transverse motions schematically illustrated in
Figs. 4(a) and 4(b). In the literature, the magnitude of
ρTHE
yx in Mn1−xFexSi was successfully explained with a

DFT calculation on the basis of the emergent effective
magnetic field in conjunction with the transport coeffi-
cients of the collinear ferromagnetic state [13]. To be
more specific, the THE was found to be reproduced by
the sum of the spin-resolved ordinary Hall effects (OHEs)
as

σTHE
xy = σOHE,↑

xy (Beff) + σOHE,↓
xy (−Beff). (1)

Through the present combination of theory and experi-
ment, we aim to clarify whether the experimental TNE
can be reproduced by applying the Mott relation to the
DFT-calculated energy (ǫ) dependence of σTHE

xy (ǫ, Beff):

αTNE
xy

T
=

αONE,↑
xy (ǫF, Beff) + αONE,↓

xy (ǫF,−Beff)

T

= −
π2k2B
3e

∂(σOHE,↑
xy (ǫ, Beff) + σOHE,↓

xy (ǫ,−Beff))

∂ǫ

∣

∣

∣

∣

∣

ǫF

= −
π2k2B
3e

∂σTHE
xy (ǫ, Beff)

∂ǫ

∣

∣

∣

∣

∣

ǫF

(2)

where kB and e (> 0) represent the Boltzmann constant
and the elementary charge, respectively. Notably, DFT
calculations tend to overestimate electron bandwidths in
real materials, and the experimental effective mass in
MnSi was found to be 5.0±1.2 times larger than the ef-
fective mass calculated from DFT [25–27], probably due
to strong electron correlation. To compare the calcula-
tions and experiments, we therefore renormalize the band
energies by a factor of five [23].
From DFT calculations, σs

xx/τs(ǫ) and σOHE,s
xy /Bτs(ǫ)

2

for the collinear ferromagnetic state are obtained as
scattering-independent electronic structure properties
(Fig. S3 [23]), where τs(ǫ) (s = ↑ or ↓) is the spin-
and energy-dependent relaxation time regarding the crys-
tal momentum. Based on the assumption that τs(ǫ) ∝
1/Ds(ǫ), as in a previous study [13], the experimental
σxx(T ) values (Fig. S2 [23]) were used to obtain τs(ǫ, T )
[23]. The calculated results of σOHE,s

xy (ǫ, B)/B at the
lowest temperature, 5 K, are shown in Fig. 4(c). Then,
αONE,s
xy (ǫ, B)/TB at 5 K is derived by assuming the Mott

relation, as shown in Fig. 4(d); in this procedure, the
energy derivative is increased by the mass enhancement
factor [23, 28]. For clarity, the properties for ǫ = ǫF are
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displayed in Figs. 4(e) and 4(f), in which we substitute
Beff = 10.5 T for the metastable SkL with periodicity
λm ≈ 22 nm [22]. When calculating the THE (Fig. 4(e)),
σOHE,↑
xy (ǫF, Beff) and σOHE,↓

xy (ǫF,−Beff) exhibit opposite

signs, so σTHE
xy (ǫF, Beff) is observed as the remnant of

the two competing contributions: its calculated value,
–790±240 Ω−1 cm−1, is on the same order as the exper-
imental value, ≈ –850 Ω−1 cm−1 (Fig. S2 [23]). Regard-
ing the TNE (Fig. 4(f)), in contrast, αONE,↑

xy (ǫF, Beff)/T

and αONE,↓
xy (ǫF,−Beff)/T exhibit the same sign and thus

additively contribute to αTNE
xy (ǫF, Beff)/T , hence giv-

ing rise to the giant TNE in MnSi. The calculated
αTNE
xy (ǫF, Beff)/T at the base temperature is –0.34±0.11

A K−2 m−1, successfully matching the order of magni-
tude observed in the experiment, ≈ –1 A K−2 m−1.

