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We provide analytical and numerical insights into the phase diagram and other properties of the
extended Kitaev-Heisenberg model on the honeycomb lattice in the easy-plane limit, in which inter-
actions are only between spin components that belong to the plane of magnetic ions. This parameter
subspace allows for a much-needed systematic quantitative investigation of spin excitations in the
ordered phases and of their generic features. Specifically, we demonstrate that in this limit one
can consistently take into account magnon interactions in both zero-field zigzag and field-polarized
phases. For the nominally polarized phase, we propose a regularization of the unphysical divergences
that occur at the critical field and are plaguing the 1/S-approximation in this class of models. For
the explored parameter subspace, all symmetry-allowed terms of the standard parametrization of
the extended Kitaev-Heisenberg model, such as K, J , and Γ, are significant, making the offered
consideration relevant to a much wider parameter space. The dynamical structure factor near para-
magnetic critical point illustrates this relevance by showing features that are reminiscent of the ones
observed in α-RuCl3, underscoring that they are not unique and should be common to a wide range
of parameters of the model and, by an extension, to other materials.

I. INTRODUCTION

Recently, strongly correlated materials with a sizable
spin-orbit coupling (SOC) have been the subject of a sig-
nificant research interest [1]. An interplay of SOC with
the crystal electric fields yields anisotropic exchange in-
teractions between low-energy spin degrees of freedom
[2], raising the prospect of realizing a variant of the
compass model [3] with a spin liquid ground state and
fractionalized Majorana excitations, known as the Ki-
taev model [4], in some transition-metal insulators [5].
A considerable theoretical and experimental effort has
been dedicated to the honeycomb-lattice materials such
as α-RuCl3 [6–22], with many other transition-metal and
rare-earth compounds of various lattice geometries also
investigated in this context [23–40].

While it has been well-understood that the aforemen-
tioned interplay of SOC and crystal-field effects generally
leads to the other anisotropic terms beyond the coveted
Kitaev interaction [41–43], it is only recently that the
richness provided by these terms has become a central fo-
cus of the wider studies. The so-called extended Kitaev-
Heisenberg (KH) model that includes all terms allowed
by the lattice symmetries has shown exceptionally fertile
phase diagram [44–52]. Moreover, many materials that
are expected to be closely described by this model have
also demonstrated a remarkable variety of unusual phases
that include uncommon collinear states originating from
competing interactions [53–55] and exotic non-collinear
counter-rotating spirals [56–58], some of which are poorly
understood. Notably, the KH model on a triangular lat-
tice also offers a wide array of exotic states, such as Z2

vortex crystal and multi-Q spirals [59–61].
It is impossible for us to express sufficient amazement

at the complexity of the overall problem, as even an ap-
proximate, quasiclassical exploration of these states and

their excitations is often not a trivial issue. To challenge
the theoretical progress further, the anisotropic-exchange
terms can result in pronounced quantum fluctuations, af-
fecting ground state and excitation spectra in both zero-
field ordered states [62, 63] and in the fluctuating nom-
inally polarized phases [64–76], making the analysis of
them less than straightforward.

It has been suggested that the excitation spectra in
all ordered phases should demonstrate universal features
in the form of the broad, continuum-like modes, owing
to strong magnon interaction [77] that comes from the
strong coupling of all spin components due to SOC. While
fascinating on their own, these features may also give
a potential “false-positive” signal of a spin liquid if the
broad spectrum on itself is naively taken as a sign of frac-
tionalized excitations instead. Therefore, a constructive
discussion of the quantum effects in the ordered phases
is crucial for an understanding of the properties of the
model and of experiments.

Unfortunately, a consistent consideration of excitations
in the extended Kitaev-Heisenberg model is, generally, a
cumbersome procedure, as even the linear approxima-
tion requires a numerical diagonalization of large matri-
ces due to complexity of the Hamiltonian and the states
themselves [78, 79]. However, as was first pointed out in
Ref. [79], one can search for a subset of the parameter
space that allows for a more straightforward calculations
of the non-linear effects, but is still representative of the
wider phase diagram.

In this work, we provide further insights into the na-
ture of quantum effects in the spectra of generalized
Kitaev-Heisenberg model by exploring a different part
of the phase diagram that is complementary to the re-
gion discussed previously [79]. We refer to this param-
eter subspace as to the easy-plane, because if written in
crystallographic axes related to the planes of magnetic
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ions [7], bond-dependent and bond-independent terms
of the model contain interactions only between the in-
plane spin components. As we demonstrate, diagonaliza-
tion of the bosonic spin-wave Hamiltonian in this sub-
space can be done via a simple combination of the uni-
tary and paraunitary transformations, making the sub-
sequent calculation of the non-linear terms rather unbur-
densome. Our approach also demonstrates, once again,
that a parametrization of extended Kitaev-Heisenberg
model in crystallographic axes can be extremely bene-
ficial for an exploration and better understanding of its
phase diagram [80].

In the present study, we focus on quantum effects in the
zigzag and field-induced paramagnetic phases for a repre-
sentative set of parameters from the easy-plane subspace.
Remarkably, the region that we study, corresponds to an
extension of the honeycomb 120◦ compass model, which
has drawn attention in the past in the context of models
and compounds with orbital degeneracy [3]. We point out
that our easy-plane choice of parameters, rewritten us-
ing cubic axes parametrization in which generalized KH
model is typically written, corresponds to all principal
symmetry-allowed terms of the model, K, J , and Γ, be-
ing of the same order. This makes a convincing case that
although we do not attempt to study the entire phase
diagram of an extended KH model, our consideration is
relevant to a much wider parameter space, which should
retain all the thought-provoking spectral features that we
demonstrate.

Utilizing the benefits of analytical approach to the
spin-wave theory, we can calculate magnon self-energy
explicitly. We show that quantum effects, such as spon-
taneous magnon decays and spectrum renormalization
[81], are sizable in both zero-field zigzag and high-field
polarized phases. In the polarized phase, a strong diver-
gence in the spectrum renormalization at the critical field
is also observed. Previously, it has been suggested that
this singularity signifies a renormalization of the critical
field, see Ref. [82], but the problem with the unphysical
spectrum was left unresolved. In this study, we present
a method to regularize such a divergence that should be
relevant to a large class of anisotropic-exchange models
with complex ground states.

We have also analyzed quantum effects in the phase
diagram of the considered model using numerical density
matrix renormalization group (DMRG) method [83, 84].
We have confirmed that the strong spectrum renormal-
ization effects that we find in the zigzag and polarized
phase correspond to a shift of the phase boundaries. Ac-
cording to the DMRG results, the area occupied by the
zigzag phase contracts in the regions where the spin-wave
theory predicts strong renormalization that can yield
spectrum instabilities. The numerical calculations in the
polarized phase also confirm the downward renormaliza-
tion of the critical fields relative to their classical values.

Recent spectroscopic experiments in α-RuCl3, such
as electron spin resonance (ESR), time-domain tera-
hertz spectroscopy, and Raman scattering [85–89], have

demonstrated unusual features in the polarized phase.
These include nearly gapless q = 0 excitations and a sig-
nificant spectral weight of the continuum above the one-
magnon mode at the critical field, both in contrast with
the linear spin-wave theory prediction. In the present
work, by using the non-linear 1/S-approach, we repro-
duce these features of the dynamical spin structure factor
in the polarized phase for representative sets of param-
eters of our model . Although our model is not directly
applicable to α-RuCl3 [80], it clearly points to the fact
that this phenomenology is not unique and should be
general for the extended Kitaev-Heisenberg model and
related compounds.

Our paper is structured as follows. We introduce the
easy-plane anisotropic-exchange Hamiltonian and map
out its classical phase diagram in Sec. II. The linear
and non-linear spin-wave spectra in the zigzag state are
discussed in Sec. III. Section IV presents results for the
spectrum in the field-polarized phase in the on-shell and
off-shell approximations. The approach to a regulariza-
tion of the singularity at the critical field is presented
in Sec. IV C. The dynamical structure factor and its fea-
tures that are relevant to the experiments are discussed
in Sec. V. We conclude by Sec. VI and additional details
are provided in Appendixes.

II. EASY-PLANE ANISOTROPIC-EXCHANGE
MODEL AND CLASSICAL PHASE DIAGRAM

Generally, the anisotropic-exchange models of insula-
tors with strong SOC do not retain the SU(2) spin sym-
metry. Due to crystal-field effects, all anisotropic terms
beyond Heisenberg interaction are allowed, provided they
respect discrete symmetry of the lattice [2, 41, 90, 91].
Therefore, the general form of a bilinear interaction of
the low-energy spin Hamiltonian can be written as

Ĥ =
∑
〈ij〉n

ST
i Ĵ

(n)
ij Sj (1)

where ST
i = (Sxi , S

y
i , S

z
i ), 〈ij〉n denotes n-th nearest-

neighbor sites, and Ĵ
(n)
ij is a 3×3 exchange matrix. The

elements of Ĵ
(n)
ij matrices are constrained by the symme-

try of the lattice and typically depend on the orientation
of the bond.

In this work, we study extended Kitaev-Heisenberg
spin-exchange model on the honeycomb lattice of mag-
netic ions with the lattice symmetry given by the edge-
sharing octahedral environment of ligands [90]. In ad-

dition to the nearest-neighbor interaction Ĵ
(1)
ij , we also

include third-nearest neighbor term Ĵ
(3)
ij as a proxy of all

further-neighbor interactions and also because it is often
found to be significant in various transition-metal insula-
tors with the honeycomb-lattice structure [24, 41, 92–98].
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FIG. 1. (a) The classical phase diagrams of the model (2) in the J0-K-Γ parameter space for Γ > 0 and for three representative

values of Γ′ in units of
√
J2

0 +K2 + Γ2. The legend shows sketches of the single-Q phases, incommensurate phases are shown
in gray. The blue, green, and red points in (a) and (b) are the same and are related via Eq. (7), see the text. (b) The classical
phase diagram of the J-J±±-J3 model (9) for J3 > 0. The magenta points in the zigzag phase are representative parameter sets
used later in this work. (c) The honeycomb lattice of magnetic ions with A and B sublattices, the nearest- and third-nearest-

neighbor vectors, δα and δ
(3)
α , {X,Y,Z} types of bonds for the KH model (2), and the cubic, {x,y,z}, and crystallographic,

{x, y, z}, axes. (d) Brillouin zone (BZ) of the honeycomb lattice with the ordering vectors of the single-Q phases.