C. Finite temperature effect

Having the success of the quantitative reproduction of
the experimental value at the lowest temperature, we also
perform the above procedure for other temperatures to
gain insight into the pronounced reduction of αTNE

xy /T at
elevated temperatures. The calculated results are shown
in Fig. 5(a), together with the experimental data. Within
the temperature range under consideration, the calcu-
lated results always have the same order of magnitude
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as the experimental results. In the present approach, the
temperature dependence of the calculated αTNE

xy /T arises
exclusively from that of the experimental σxx, and to be
more specific, it is well reproduced by the temperature
dependence of σ2

xx (Fig. 5(a)). This σxx-sensitive behav-
ior is in sharp contrast to theories and experiments on
the ANE related to the momentum-space gauge field: In
UCo0.8Ru0.2Al with a large ANE (Fig. 3), for instance,
αANE
xy /T depends on σxx only weakly at low temperatures

[8], and a similar behavior is also observed for the ANE
in MnSi [21]. Conversely, the observed pronounced tem-
perature dependence of αTNE

xy /T corroborates that the
Nernst effect unique to the SkL in MnSi originates not
from the momentum-space gauge field but from the real-
space gauge field.

The experimental temperature dependence of αTNE
xy /T

is affected mainly by three temperature-dependent fac-
tors: (i) the relaxation time, τ ; (ii) the band structure,
such as the energy splitting between the majority- and
minority-spin bands; and (iii) Beff originating from the
real-space gauge field. Thus, when one tries to extract a
finite temperature effect on Beff from the observed tem-
perature dependence of αTNE

xy /T , the other two effects
(i) and (ii) should be considered separately. Note that
the above DFT calculation neglects the effects (ii) and
(iii). Nevertheless, we find within our DFT calculations
that even if band structure changes due to temperature-
dependent spin polarization in the window of 5–22 K are
considered, the calculated TNE and THE do not change
so much (Fig. S4 [23]); thus, to the first approximation,
we can neglect the effect (ii) as long as the TNE and THE
in 5–22 K are considered. Then, to separate the effect (i)
from the experimental αTNE

xy /T , we referred to the quan-

tity αTNE
xy /T divided by σ2

xx because our DFT calculation
has demonstrated that the effect (i) is well captured by
considering the temperature-dependent σ2

xx. In this way,

the temperature-dependent Beff can be estimated from
the TNE. Similarly, the temperature-dependent Beff can
also be estimated from the THE. As shown in Fig. 5(b),
for the temperature-independent Beff , the temperature
dependence of is dominated by that of σ2

xx, a situation
in a stark contrast to the momentum-space gauge-field-
induced AHE. Thus, by referring to the experimental
σTHE
xy divided by σ2

xx, which is approximately equal to

the experimental ρTHE
yx , we estimated the temperature-

dependent Beff .

The relative temperature dependence of Beff with re-
spect to the value at the ground state can thus be derived
from αTNE

xy /Tσ2
xx and ρTHE

yx independently, as shown in
Fig. 5(c). Although the two Beff–T profiles do not pre-
cisely agree with each other, which is probably partly
due to the fact that we neglected the temperature de-
pendence of the band structure, both profiles exhibit the
pronounced decrease by almost an order of magnitude
with increasing temperature. This overall behavior is in-
dependent of whether Beff is estimated from the TNE
or THE, and moreover, it has been established that the
magnetic periodicity of the SkL varies with temperature
only weakly (21.5–21.2 nm for 1.5–20 K) [22]. We there-
fore conclude that this behavior reflects the intrinsic na-
ture of Beff under the influence of thermal agitations.