A. Nearest-neighbor model

In the presence of anisotropy, the form of Ĵ
(n)
ij is not in-

variant under the rotation of the spin quantization axes.
Because of the perceived prevalence of anisotropic terms,
the conventional choice for such axes are the ones asso-
ciated with the metal-ligand bonds in the idealized octa-
hedra, referred to as the cubic axes {x,y,z}, illustrated in
Fig. 1(c), not the ones affiliated with the planes of mag-
netic ions. In these axes, the nearest-neighbor part of the
model (1), with four terms that are allowed by the lattice
symmetry, is the generalized Kitaev-Heisenberg model

Ĥ1 =
∑
〈ij〉1

{
J0Si · Sj +KSγi S

γ
j + Γ

(
Sαi S

β
j + Sβi S

α
j

)
+Γ′

(
Sγi S

α
j + Sγi S

β
j + Sαi S

γ
j + Sβi S

γ
j

)}
. (2)

Here the sum is taken over three types of bonds of the
honeycomb lattice that are denoted as X,Y, and Z, with
corresponding nearest-neighbor vectors δ2, δ3, and δ1,
shown in Fig. 1(c). Thus, {α, β, γ} = {x,y,z} for the
Z-type bond and interactions on the other bonds are ob-
tained via a cyclic permutation of indices.

This model (2) has been thoroughly explored in the
quantum S= 1/2 and classical limits, with the single-Q
ordered phases that include ferromagnetic (FM), Néel an-
tiferromagnetic, 120◦, stripy, and zigzag phases, as well
as various incommensurate ordered and quantum disor-
dered states identified in its phase diagram [99–106]. The

middle panel of Fig. 1(a) shows the classical phase dia-
gram for Γ′ = 0 and Γ > 0, with the bottom and top pan-
els showing its evolution with finite Γ′. The legend of Fig-
ure 1 sketches the single-Q ordered states and Fig. 1(d)
explicates the ordering Q-vectors associated with them:
Γ-point for the FM and Néel, K or K′ for the 120◦, and M
or Y for the stripy and zigzag states. These results are
obtained using Luttinger-Tisza approach [59, 80, 107–
111] to the model (2), see details in Appendix A. This
phase diagram also agrees with the prior work on the
same model [79, 80, 91].

We would like to focus on a particular parameter set

Γ′ = 0, K = Γ = −J0, (3)

for J0 < 0, which is marked in the phase diagram in the
middle panel of Fig. 1(a) by the green dot. This point
is tricritical between the ferromagnetic, zigzag, and 120◦

phases. As was pointed out in the earlier studies [91], the
macroscopic degeneracy can be easier seen if the model is
rewritten as a single-parameter honeycomb 120◦ compass
model [3]

Ĥc = Jc
∑
〈ij〉1

(
δ̂ij · Si

)(
δ̂ij · Sj

)
, (4)

where Jc = −2K and δ̂ij are the unit vectors of the
nearest-neighbor bond direction of the lattice. This
model has attracted interest in the context of the p-
band Mott insulators [112] and of the eg Kugel-Khomskii
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model on the honeycomb lattice [113–115]. Lifting the
macroscopic degeneracy in the model (4) has been con-
sidered in both classical and quantum S = 1/2 limits
[116–119].

One can lift the degeneracy of this special point by in-
troducing further terms to the compass model (4). A par-
ticularly straightforward way that retains the co-planar
character of the coupling in (4) is to enrich it by the
easy-plane (XY ) exchange interactions

Ĥ = Ĥc +
∑
〈ij〉1

J (1)
xy

(
Sxi S

x
j + Syi S

y
j

)
. (5)

Note that the model (5) is already written in a basis that
is different from the cubic axes in (2) and is naturally
tied instead to the plane of magnetic ions, which we will
refer to as the crystallographic axes {x, y, z}, see Fig. 1(c)
for a specific choice of them, with y axis being the C2-
symmetry axis.

It is particularly enlightening now to rewrite the resul-
tant model (5) one more time using a more common “ice-
like” convention for the parametrization of the nearest-

neighbor exchange matrix Ĵ
(1)
ij [38, 90, 120, 121] to make

its easy-plane character explicit

Ĥ =
∑
〈ij〉1

{
J
(
Sxi S

x
j + Syi S

y
j

)
(6)

−2J±±

((
Sxi S

x
j − S

y
i S

y
j

)
cα −

(
Sxi S

y
j + Syi S

x
j

)
sα

)}
.

Here the shorthand notations are cα ≡ cos ϕ̃α and sα ≡
sin ϕ̃α, bond-dependent phases ϕ̃α = {0, 2π/3,−2π/3}
are the angles of the nearest-neighbor vectors δα shown
in Fig. 1(c) with the y axis, and spin components are in
the {x, y, z} crystallographic axes. The “ice-like” (6) and
the “compass-like” (5) model parameters are related via

Jc = 2J±± and J
(1)
xy = J − 2J±±, with the pure compass

Jc-only model (4) corresponding to J±± = J/2.

It is now essential to reflect on the fact that the lattice
symmetry of the honeycomb lattice with an edge-sharing
octahedral environment of ligands allows four indepen-
dent parameters in the nearest-neighbor anisotropic-
exchange model, regardless of the parametrization of the
latter. It is clear that the model (6) is restricted com-
pared to the extended KH model (2), as it only contains
two in-plane terms, J and J±±, and is missing the cou-
plings involving the out-of-plane spin components, the
XXZ-term ∆Szi S

z
j and the Jz±-term that couples Sz to

the in-plane Sx(y) components, see Appendix A for the
full model in the “ice-like” parametrization.

It is important to connect the easy-plane anisotropic-
exchange model (6) back to the cubic-axis parametriza-
tion of the extended KH model (2). A straightforward
linear transformation, corresponding to a rotation from
the cubic to the crystallographic axes, see Appendix A,

yields a simple translation table

J0 =
2

3

(
J + J±±

)
, K = −2J±±,

Γ = −1

3

(
J + 4J±±

)
, Γ′ = −1

3

(
J − 2J±±

)
, (7)

which implies that, generally, all four interactions of the
extended Kitaev-Heisenberg model are non-zero in the
parameter subspace spanned by the easy-plane model.

Perhaps a more informative result is the relations be-
tween the parameters of the extended KH model that are
imposed by the easy-plane parameter subspace. Such re-
lations can be easily inferred from Eq. (7)

J0 = −
(
Γ + Γ′

)
, K = Γ− Γ′, (8)

where Γ and Γ′ are chosen as the two independent pa-
rameters of such a restricted KH model. Clearly, Γ′= 0
brings us back to the special tricritical K=Γ=−J0 point
of Eq. (3) that has inspired this consideration.

The one-dimensional (1D) path illustrated in Fig. 1(a)
passes through the tricritical point (3) in the Γ′ = 0
panel and is going through different phases for different
choices of Γ′ according to (8). The relation of this path
to the easy-plane model (6) is demonstrated in Fig. 1(b).
The tricritical point in the ice-like parameters is given by
J±± = J/2 < 0 and is shown as a green dot on the outer
rim (J3 = 0) of the J-J±±-J3 phase diagram in Fig. 1(b).
The two other representative points along this rim, which
are shown by the red and blue dots in Fig. 1(b), corre-
spond to the choice of J±± = J and J±± = 0.25J , re-
spectively, and to the red and blue dots in the upper and
lower panels of Fig. 1(a). The choice of the constant Γ′

(in units of
√
J2
0 +K2 + Γ2) in these panels corresponds

to its value at these representative points that can be de-
ducted from Eq. (7). Thus, each point on the outer rim of
the J-J±±-J3 phase diagram in Fig. 1(b) corresponds to
a single point in a J0-K-Γ slice of the three-dimensional
(3D) phase diagram of the model (2) for a fixed Γ′.

Altogether, the two-parameter easy-plane anisotropic-
exchange model (6) offers a 1D exploratory path through
the 3D space of the four-parameter extended KH model
(2). This path explores all of the commensurate ordered
phases of the full model, with all parameters of the ex-
tended KH model present but without imposing a fine-
tuning on any of them. Yet, this model (6) allows for sig-
nificantly more straightforward calculations of the non-
linear effects that we pursue in this work, remaining rep-
resentative of the wider phase diagram. The possibility of
such a simplified consideration, suggested by the model
(6), highlights the benefit of using different parametriza-
tions of the anisotropic-exchange models [122].

B. Role of J3

As was mentioned above, in the following we will in-
clude the third-nearest neighbor exchange term in ad-
dition to the nearest-neighbor terms of the model (6).
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This extension abbreviates all further-neighbor interac-
tions into one and takes into account a significance of the
third-neighbor terms in real materials [24, 41, 92–98].

To maintain the easy-plane character of the model (6),

the extra J3-terms are taken in the same form as the J
(1)
xy

extension of the pure compass model in (5), yielding the
three-parameter J-J±±-J3 model

Ĥ =
∑
〈ij〉1

{
J
(
Sxi S

x
j + Syi S

y
j

)
−2J±±

((
Sxi S

x
j − S

y
i S

y
j

)
cα −

(
Sxi S

y
j + Syi S

x
j

)
sα

)}
+J3

∑
〈ij〉3

(
Sxi S

x
j + Syi S

y
j

)
. (9)

It is written in the same “ice-like” notations as the
nearest-neighbor model (6) and this is the parametriza-
tion that will be used exclusively from now on.

Fig. 1(b) demonstrates the role played by the third-
neighbor term in the classical phase diagram of the easy-
plane anisotropic-exchange model (9) for J3 > 0. The
phase diagram contains the same commensurate single-Q
states as the J0-K-Γ diagrams in Fig. 1(a) except for the
stripy phase, which is stabilized by J3 < 0. The J3 < 0
hemisphere of the phase diagram and classical energies
of all commensurate phases are given in Appendix A.

In the rest of the paper we will be focusing on the
zigzag portion of the phase diagram in Fig. 1(b) because
of its relative simplicity and also motivated by a large
number of materials with strong anisotropic exchange in-
teractions that realize such a zigzag order in their ground
states [53–55, 123–125]. As one can see in Fig. 1(b), the
zigzag state occupies a large portion of the phase dia-
gram of the model (9). However, we emphasize that
the third-nearest neighbor interaction is crucial for its
stability, because in the nearest-neighbor model (6) the
zigzag state is stable only at the two tricritical points,
J±± = ±J/2. The scenario that the zigzag order is sta-
bilized by a J3-term has been discussed and significantly
substantiated in a number of studies of closely related
models and materials [24, 77, 80, 92, 98]

As is shown in Fig. 1, there are two types of the zigzag
state that differ by the mutual orientation of the zigzag
and spin patterns, which we refer to as to the zigzag-x
and zigzag-y states. In the former, favored by J±± < 0,
spins align with the zigzag direction, while for the latter,
J±± > 0, spins are perpendicular to it.

The main focus of this work is on the quantum correc-
tions to the spin-wave theory in the zigzag and high-field
polarized phases of the model (9). Generally, for the
complex multiple-sublattice ordered states in the non-
Bravais lattices shown in Fig. 1, even the linear spin-
wave theory (LSWT) consideration requires numerical
diagonalization, making the problem of the non-linear
effects virtually intractable. The fact that such kinds of
calculations can be done analytically for the easy-plane
anisotropic-exchange model (9) is a strong motivation for

its exploration. The next two Sections provide a thor-
ough investigation of the quantum effects in the zero-field
zigzag and the affiliated field-induced polarized states of
the model (9). We argue that the obtained results are
general and the studied model is able to provide insights
into experimentally observed features in real materials.

III. ZERO-FIELD ZIGZAG STATE

Similarly to the same model on the triangular lattice
[122], the structure of the zigzag state in the model (9)
depends on the sign of J±±. The classical energy of the
zigzag state is given by

ecl =
Ecl

NS2
= J + 4J±± cos 2ϕ− 3J3, (10)

where N is the number of atomic unit cells and ϕ is
the angle of spins with the x-axis. Minimization yields
ϕ = π/2 for J±± > 0 and ϕ = 0 for J±± < 0, zigzag-y
and zigzag-x states in Fig. 1, respectively, making ecl =
J − 4|J±±| − 3J3 for both cases.

A. Two-sublattice approach

The spin-wave theory requires a diagonalization of the
2Ns × 2Ns matrix after bosonization of the exchange
Hamiltonian [78], where Ns is the number of magnetic
sublattices. Generally, for Ns ≥ 2 this procedure can
only be done numerically. However, it is known that
there are cases in which diagonalization can be performed
analytically even for the complex ordered states and lat-
tices [79, 126–128]. The procedure that we demonstrate
here is based on a combination of the unitary and para-
unitary transformations, which also utilizes higher sym-
metry of the zigzag state in model (9).

Within the spin-wave theory, the key transformation
is the rotation of the spin quantization axis from the
laboratory reference frame to the local one, with the local
z-direction on each site given by the spin configuration
obtained from minimization of the classical energy.

In the zigzag-x state, using its sketch in Fig. 1 as a
guidance, spin transformation from the laboratory to the
local reference frame for the A(B) sublattices is given by(

Sxi , S
y
i , S

z
i

)
lab

=
(
± eiQr`Szi , S

x
i ,±eiQr`Syi

)
loc
, (11)

where we choose Q=(0, 2π/3a) as the ordering vector of
the zigzag structure with the horizontal direction of the
zigzag pattern, a is the interatomic distance, coordinates
r` = na1+ma2 correspond to the A-sublattice with the
primitive vectors of the honeycomb lattice a1 = δ2 − δ1
and a2 = δ3 − δ1, and ri = r` + ρα are the coordinates
of the atoms, with ρ1 = (0, 0) and ρ2 = δ1 = (0, a). This
transformation introduces axes that follow the staggered
pattern of the zigzag state with the phase factor eiQr` =
(−1)n+m, retaining the two-sublattice structure of the
honeycomb lattice.
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Note that the Hamiltonian (9) is invariant under simul-
taneous in-plane π/2-rotation of spins and change of the
sign of the J±±-term. This is identical to the anisotropic
model on the triangular lattice for the stripe-x and stripe-
yz states [122]. Due to this symmetry, the Hamiltonians
for the zigzag-x and zigzag-y states reduce to the same
form when written in the local spin axes

Ĥloc =
∑
i,δ1

{(
J − 2 |J±±|

)
Sxi S

x
j −

(
J + 2 |J±±|

)
Szi S

z
j

}
+
∑
i,δ2,3

{(
J + |J±±|

)
Sxi S

x
j +

(
J − |J±±|

)
Szi S

z
j

)
− 2 |J±±| eiQri

(
Sxi S

z
j + Szi S

x
j

)
sα

}
+J3

∑
i,δ

(3)
α

(
Sxi S

x
j − Szi Szj

)
, (12)

where i ∈ A, rj = ri + δ(δ(3))α, and we used explicit
values of cos ϕ̃α={1,−1/2,−1/2} and sin ϕ̃1 = 0 for the
bond-dependent phases ϕ̃α in (6), leaving the shorthand

notation of sα=sin ϕ̃α=±
√

3/2 for the δ2(3) bonds.

We note that already at this stage, the simplified na-
ture of the easy-plane model (9) and of the coplanar
ground state manifest themselves in an explicitly two-
sublattice form of the “diagonal” part of the Hamilto-
nian (12), which yields the LSWT below, as they do not
contain phase factors associated with the zigzag order-
ing vector Q. The terms that do are “off-diagonal” and
contribute only to the higher 1/S order. This is differ-
ent in a more general model because extra terms and the
out-of-plane tilt of the zigzag structure generally do not
permit the four-to-two-sublattice reduction, see Ref. [79].

B. Linear spin-wave formalism

Here we present basic steps of the linear spin-wave the-
ory formalism and outline the key features of our model
that allow for a simplified analytical treatment.

The standard bosonization of spin operators is the
Holstein-Primakoff transformation,

Sz`,α = S − a†`,αa`,α, S+
`,α ≈

√
2S a`,α, (13)

where z is the local quantization axis, ` and α = 1, 2
numerate unit cells and bosonic species on the sublattices
A and B, respectively, and below we use a1(2) ≡ a(b)
interchangeably. Next is the Fourier transform

a`,α =
1√
N

∑
k

eik(r`+ρα)aαk , (14)

where N is the number of unit cells, r` and ρα are defined
after Eq. (11), and k sums over the full Brillouin zone of
the honeycomb lattice, shown in Fig. 1(d).

After the Fourier transform, the linear spin-wave part
of the Hamiltonian (12) is given by

Ĥ(2) =
∑
k

{
Ã
(
a†kak + b†kbk

)
(15)

+
(
B̃ka

†
kbk + B̃ka

†
kb
†
−k + H.c.

)}
,

with Ã and B̃k given by

Ã = S
(
− J + 4|J±±|+ 3J3

)
,

B̃k = 3S
(
Jγk − 2|J±±|γ′k + J3γ

(3)
k

)
/2, (16)

where the hopping amplitudes are

γk =
1

3

∑
α

eikδα , γ
(3)
k =

1

3

∑
α

eikδ
(3)
α , (17)

γ′k =
1

3

∑
α

cos ϕ̃αe
ikδα .

We note that in the high-field polarized phase that we
study in Sec. IV, the spin Hamiltonian naturally assumes
the two-sublattice form, so that the linear spin-wave part
of it takes the form identical to (15), but with different

Ã and B̃k that are given in Sec. IV.
A general two-sublattice bosonic model still leads to a

problem of diagonalization of the 4×4 matrix. While this
problem is often reducible to an analytically treatable di-
agonalization of (ĝĤk)2 [122], where ĝ = [1, 1,−1,−1]

is a paraunitary diagonal matrix and Ĥk is the LSWT
Hamiltonian matrix, the resultant formalism is rather
cumbersome, especially for the non-linear extension of
the spin-wave theory that we pursue, see Ref. [79].

An important distinction of the model (15) in our case
is that it is diagonalizable by much simpler means and re-
sults in a much more manageable non-linear theory. Not
only this LSWT Hamiltonian has fewer elements in its
matrix, but, crucially, the “normal” (a†b) and “anoma-
lous” (a†b†) matrix elements in its second line are the
same. This important feature allows us to split the diag-
onalization problem in an intuitively clear two-step pro-
cess described next. This form of the model (15) can be
traced all the way back to the easy-plane nature of the
spin Hamiltonian in Eq. (9), and, while it may look ar-
tificial, it should in no way be restrictive of the physical
results that we obtain from it as was discussed earlier.