Finally, regarding the pronounced attenuation of Beff ,
we discuss a likely role of spin-angular momentum relax-
ation. At elevated temperatures, the local magnetic mo-
ments consisting of the skyrmion spin texture inevitably
fluctuate and change their directions more frequently,
rendering the perspective of topology on the skyrmion
texture less robust, in particular when a snapshot of the
fluctuating spin texture is considered. This obscured spin
texture is expected to be also accompanied by enhanced
spin-flipping events for moving electrons. Such spin-flip
processes are obviously beyond the adiabatic approxima-
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tion, which assumes that the conduction electron spin al-
ways continuously follows the underlying spin texture as
illustrated in Figs. 4(a) and 4(b). Thus, when spin-flip
scattering becomes frequent, the effectiveness of Berry
phase acquisition should be suppressed compared to the
ideal, adiabatic model [29], resulting in a reduced Beff .
When the temperature is further increased, for instance
above 23 K, such frequent spin-flipping events together
with the fluctuating spin texture eventually leads to the
destruction of the metastable SkL state [14]. Thus, the
pronounced attenuation of Beff at elevated temperatures
may be referred to as precursor phenomena of the de-
struction of the topologically protected metastable spin
textures.

III. CONCLUDING REMARKS

Our experimental and theoretical studies have revealed
that the real-space gauge field derived from the adiabatic
approximation can microscopically describe the TNE at
the ground state, as long as spin-resolved fermiology,
heavy electron mass, and cleanness in terms of electron
scattering are appropriately taken into account. On the
other hand, at elevated temperatures, the breakdown of
the adiabatic approximation should also be considered,
which is experimentally manifested as the attenuation
of the real-space gauge field. This non-adiabatic effect
appears to be crucial when considering the temperature-
dependent magnitudes of the THE and TNE unless the
considered temperature range is far below the magnetic
transition temperature. Topological magnetic textures
have been increasingly discovered at various tempera-
tures in recent years [15, 30–32]. Toward the compre-
hensive understanding of the THE and TNE, it would be
important to consider both the real-space gauge field de-
rived from the adiabatic approximation and its attenua-
tion due to the non-adiabatic effect, which is pronounced
at elevated temperatures.
In general, electron transport is characterized by fast

time scale so that not only thermally averaged but also
instantaneous atom and spin configurations can matter.
This seems also the case for the THE and TNE. Namely,
in addition to the thermally averaged topological struc-
ture, it is also crucial to consider instantaneous spin
configurations, which potentially includes discontinuities
that weaken the validity of physical implications derived
from the conventional perspective of topology.

Appendix A: Sample preparation

A single crystal of MnSi was grown by the Czochralski
method. The sample size was 1.9 × 0.86 × 0.17 mm3,
with the largest surface normal to the <100> axis. Two
terminals for applying a current, four terminals for mea-
suring the voltage and two thermocouples (Spectris Co.,
Ltd., CHCO-002) were attached to the sample. The sam-

ple was placed such that it bridged two sapphire sub-
strates, with one sapphire substrate in thermal contact
with a heat bath and the other in thermal contact with
a heater.

Appendix B: Resistivity and thermoelectric

measurements

The resistivity and Hall resistivity were measured at a
current excitation of 17 Hz with the four-probe method
under a magnetic field parallel to the <100> axis by
means of a lock-in amplifier (NF Corporation, LI5645,
or Stanford Research Systems, SR830) equipped with
a transformer preamplifier (Stanford Research Systems,
SR554). Heat flow to measure the Seebeck and Nernst
coefficients was generated by applying a current to the
heater, which was in thermal contact with the sample via
one of the sapphire substrates. Lock-in measurements
were used to improve the signal-to-noise ratio of ther-
moelectric measurements. By applying an alternating
current of 0.3 Hz to the heater, a heat current oscillat-
ing at 0.6 Hz was applied to the sample, and thermo-
electric voltages were generated in phase with the heat
flow. Thermocouple voltages, generated by the tempera-
ture gradient in the sample, and thermoelectric voltages
were measured by a lock-in amplifier (NF Corporation,
LI5645, or Stanford Research Systems, SR830) equipped
with a low-noise differential preamplifier (NF Corpora-
tion, SA-410F3 or CA-461F2). The thermoelectric coef-
ficients are defined in reference to the generation of an
electric field, E, or a current density, j, with respect to
an applied temperature gradient as

Ei = Sij∂jT (B1)

ji = αij∂jT (B2)

where S and α are the thermoelectric tensor and thermo-
electric conductivity tensor, respectively, and (i, j = x,
y). The relationship between the temperature gradient
and the heat flow, jq, is given as

jqi = −κij∂jT (B3)

where is the thermal conductivity tensor. In the experi-
ments, jq is along the x direction (that is, jqy = 0), and
thus,