The first step of the diagonalization of the Hamilto-
nian (15) is a unitary transformation from the operators
a1(2)k ≡ ak(bk) to their symmetric and antisymmetric

combinations, with the phase factor eiϕk of B̃k absorbed
symmetrically in the operators of both species [128]

aαk =
ei(−1)

α+1ϕk/2

√
2

∑
µ

V αµcµk , (18)

where the 2× 2 matrix V̂ is

V̂ =

(
1 1
−1 1

)
. (19)
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Φ ΞΦ* Ξ*(a)

(b)

Ξ Φ* Φ* Ξ(c)

FIG. 2. (a) Decay and source diagrams for the 1/S con-
tribution to the self-energy (26) and (27) from the three-
magnon interactions. (b) The Hartree-Fock diagram from the
four-magnon interactions. (c) The off-diagonal diagrams con-
tributing to the anomalous self-energy terms, see Sec. IV C.

After this transformation, the LSWT Hamiltonian is
block-diagonal in the new bosonic index µ = 1, 2

Ĥ(2) =
∑
k,µ

{
Aµkc

†
µkcµk−

Bµk
2

(
cµkcµ−k+H.c.

)}
, (20)

with

Aµk = Ã+ (−1)µ|B̃k|, Bµk = (−1)µ+1|B̃k|. (21)

The second step is the textbook paraunitary Bogolyubov
transformation for the individual bosonic species

cµk = uµkdµk + vµkd
†
µ−k , (22)

with the parameters defined by 2uµkvµk =Bµk/εµk and
u2µk +v2µk =Aµk/εµk, where the linear spin-wave energies
are given by

εµk =
√
A2
µk −B2

µk . (23)

Thus, the spin-wave spectrum consists of two branches,
ε1k and ε2k, which will be loosely referred to as the acous-
tic and the optical modes. Note that the observed spec-
trum still consists of four modes due to the four-sublattice
structure of the zigzag state. The additional two modes
are obtained from εµk by the shift with the ordering vec-
tor Q, see Sec. III F and Appendix B.

C. Non-linear spin-wave formalism

To study quantum effects in the excitation spectra due
to magnon interactions, the higher-order 1/S anharmonic
terms in the bosonic Hamiltonian are needed.

The most qualitatively important effects are induced
by the three-magnon terms, which originate from mix-
ing the Sx and Sz spin components in the anisotropic
J±± coupling in (12) due to the broken SU(2) symmetry.
Skipping the technical steps of the Holstein-Primakoff,
Fourier, unitary (18), and Bogolyubov (22) transforma-
tions in these terms, which are exposed in Appendix B in

some detail, one arrives to the general form of the cubic
Hamiltonian for the magnon normal modes

Ĥ(3) =
1

3!
√
N

∑
∑

ki=Q

∑
ηνµ

(
Ξηνµqkpd

†
ηqd
†
νkd
†
µp + H.c.

)
(24)

+
1

2!
√
N

∑
∑

ki=Q

∑
ηνµ

(
Φηνµqk;pd

†
ηqd
†
νkdµ−p + H.c.

)
,

where the combinatorial factors are due to symmetriza-
tion in the source and decay vertices,

∑
ki = p+k+q,

Q=(0, 2π/3a) is the ordering vector of the zigzag struc-
ture, and explicit expressions for the vertices Φηνµqk;p and

Ξηνµqkp are also given in Appendix B. Note that the cubic

coupling in (24) is umklapp-like: momentum in the decay
process is conserved up to the ordering vector Q. This
is reminiscent of the case of the square-lattice antiferro-
magnet in a field of Ref. [129]. Similarly to the LSWT,
the form of the cubic terms in (24) remains the same for
the field-polarized state considered in Sec. IV, but with
the ordering vector Q = 0 and different expressions for
the vertices, see Appendix B.

The two lowest-order diagrams from the three-magnon
interactions that contribute to the spectrum, the “decay”
and the “source” diagrams, are shown in Fig. 2(a), with
the self-energy

Σ(3)
µ (k, ω) = Σdµ (k, ω) + Σsµ (k, ω) , (25)

where

Σdµ (k, ω) =
1

2N

∑
q,ην

∣∣Φηνµq,k−q+Q;−k
∣∣2

ω − εηq − ενk−q+Q + i0
, (26)

Σsµ (k, ω) = − 1

2N

∑
q,ην

∣∣Ξηνµq,−k−q+Q,k

∣∣2
ω + εηq + εν−k−q+Q − i0

. (27)

The same parts of the spin Hamiltonian (12) that give
the linear spin-wave terms yield the four-boson interac-
tions that contribute the Hartree-Fock corrections to the
spectrum in the same 1/S-order as the three-magnon in-
teractions. Deferring technical details to Appendix B,
the corresponding correction to the LSWT Hamiltonian
Ĥ(2) in Eq. (20) can be found in a standard manner and
is given by

δĤ(4) =
∑
k,µ

{
δA

(4)
µkc
†
µkcµk−

1

2

(
δB

(4)
µk c
†
µkc
†
µ−k+H.c.

)}
.

(28)

The Hartree-Fock 1/S-correction to the spectrum, shown
diagrammatically in Fig. 2(b), is given by

δε
(4)
µk =

AµkδA
(4)
µk − Re

(
δB

(4)
µk

)
Bµk

εµk
, (29)

with the explicit form of δA
(4)
µk and δB

(4)
µk given in Ap-

pendix B.
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Thus, the self-energy that contributes to the spectrum
in the 1/S-order is given by

Σµ(k, ω) = δε
(4)
µk + Σ(3)

µ (k, ω). (30)

D. Quantum effects in the spectrum

As is shown above, calculation of the magnon spectra
εµk and self-energies Σµ(k, ω) for the model (9) is ana-
lytically straightforward in the zigzag state.

The results of the calculations of the spectrum within
the linear and non-linear approximations are shown in
Fig. 3 for the representative values of J±± and J3 in
that state. The selected parameter sets are shown by the
two magenta points in the phase diagram in Fig. 3(a).
Their coordinates are J±± = 0.2J and 0.4J , J3 = 0.5|J |,
all for J < 0 (calculations for J3 = |J | are shown in
Appendix B). Rewriting them in the generalized Kitaev-
Heisenberg language using Eq. (7) gives

J±±=0.2J→{J0,K,Γ,Γ′}={−1, 0.5, 0.75, 0.25}, (31)

J±±=0.4J→{J0,K,Γ,Γ′}={−1, 0.86, 0.93, 0.07},

with the normalization of J0 =−1. As was argued above,
all terms of the extended KH model that correspond to
our considered subspace of parameters are significant.

Fig. 3(c) shows the linear spin-wave spectrum εµk from
(23) together with the renormalized on-shell spectrum
ε̃µk and the magnon decay rate Γµk defined as

ε̃µk = εµk+Re Σµ(k, εµk), Γµk = −ImΣµ(k, εµk), (32)

with Σµ(k, ω) from (30), all along the contour in
Fig. 3(b). Note that the dashed part of the contour is
omitted in (c) since the X → Γ part of the path is re-
dundant to Y → Γ′ and the Γ′ → M is equivalent to
Γ→ M. Again, because of the two sublattices, there are
two inequivalent magnon modes in these results that are
defined in the full BZ of the honeycomb lattice.

There are several features of the linear spin-wave spec-
trum that should be pointed out. Generally, the spec-
trum is gapped due to the presence of the symmetry-
breaking bond-dependent anisotropic J±± term, with the
gap at the ordering vector Q = Y that increases with
both J±± and J3. However, this gap vanishes upon ap-
proaching the {J±±, J3} = {0.5J, 0} point, which corre-
sponds to the aforementioned honeycomb 120◦ compass
model (4) marked as a green dot in Figs. 1(a) and (b)
and in Fig. 3(a), see Sec. III F for a discussion of the
spectrum at this tricritical point.

Even though the spectrum is gapped at the ordering
vector, there is another “pseudo-Goldstone” mode with
a rather small gap located at the M point, which is not
the ordering vector. These low-lying modes are present
in the spectrum due to proximity of our model to a sim-
pler J1–J3 model. This model possesses a true acciden-
tal degeneracy because the third-neighbor interaction J3

splits the honeycomb lattice into four sublattices, while
nearest-neighbor J1 can constraint only a linear combi-
nation of spins from these four sublattices, see [130]. The
degeneracies of that nature are common in the spectra of
frustrated models such as that on the triangular lattice
[122, 131, 132]. As we show below, these quasi-Goldstone
modes are crucial for the non-linear quantum corrections,
providing the low-lying two-magnon continuum for the
single-magnon modes to interact with.

The middle panels in Fig. 3(c) shows ε̃µk, the magnon
spectrum (32) with the on-shell one-loop quantum cor-
rections. One can see a substantial downward renormal-
ization of the spectrum compared to the LSWT, which
is most prominently pronounced near the Y point. This
is due to a direct coupling to the two-magnon contin-
uum provided by the three-magnon terms in (24). The
two-magnon density of states is shown as an intensity
map in the top panels of Fig. 3(c). The renormaliza-
tion becomes more significant with the increase of the
anisotropic J±± term. This is obvious from the fact that
the three-magnon interaction originates only from the
SxSz terms in the bond-dependent part of the Hamil-
tonian (12), which, in turn, exists only because of the
SOC-induced anisotropic interaction J±±. There is also
an enhancement of the renormalization due to van Hove
singularities in the two-magnon continuum that mani-
fest themselves in the self-energy, which can lead to an
instability in the spectrum, ε̃µk < 0 at large |J±±|. The
magnitude of the third-neighbor interaction J3 also af-
fects spectrum renormalization, but indirectly through
the larger LSWT gaps that modify the density of states
in the two-magnon continuum, see Appendix B.