∂yT

∂xT
= −

κyx

κxx

(B4)

Thus, even though jq ‖ x, the temperature gradient is
not necessarily parallel to the x direction due to the off-
diagonal component of κ, or the thermal Hall effect. Con-
sequently, the electric field along the y direction, induced
by the heat flow along the x direction, is expressed as

Ey = (Syx − Syy

κyx

κxx

)∂xT (B5)
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In the Nernst measurement, the ratio of the temperature
gradient in the x direction to the electric field in the y
direction is measured, and thus, the Nernst signal N is
expressed as

N := −
Ey

∂xT

= Sxy − Sxx

κxy

κxx

,
(B6)

where the cubic crystal symmetry of MnSi is taken into
account. Although more information on the thermal con-
ductivity tensor is required to determine the exact ther-
moelectric coefficient, the second term was neglected in
the present study, in agreement with previous work (21).

Appendix C: Thermal quenching method

As in previous studies [14, 22], rapid thermal diffusion,
which occurs after the direct application of a heat pulse
to the sample, was used to thermally quench the crystal.
These thermal pulses were generated using Joule heating
caused by contact resistance when a current pulse was
injected into the sample. The pulse waveform was gener-
ated by a voltage output module (National Instruments,
NI 9269) and amplified by a high-speed bipolar power
supply (NF Corporation, HSA4014) to feed a current of
sufficient magnitude (360 mA). A load resistor of 5 ohms
was connected in series with the sample to monitor the
current flowing through the circuit. The time-varying
voltages at the load resistor and at the sample voltage
probes were monitored using a voltage input module (Na-
tional Instruments, NI 9239). Furthermore, the time-
varying voltage at the sample voltage probes was ampli-
fied with a low-noise differential preamplifier (NF Cor-
poration, CA-461F2). These data on the time variation
of the current and voltage were used to determine the
time variation of the resistivity of the sample (Fig. S5
[23]). As in the previous study [14], Hall and Nernst
signals were confirmed to be cooling rate dependent by
varying the fall time of the pulse (Fig. S6 [23]). A switch
system (Keithley 7001 equipped with a 7011S) was used
to switch the circuit between resistivity/thermoelectric
measurements and the pulse-application setup.

Appendix D: DFT calculation

Electronic structure calculations were performed
within the generalized gradient approximation [33] in
the framework of DFT as implemented in the quantum-
ESPRESSO package [34]. Pseudopotentials with the pro-
jector augmented wave scheme were used [35]. The size
of the magnetic moment was constrained to the exper-
imental value of M ≈ 0.4µB/Mn. Transport properties
were calculated using Boltzmann transport theory within
the constant relaxation time approximation as in Ref.
[13]. The spin-resolved (s =↑, ↓) conductivity and ordi-
nary Hall conductivity are given as

σs
xx(ǫ)

τs(ǫ)
=

e2

V Nk

∑

nk

δ(ǫ − ǫnks)(v
x
nks)

2, (D1)

σOHE,s
xy (ǫ, B)

τs(ǫ)2
=

e3B

V Nk

∑

nk

δ(ǫ− ǫnks)[(v
x
nks)

2(M−1
nks)

yy

−(vxnks)(v
y
nks)(M

−1
nks)

xy]

(D2)

Here, V is the unit cell volume, Nk is the number of k
points, ǫnks is the energy of particles in the band with
band index n, vnks is the group velocity, and (M−1

nks)
ij =

∂2ǫnks/(h̄
2∂ki∂kj) is the inverse effective mass tensor.

To calculate these quantities, a Wannier interpolation
scheme [36] with a 200 × 200 × 200 k-mesh was em-
ployed. When estimating the error in the calculated val-
ues, we took into account the error in the Fermi energy
position, which is typically ±10 meV. Regarding the ef-
fective mass renormalization, see Supplemental Material
[23].
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