We should point out a peculiar feature of the renormal-
ized spectrum ε̃µk. The self-energies of the two modes
are not equal at the band-crossing point k∗ given by the
LSWT, see Fig. 3(c). This effect can also be observed
in the imaginary part of the self-energies in the bottom
panels of Fig. 3(c). One can also see that the band cross-
ing point of the renormalized spectra shifts to a different
k-point due to that difference in renormalization. How-
ever, self-energies appear to be smooth functions of the
momentum at the crossings

Σ1(k∗ − q)→ Σ2(k∗ + q), q→ 0 . (33)

This is an interesting feature that requires further inves-
tigation, and it is related to the phase factor ϕk in the
wave function (18) and the fact that the LSWT band-
crossing point k∗ for a generic set of parameters of the
model (9) is not determined by the lattice symmetries
and is not a high-symmetry point.

The three-magnon interaction also yields the finite life-
time of magnons, given by the imaginary part of the self-
energy (32), Γµk. As is shown in Fig. 3(c), the low-energy
parts of the lower magnon branch are typically stable in
most of the Brillouin zone because of the lack of the phase
space for decays for them. An important aspect of the
three-magnon coupling in (24) that stems from the struc-
ture of the anisotropic coupling in (12), is that the mo-
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FIG. 3. (a) Classical phase diagram of the model (9) in Cartesian coordinates with parameter sets (31) marked by magenta
dots, cf. Fig. 1(b). (b) BZ of the honeycomb lattice (hexagon) and the first magnetic BZ of the zigzag state (small rectangle).
High-symmetry points and the representative k-path are indicated. In (c), only the solid parts of this path are used due to
the symmetry of the spectrum. (c) Linear spin-wave spectrum, εµk, two-magnon continuum, renormalized spectrum, ε̃µk, and
magnon decay rates, Γµk, for the representative parameter sets of J±± and J3 (31) and S = 1/2 are shown.

mentum in the decay process is conserved up to the order-
ing vector of the zigzag structure Q. This means that the
single-magnon branch couples to the two-magnon contin-
uum that is offset by that momentum. Because of that,
the magnons from the lower branch in the vicinity of
the Y point are significantly affected by the renormaliza-
tion and decay processes into the pairs of the low-energy
pseudo-Goldstone magnons modes that are in the prox-
imity of the M points. The high-energy modes typically
acquire finite lifetime in a larger portion of the Brillouin
zone with a significant decay rate for large |J±±|, yield-
ing strongly damped excitations. Qualitatively similar
features have been found by the inelastic neutron scat-
tering in α-RuCl3 [77, 80, 133], where stable low-lying
spin-wave modes have been observed in coexistence with
the higher-energy continuum.

E. Quantum effects in the phase diagram, DMRG

Here we complement our discussion of the quantum
effects in excitation spectra by an analysis of the con-
comitant effects in the ground state phase diagram of
the model (9). Specifically, we investigate a possibility of
the shifts of the phase boundaries for the considered case
of the S = 1/2 model relative to the classical phase dia-
gram in Fig. 1(b) obtained by LT calculation. For that
we use density matrix renormalization group [83]. We
perform calculation on the 6 × 8-site cluster with open
boundaries, see Fig. 4, using ITensor package [84] with
10 sweeps, and keeping up to m = 200 states. Calcu-
lations were performed for the parameter sets shown in
Fig. 4 by the open circles. The color coding for the states
is the same as in Fig. 1. Note that since the model (9)

is symmetric under J±± → −J±± (with a simultaneous
π/2 spin rotation), we only perform calculations for the
lower half of the phase diagram, J±± < 0. For the rela-
tively small cluster size and for the robust ordered states,
the number of sweeps and that of the kept states appear
to be sufficient. We identify transitions between differ-
ent phases by finding the maximal value of the static

0

φ = π/2

π

3π/2

θ = π/2

J=cos φ sin θ
J±± =sin φ sin θ
J3 =cos θ

120∘
3π/8

π/8zigzag-y
Néel AFM

FM

zigzag-x

π/4

FIG. 4. DMRG phase diagram for S = 1/2 (colors and solid
lines) and classical Luttinger-Tisza phase diagram (dashed
lines) from Fig. 1(b) of the model (9). DMRG calculations
were performed on a 48-site cluster for the parameters indi-
cated with open symbols and the solid boundaries are ob-
tained via interpolating between DMRG points, see the text.
The inset shows the cluster used in DMRG.
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spin structure factor and identifying its ordering vector.
The transitions between the phases are also verified via
anomalies in the ordered on-site magnetic moment. The
resultant lines of the phase boundaries are obtained by
interpolations between the DMRG points and serve as
guides to the eye. In order to check the validity of such
interpolations, we have also performed additional calcu-
lations keeping up to m = 400 states, which are shown n
Fig. 4 by the open squares.

The resultant DMRG phase diagram for the S = 1/2
case of the model (9) is presented in Fig. 4, where the shift
of the boundaries between zigzag and 120◦ phases com-
pared to the classical LT results is clearly demonstrated.
This trend is broadly in agreement with the findings of
our 1/S analysis of the excitation spectra provided above,
which predicts strong spectrum renormalization, poten-
tially leading to spectrum instability of the zigzag state
in the same region of the parameter space. The expan-
sion of the fluctuation-prone 120◦ state at the expense of
the proximate collinear state in the anisotropic-exchange
models in the quantum limit is also in agreement with
the similar results in the triangular-lattice case [122].

For the other phase boundaries in Fig. 4, the classical
model works very well even in the S = 1/2 case. One
more significant change that should be pointed out is the
lack of the narrow region of the incommensurate state
at the FM-zigzag border, showing instead a direct tran-
sition between the two states. We note that the small
cluster size used in our calculations may be insufficient
to capture narrow regions of incommensurate states, but
they are outside of the scope of our work.

F. Special case of the 120◦ compass model

Here we briefly consider excitation spectrum and ef-
fects of magnon decay in them at a special point of the
phase diagram of the model (9), the 120◦ compass model
(4), which corresponds to J±± = J/2< 0 and J3 = 0 in
the model (9), or K = Γ =−J0> 0 and Γ′= 0 in the ex-
tended Kitaev-Heisenberg language (2). This tricritical
point is marked by the green dot in the phase diagrams
in Figs. 1(a) and (b), Fig. 3(a), and Fig. 4, and it was
inspirational for the easy-plane model considered in this
work as is discussed in Sec. II.

This special point was discussed earlier in Ref. [79], but
without presenting explicit spin-wave calculations for it.
That work has also explored a different extension of the
model around this point and has used a more general but
more cumbersome analytical procedure that relied on the
four-sublattice diagonalization [79]. Here, we are using
the two-sublattice approach discussed above and present
the results for the on-shell magnon decay rates Γµk (32)
in Fig. 5.

A distinctive feature of this tricritical point is that the
lower magnon mode in its zigzag spectrum is gapless, see
the upper panel of Fig. 5. The two of the four magnon
branches are obtained by the shift of the two original

acoustic

optical

shifted by Q

shifted by Q
optical

acoustic

X Γ Y Γ′ M Γ
0

5

10

15

20

Γ
k
/|J
|

X Γ Y Γ′ M Γ
0
0.5

1

1.5

2

2.5

3

ε k
/|J
|

Y

X K'
Г

Г'
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K

FIG. 5. Upper panel: LSWT magnon bands of the model (4),
which is equivalent to J±± = J/2 < 0 and J3 = 0 in (9), or
K = Γ = −J0 > 0 and Γ′ = 0 in (2); “shifted,” acoustic,
and optical modes are identified. Lower panel: on-shell decay
rates Γµk (32) along the full k-cut of Fig. 3(a).

modes of the two-sublattice approach by Q = (0, 2π/3a),
shown by solid and dashed lines, respectively. The lower
panel of Fig. 5 shows the on-shell decay rates (32) in
units of |J | using the same color and line conventions.
Because of the large phase space for magnon decays due
to the presence of the Goldstone modes and because of
the significant anisotropic term J±±, magnon decay rates
are large in comparison with the results in Fig. 3, reach-
ing values of the magnon bandwidth if averaged over the
BZ.

Somewhat unexpected is a strong divergence in the
acoustic mode decay rate in the vicinity of the “Dirac-
like” points of the spectra where the non-shifted and
“shifted” modes intersect. This divergence can be
demonstrated to be of a stronger character than that
of the two-magnon density of states (not shown). Us-
ing an analytical insight into the asymptotics of the ver-
tex, this behavior can be identified with an emission of
a Goldstone-like acoustic mode with q→ 0 and a decay
into a lower Dirac branch with an umklapp of the momen-
tum by Q due to the structure of the three-magnon cou-
pling in (24), leading to an enhancement factor ∝1/|q| in
the probability. Since this is not a decay of a Goldstone
mode, such a divergent amplitude is not forbidden, and
may have been encountered before in a different model,
see Ref. [128].

G. Summary

Altogether, the two-sublattice approach to the spin-
wave theory of the easy-plane anisotropic-exchange
model (9) allows us to consider 1/S quantum effects
in magnon spectrum in a rather uncomplicated manner.
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The three-magnon interaction leads to the renormaliza-
tion of the spin-wave dispersions, decays, and redistribu-
tion of the spectral weight. Remarkably, the strength of
this interaction in our model depends only on one bond-
dependent J±± term, which highlights the benefit of us-
ing the “ice-like” parametrization of the model (9). A
strong downward renormalization of the spectrum points
to a shift of the phase boundary between the 120◦ and
zigzag phases, supported by the DMRG data.

We argue that the results presented in this section are
generic as the studied model (9) transforms into the ex-
tended Kitaev-Heisenberg model with all key anisotropic
terms present and significant (7), (31). Similar features of
a coexistence of the well-defined low-energy modes with
the broadened higher-energy continuum have also been
found in the generalized KH model for very different pa-
rameter sets [77, 79, 80] and observed in the Kitaev ma-
terials with the zigzag ground states [32, 96, 133].

IV. POLARIZED PHASE

It is well established by now that the magnon spec-
trum of the collinear ordered states in the models with
anisotropic-exchange terms, which are present due to
spin-orbit coupling, may be strongly affected by the de-
cay and renormalization processes [77, 79, 127, 134, 135].
While in the field-induced polarized phases such nonlin-
ear effects are often neglected under a general assumption
that the high magnetic field suppresses quantum fluctua-
tions, their significant ramifications have been recently
discussed for several systems with spin-orbit coupling
[70, 73, 82, 134–136].

In this section we study quantum corrections to the
spectrum in the high-field paramagnetic state of the easy-
plane anisotropic-exchange model (9). We show that the
magnon interaction effects can be significant in the pres-
ence of the bond-dependent terms, especially in the vicin-
ity of the critical field of the transition from the para-
magnetic to the long-range ordered phase. Specifically,
within the 1/S approach, such quantum corrections have
been recently shown to produce unphysical divergences
upon approaching this transition [82], indicating a down-
ward renormalization of the critical field. Here, we offer
an approach to regularize such singularities in this class
of models.

A. High-field spin-polarized state

We consider the model (9) in the in-plane field that
induces a spin-polarized state with spins fully aligned.
The classical energy of this state,

Ecl

N
= 3S2(J + J3)− 2HS, (34)

is invariant to the field direction because contributions
of the bond-dependent terms to it from different bonds

cancel out. Here N is the number of atomic unit cells
as before and the units of gµB are absorbed into the
definition of the field H, with g being the Landé g-factor.

There are two principal in-plane field directions for
the honeycomb lattice, along and perpendicular to the
nearest-neighbor bond, see Fig. 1(c). Although the choice
of the field direction lowers the symmetry of the model
(9), the model remains invariant to the simultaneous
change of the sign in the J±±-term and switching the
field direction from along to perpendicular to the bond,
similarly to the zigzag-x and -y states, see Sec. III A.

Thus, without loss of generality, we consider the in-
plane magnetic field directed along the x-axis in Fig. 1(c),
perpendicular to the AB bond. The critical field Hc of
the transition from the spin-polarized to zigzag state for
H ‖ x, as obtained from vanishing of the magnon gap at
the M point [80], is given by [137]

Hc =

{
2S(J + 3J3 − J±±), J±±<0,
2S(J + 3J3 + 2J±±), J±±>0.

(35)

The spin-wave formalism in the polarized phase is sim-
plified, as the latter naturally offers the two-sublattice
description of spins in the honeycomb lattice, analogous
to the zero-field zigzag state in the previous section, with
the spin-axes transformation from the global to local ref-
erence frame given by a simple cyclic permutation

(Sxi , S
y
i , S

z
i )lab = (Szi , S

x
i , S

y
i )loc, (36)

for both A and B sublattices.

The spin Hamiltonian (9), rotated to the local axes of
the polarized state (36), is given by

Ĥloc =
∑
〈ij〉1

{(
J + 2J±±cα

)
Sxi S

x
j +

(
J − 2J±±cα

)
Szi S

z
j

+ 2J±±

(
Sxi S

z
j + Szi S

x
j

)
sα

}
+J3

∑
〈ij〉3

(
Sxi S

x
j + Szi S

z
j

)
−H

∑
i

Szi . (37)

This local-axes form of the Hamiltonian is the last stage
of a transformation before the spin-wave expansion, cf.
Eq. (12) for the zigzag state. The technical aspects
of the 1/S spin-wave expansion for the spin-polarized
state replicate identically the steps that are described
in Sec. III B and Sec. III C with the choice of Q = 0 and

Ã = H − 3S
(
J + J3

)
,

B̃k = 3S
(
Jγk + 2J±±γ

′
k + J3γ

(3)
k

)
/2. (38)

Thus, the expressions for the LSWT spectrum in
Eq. (23) and self-energies in Eq. (30) retain the same
form in the present case with the parameters given above.
Below, we proceed with the results for the dynamical
structure factor in the spin-polarized state.
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FIG. 6. Intensity plots of the dynamical structure factor S(k, ω) (39) in the polarized phase along the representative in-plane
k-path, see Fig. 3(b), for H ‖ x, J < 0, J±±= 0.2J , J3 = 0.5|J |, S= 1/2, and three different H/Hc. Left and right panels are
the LSWT and NLSWT results, see text. The dashed lines in the right panels show the bottom of the two-magnon continuum.
Units of J−1 and artificial broadening δ = 0.1|J | are used.

B. Dynamical structure factor

An important difference of the magnon spectrum in
the polarized phase compared with the zigzag one is that
the number of magnon species is equal to the number of
magnetic ions in the unit cell and, thus, there are only
two branches of excitations that should be observable.

Here we present results for the magnon spectrum in
the form of the dynamical spin structure factor

S(k, ω) =
∑
αβ

(
δαβ −

kαkβ
k2

)
Sαβ(k, ω), (39)

where the spin-spin dynamical correlation function is

Sαβ(k, ω) =
1

π
Im

∫ ∞
−∞

dt eiωt i
〈
T Sαk (t)Sβ−k(0)

〉
. (40)

For the ordered magnetic states, the structure factor is
naturally split into the transverse and longitudinal com-
ponents, related to the directional and amplitude mod-
ulations of the magnetic order parameter, that have dif-
ferent ranking in 1/S sense, see Ref. [138]. In the lead-
ing 1/S-order, only transverse structure factor compo-
nent is present and the dynamical correlation function is
straightforwardly related to the non-interacting LSWT

single-magnon spectral functions, A(0)
µ (k, ω)≡δ(ω−εµk),

Sαα(k, ω) =
∑
µ

FααµkA
(0)
µk(ω), (41)

dressed by the “kinematic formfactors” Fααµk that are re-
sponsible for the intensity-modulation of the δ-functional
peaks of the spectral functions throughout the Brillouin
zone. These formfactors depend on the order and lattice
structure, with their explicit forms for the considered case
given in Appendix C.

The modification of this picture within the nonlinear
spin-wave theory (NLSWT) is twofold. First is a straight-
forward extension for the transverse structure factor com-
ponent that consists of taking into account one-loop 1/S
self-energy Σµ(k, ω) (30), see Sec. III C, in the diagonal
magnon Green’s function

Gµ(k, ω) = −i〈dµkd
†
µk〉 =

1

ω − εµk − Σµ(k, ω)
, (42)

replacing bare spectral function A(0)
µ (k, ω) in (41) with

Aµ(k, ω)≡− 1
π ImGµ(k, ω).

Second, we also include the leading 1/S term from the
longitudinal component of S(k, ω), neglected within the
LSWT, which accounts for the direct contributions of the
two-magnon continuum, see Appendix C.

Both NLSWT extensions are expected to provide in-
sights into the effects of the spectral weight redistribu-
tion, spectrum renormalization, and magnon spectral line
broadening due to decays. We note that the presented
NLSWT results do not constitute a strict 1/S correction
to the LSWT. This is because some of the 1/S correc-
tions, such as the off-diagonal contributions to S(k, ω)
[138], are still neglected and the off-shell ω-dependence
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in the self-energy (42) is retained. The latter allows to ob-
serve more complicated spectral features and corresponds
to the off-shell spectrum renormalization.

Figure 6 demonstrates our results for S(k, ω) along the
high-symmetry in-plane k-path in the Brillouin zone, see
Fig. 3(b), for various H/Hc. We chose a moderate value
of anisotropic interaction J±±=0.2J and J3 =0.5|J |, see
also Fig. 3 and Sec. III D, and selected three values of
the magnetic field: near the transition, H = 1.1Hc, in-
termediate, H=1.5Hc, and deep in the polarized phase,
H = 2.0Hc, Fig. 6 (a), (b), and (c), respectively. The
formfactor Fααµk can be seen as strongly suppressing spec-
tral intensities for some regions of BZ, and the jump in
intensity at the Γ point is due to its angular dependence.
Calculations for other parameters for H = 1.1Hc are pre-
sented in Appendix C.

One can see in Fig. 6(c) that the effect of magnon inter-
actions is negligible in strong field and LSWT provides
a close description of the entire spectrum in this case.
However, as the field is lowered toward Hc, the effects of
interaction become more pronounced. While deviations
from the LSWT in the form of energy renormalization,
line broadening, intensity redistribution, and appearance
of the more complicated spectral features such as spec-
tral line splitting can already be noticed for the fields
as high as 1.5Hc, see Fig. 6(b), they become unmistak-
able in Fig. 6(a) for the field near the critical field, 1.1Hc.
For this field and for that modest value of the anisotropic
J±±-term, both higher- and lower-energy modes acquire
finite lifetime via magnon decay processes in extended
regions of the k-space where they overlap with the two-
magnon continuum, the bottom of which is shown by the
dashed lines in the right panels of Fig. 6. Same regions
also demonstrate pronounced spectral weight redistribu-
tion to the continuum and a strong renormalization of
the spectrum.

Two regions of the reciprocal space in Fig. 6(a) are
of interest. First is the proximity of the Γ and Γ′

points, where decays and downward renormalization are
a result of the strong interaction with the two-magnon
continuum, which originates from the low-lying nearly-
Goldstone modes at the M point. For J±± < 0 and field
directed perpendicular to the bond, the M point and its
equivalent M′ point become truly gapless at Hc. Below
Hc, one of the zigzag domains with the ordering vector M
or M′ is selected. The observed softening of the magnon
mode and the dominance of the two-magnon continuum
at Γ point are beyond the LSWT, but should be a generic
feature of the transition from an ordered to nominally po-
larized phase in the presence of magnon interactions that
are induced by anisotropic terms in this class of models.
We discuss this effect and its relevance to real materials
in more detail in Sec. V.

The second region of interest concerns the proximity
of the M point and the behavior of the lower mode near
it. This mode experiences a significant upward renor-
malization, which can be shown to diverge at H →Hc.
This divergence is unrelated to interaction with the two-

magnon continuum and is unphysical. The same phe-
nomenon has been discussed in Ref. [82] in the analysis
of the 1/S-corrections to the spectrum in a simpler K–J
model, and was interpreted as a sign of the downward
renormalization of Hc, leaving the problem of the diver-
gence unresolved. We discuss this problem and our ap-
proach to the regularization of such singularities in this
class of models next.

C. Divergence regularization

In addition to the results in Fig. 6, we explicate the
problem of the anomalous hardening of the one-magnon
mode at the M point in Fig. 7(a) and its divergence at
H→Hc in Fig. 8. Figure 7(a) shows the LSWT magnon
energies, εµk from Eq. (23) (dashed line), together with
the renormalized on-shell spectrum, ε̃µk from Eq. (32)
(solid blue line), for one of the representative parame-
ter sets, J±± = 0.2J , J3 = 0.5|J |, J < 0, S = 1/2, field
H=0.75|J |, and along the same k-path as in Fig. 6. Ac-
cording to Eq. (35), Hc=0.7|J | for this choice of param-
eters. Figure 8 shows the energies of the lowest magnon
mode, ε1k and ε̃1k, at k=M versus field for H≥Hc using
the same line and color conventions.

Compared with Fig. 6, the effect of one-loop dia-
grams from Fig. 2(a) and 2(b) in the renormalized on-
shell spectrum ε̃µk in Fig. 7 is strictly 1/S, see Eq. (30)
and Eq. (32), with two contributions, Hartree-Fock (29)
and three-magnon self-energy (25). The various spike-
like features in the 1/S spectrum in Fig. 7(a) are all
clearly identifiable with the Van Hove singularities in
the two-magnon continuum, which get imprinted on the
single-magnon branches by the coupling via the decay
part of the three-magnon self-energy (26). These and
other non-analytic features of that nature are well-known
and thoroughly documented, see Ref. [81]. It is also
well-understood that their regularization requires a self-
consistent approach that goes beyond the strict 1/S-
approximation, such as the self-consistent Born approx-
imation [139], which is useful when the products of
magnon decay are also unstable, or the technically more
advantageous imaginary Dyson equation (iDE) approach
[77, 79, 127, 140], which solves for the magnon energy
in the complex plane and corresponds to a physical as-
sumption of a finite lifetime in the initial state .

While we are going to employ the iDE approach to
regularize Van Hove singularities in ε̃µk, the nature of
the observed anomaly at the M point is unrelated to the
interaction with the two-magnon continuum. One can
verify that all contributions to the self-energy, Hartree-
Fock, decay, and source, exhibit singular behavior at the
M point as H→Hc, demonstrated in Fig. 8. It can be
shown to correspond to ∝ (H − Hc)

−1/2, in agreement
with Ref. [82]. In that work, the choice of the simplified
K–J model and that of the high-symmetry field direc-
tion completely eliminate three-magnon terms from the
1/S-expansion [82], leaving the Hartree-Fock terms a sole
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source of the divergent behavior.
In this work we are dealing with a more generic case

with all types of anharmonicities present, but the ori-
gin of the divergence and the type of regularization it
requires can be made particularly clear from the sim-
plified case of Ref. [82]. Let us assume that only the
ω-independent Hartree-Fock contributions are present in
the 1/S-expansion. Because of the lower symmetry of
the spin models of the studied type, the gapless LSWT
mode at the M point at Hc is necessarily relativistic.
This renders all binary averages of the Holstein-Primakoff
bosonic operators, which enter the Hartree-Fock decou-
pling of the four-boson term in the SWT Hamiltonian,
finite at H→Hc, see Appendix B for their explicit form.
Consider now the LSWT Hamiltonian (20) together with
the Hartree-Fock correction to it (28) before the final Bo-
golyubov transformation (22), as they take the same form

Ĥ(2)+δĤ(4) =
∑
k,µ

{
Aµkc

†
µkcµk−

1

2

(
Bµkc

†
µkc
†
µ−k+H.c.

)}
,

(43)

but with the functions Aµk and Bµk

Aµk = Aµk + δA
(4)
µk , Bµk = Bµk + δB

(4)
µk , (44)

that combine terms of different orders in 1/S [141–143].
It is clear that the eigenvalues of the Hamiltonian (43)

εµk =
√
A2
µk − |Bµk|2 , (45)

are perfectly regular at H→Hc, and the problem of the
divergence occurs solely due to its expansion in 1/S

εµk≈εµk+δε(4)µk , δε
(4)
µk =

AµkδA
(4)
µk−Re

(
δB

(4)
µk

)
Bµk

εµk
, (46)

where we have replicated the explicit form of δε
(4)
µk from

(29). Because of the lower symmetry of the model, the

numerator in δε
(4)
µk stays finite for H→Hc and k→M,

while the LSWT magnon energy in denominator van-
ishes, leading to a singularity in the 1/S expansion.

Thus, both the nature of the divergence and the regu-
larization procedure for it are clear. For the latter, one
should retain the form of the magnon energies in (45) that
keeps the higher-order 1/S contributions, an approach
also used in various contexts in the past [141–143].

In the more general case encountered here, in the same
order of the 1/S-expansion there are also three-magnon
ω-dependent contributions to the self-energy that require
regularization. While somewhat more involved, the ap-
proach to them will follow similar logic. Our consid-
eration provided above for the Hartree-Fock terms also
sheds light onto the nature of the divergence in the three-
magnon self-energies. It is now obvious that it comes
from the LSWT magnon energy εµk in the denominators
of the Bogolyubov parameters uµk and vµk that enter

three-magnon vertices, see Appendix B, having nothing
to do with the two-magnon anomalies.

Since the divergence in question does not originate
from the ω-dependent part of the self-energy, it suggests
breaking the three-magnon self-energy in (25) into the
singular and regular parts,

Σ(3)
µ (k, εµk) = δΣµ(k, εµk) + Σ

(3)
µk , (47)

where Σ
(3)
µk = Σ

(3)
µ (k, 0) is the self-energy taken at ω= 0.

While Σ
(3)
µk is ω-independent and is free from the Van

Hove singularities of the two-magnon continuum, it re-
tains the divergence at H → Hc at the M point. On
the other hand, the ω-dependent part of the self-energy,
δΣµ(k, ω), is no longer divergent at the M point at
ω= εµk, because, by construction, the divergence in the
three-magnon vertices is canceled by the extra factor εµk.

The idea is to regularize singular Σ
(3)
µk part by con-

verting it to the Hartree-Fock-like corrections to the
LSWT Hamiltonian as in (43). However, for that one
also needs to recall the off-diagonal three-magnon self-
energies, shown in Fig. 2(c), that are of the same 1/S-
order, but are typically neglected as not contributing to
the energy up to a higher order

Σod
µ (k, ω) =− 1

2N

∑
q,ην

Ξηνµq,k−q,−kΦηνµ∗q,−k−q;k

ω + εηq + ενk−q − i0

+
1

2N

∑
q,ην

Ξηνµq,−k−q,kΦηνµ∗q,k−q;−k

ω − εηq − ενk−q + i0
. (48)

This is because we need to infer contributions to the
model for cµk (c†µk) bosons, not for the final dµk (d†µk)
quasiparticles. For the Hartree-Fock corrections, if we

wanted to infer δA
(4)
µk and δB

(4)
µk from δε

(4)
µk , we would

also need off-diagonal V od
µk terms that are neglected as

not contributing to the magnon energy in the same 1/S-
order, see Appendix B. The transformation from the c-
to d-language for the Hartree-Fock corrections is(

δε
(4)
µk V od

µk

V od∗
µk δε

(4)
µk

)
= U

(
δA

(4)
µk −δB(4)

µk

−δB(4)∗
µk δA

(4)
µk

)
U, (49)

with the direct and inverse Bogolyubov transformations

U =

(
uµk vµk
vµk uµk

)
, U−1 =

(
uµk −vµk
−vµk uµk

)
, (50)

and the u–v parameters defined by 2uµkvµk = Bµk/εµk
and u2µk + v2µk =Aµk/εµk, as before.

Since we now seek the Hartree-Fock-like corrections
from the three-magnon terms to the Hamiltonian in the

c-language, δA
(3)
µk and δB

(3)
µk , the corresponding transfor-

mation from the ω=0 self-energies is given by(
δA

(3)
µk −δB(3)

µk

−δB(3)∗
µk δA

(3)
µk

)
= U−1

(
Σ

(3)
µk Σod

µk

Σod∗
µk Σ

(3)
µk

)
U−1, (51)
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FIG. 7. Magnon spectrum in the polarized phase for J±±= 0.2J , J3 = 0.5|J |, and S= 1/2, for H = 0.75|J | (Hc = 0.7|J |). (a)
LSWT results (23) (dashed lines) and 1/S-renormalized on-shell results (32) (blue lines). Magnon decay rates for the lower and
upper modes are shown with the blue dashed and dotted lines, respectively. (b) LSWT results (dashed line) and regularized
spectrum as given by Eq. (54) (green lines) and Eq. (55) (red lines), see the text.

where Σod
µk =Σod

µ (k, 0) in (48), which can be simplified to

δA
(3)
µk =

(
u2µk + v2µk

)
Σ

(3)
µk − 2uµkvµkRe

(
Σod
µk

)
δB

(3)
µk = 2uµkvµkΣ

(3)
µk − u

2
µkΣod

µk − v2µkΣod∗
µk . (52)

While not obviously regular, one can verify that the ob-
tained expressions are finite at H →Hc and k→M, as

opposed to the constituent Σ
(3)
µk and Σod

µk.
Altogether, the regularized spectrum is

εµk =

√
A
2

µk −
∣∣Bµk∣∣2 + δΣ(k, εk), (53)

with δΣµ(k, ω) given by (47) and

Aµk = Aµk + δA
(4)
µk + δA

(3)
µk ,

Bµk = Bµk + δB
(4)
µk + δB

(3)
µk . (54)

The regularized spectrum from Eq. (54) is shown in
Fig. 7(b) by the green lines. The anomalous harden-
ing of the spectrum of the on-shell 1/S-approximation at
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FIG. 8. Magnon energy at the M point vs field for H ≥
Hc for the same parameters as in Fig. 7. LSWT εk (23)
(dashed line), on-shell 1/S-renormalized ε̃µk (32) (blue line),
and regularized energy (55) (red line) are shown.

the M-point is no longer present and the divergence at
H → Hc at the M point is removed, see Fig. 8. The
discussed regularization can also be successfully com-
bined with the self-consistent iDE regularization of the
Van Hove singularities due to two-magnon continuum
[77, 79, 140]. The modified spectrum is simply

εµk =

√
A
2

µk −
∣∣Bµk∣∣2 + δΣ(k, εk + iΓµk), (55)

where the magnon decay rates Γµk are determined self-

consistently from Γµk =−Im
(
Σ

(3)
µ (k, εµk + iΓµk)

)
. The

spectrum is shown by the red lines in Fig. 7(b) and Fig. 8.
One can see that the results of the combined regulariza-
tion schemes at the M point are indistinguishable from
that of Eq. (54), while removing the unphysical Van Hove
singularities elsewhere in the spectrum.

As one can see in our Figure 8, the regularized gap
at the ordering wavevector remains finite at the nominal
critical field Hc (35) obtained by LSWT, supporting the
hypothesis of Ref. [82] that the divergence of the LSWT
gap signals the downward renormalization of Hc due to
quantum fluctuations. However, the obtained slow field-
dependence of the gap for the chosen set of parameters
does not yield a reliable extrapolation to determine such
a renormalized critical field, which may point to a poten-
tial first-order transition between the zigzag and partially
polarized state.

We complement these results by DMRG, which is used
to evaluate the critical field between the zigzag and po-
larized FM states for the considered case of the S = 1/2
model (9) for H ‖x. The calculations were performed on
an open boundary 16×8-site cluster using ITensor pack-
age [84] with 4 sweeps, relative error < 10−6, and keeping
up to m = 200 states. For the relatively small cluster size
and for the robust ordered states, the number of sweeps
and that of the kept states appear to be sufficient. The
value of the critical field was extracted from the singu-
larity in the magnetic susceptibility χ = dM/dH. Our
results are shown in Fig. 9(a) for a fixed J3 = 0.5|J | as
a function of J±±/|J |, scanning through 20 points along



16

-0.4 -0.2 0 0.2 0.4
J
±±
/|J |

0

0.2

0.4

0.6

0.8

1
H
c
/|J
|

LSWT
DMRG

zigzag-x
zigzag-y

polarized

(a)

(b)

0 0.2 0.4 0.6
H/ |J |

0

0.1

0.2

0.3

0.4

0.5

M

0 0.2 0.4 0.6
H/ |J |

FIG. 9. (a) Phase diagram of the model (9) in a field as a
function of J±±/|J | for J3 = 0.5|J | and H ‖ x. Critical field
Hc for the transition from the zigzag to FM state from LSWT
(35) (dashed line) and DMRG on a 128-site cluster (solid line)
are shown. (b) Magnetization from DMRG as a function of
magnetic field for J±± = −0.2|J | and J±± = 0.2|J |.

each axis, together with the LSWT results (35). Remark-
ably, the transition from the zigzag-x state (J±± < 0) to
the polarized state is first-order, while transition from the
zigzag-y state is second-order, which is indicated by the
DMRG magnetization plots in Fig. 9(b). We should note
there are additional transitions below the critical field
for J±± < 0 but they are beyond the scope of this work.
Overall, the DMRG data shows that for S = 1/2 the
critical field is suppressed compared to the quasiclassi-
cal values (35), supporting the discussion provided above
and also in agreement with the prior work on a related
model [82].

V. CONNECTION TO KITAEV MATERIALS

In this section, we provide a detailed look at the char-
acteristic features of the structure factor S(k, ω) at the
k=Γ point in the field-polarized phase in the proximity
to a transition to the ordered zigzag phase. This analysis
is important as it highlights a generic behavior of S(0, ω)
in a wide class of anisotropic-exchange models, which is
not adequately described by the LSWT approximation
and is crucially dependent on the magnon interactions
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FIG. 10. Intensity plots of the dynamical structure factor
S(k, ω) at k= Γ as a function of magnetic field in the polar-
ized phase H ≥ Hc for H ‖ x, J < 0, J3 = 0.5|J |, and three
representative values of J±±. The LSWT results for the low-
est magnon mode εk=Γ (dashed lines) and for the bottom
of the magnon continuum, 2εk=M, (dotted lines), are shown.
Units of J−1 and artificial broadening δ = 0.1|J | are used.

that are induced by anisotropic terms in these models.
This k-point is also special as it is often accessible by a
large variety of experimental probes, such as ESR, ter-
ahertz spectroscopy, and Raman and inelastic neutron
scattering [69, 85–89].

Figure 10 shows the intensity plots of S(0, ω) in the po-
larized phase in NLSWT approximation, which includes
magnon interaction effects within in the transverse com-
ponent of the structure factor and a direct contribution of
the two-magnon continuum from the longitudinal part of
S(k, ω), see Sec. IV B. Results for J <0, J3 =0.5|J |, and
three different J±±/J are presented as a function of mag-
netic field for H≥Hc and H ‖x together with the LSWT
results for the lowest magnon energy (dashed lines) and
the bottom of the two-magnon continuum (dotted lines)
at the Γ point (calculations for J3 = |J | are presented in
Appendix C). The LSWT energy of the lowest magnon
mode at k = Γ for the easy-plane exchanges J and J3
obeys [80, 144]

ε1,k=0 =
√
H
(
H − 3S(J + J3)

)
, (56)

which remains gapped at the critical field Hc, while the
bottom of the two-magnon continuum is determined by
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the vanishing gap at the M point and is given by 2εk=M.

At high enough field, quantum effects in the spectrum
are negligible and LSWT gives a close description of the
structure factor, see also Fig. 6 and Sec. IV B. Although
for the smaller values of anisotropic-exchange term most
of the weight remains in the single-magnon branch and its
deviations from the LSWT energy are minimal, one can
already see a substantial contribution of the two-magnon
continuum at low energies in the vicinity of the critical
field and a noticeable broadening of the single-magnon
branch upon entering this continuum, see the upper panel
of Fig. 10. For the progressively larger values of J±±, the
effects of broadening and spectral weight redistribution
become substantially more pronounced. As one can see
in the middle panel of Fig. 10, it becomes difficult to
make out the broadened single-magnon branch within the
dominant two-magnon continuum intensity.

Upon the further increase of anisotropic term, the one-
magnon mode is strongly renormalized and is repelled
from the continuum, shifting lower in energy and losing
a substantial spectral weight near Hc, see Fig. 6 and the
bottom panel of Fig. 10. Moreover, there is a significant
transfer of the spectral weight to the continuum for the
fields approaching Hc, with some remnants of the broad
single-magnon mode still vaguely detectable.

Thus, we demonstrate that in anisotropic-exchange
models, the behavior of S(0, ω) near Hc is dominated by
the effects of strong coupling of the single-magnon mode
to the two-magnon continuum, induced by anisotropic
terms. We believe that our observations capture essen-
tial spectral behavior relevant to such models, and while
the model (9) is not applicable to α-RuCl3 [80], the pro-
vided analysis can be relevant to the features that were
observed in it experimentally.

For the latter, ESR, terahertz, Raman, and neutron-
scattering experiments in α-RuCl3 have discussed their
observations of the strongly field-dependent k= 0 mode
in the polarized phase near Hc using variable gyromag-
netic ratio and have also reported the incoherent higher-
energy signal in the vicinity of the critical field [69, 85–
89]. In agreement with the qualitative analysis of the
prior work [77], we propose that the redistribution of the
spectral weight and the curvature of the k=0 mode can
be understood as the result of interaction between the
single-magnon mode and the continuum that is made of
quasi-Goldstone modes at the M point, whose gap closure
marks a transition to the ordered zigzag state.

Our results for the model (9) are also potentially rel-
evant to the recently proposed new class of the 3d Co-
based honeycomb compounds with Kitaev interactions
and strong easy-plane anisotropy [31, 145–148] and also
to the experimental studies of a variety of real mate-
rials with zigzag ground states, such as Na2Co2TeO6,
Na3Co2SbO6 [32, 55, 96, 149–157], CoPS3 [33], and
Ag3Co2SbO6 [158]. Our study can also be relevant to the
other zigzag antiferromagnets with strong Kitaev inter-
actions, such as sodium iridate Na2IrO3 [159] and S= 1
Kitaev magnet Li3NiSbO6 [34].

VI. CONCLUSIONS

In the present study, we have provided a series of
analytical and numerical insights into the phase dia-
gram and spectral properties of the extended Kitaev-
Heisenberg model on the honeycomb lattice in the param-
eter subspace that corresponds to the easy-plane limit,
in which interactions are restricted to the spin projec-
tions onto the crystallographic plane of magnetic ions. As
we have emphasized, the studied easy-plane anisotropic-
exchange model can be also be seen as an extension of
the highly-degenerate honeycomb 120◦ compass model,
with the original compass point being a tricritical point
in its phase diagram. If translated to the standard
parametrization in the cubic axes, the explored parame-
ter subspace also corresponds to a general choice of vari-
ables, with all symmetry-allowed K, J , Γ, and Γ′ terms
present and significant, suggesting that the offered con-
siderations are relevant to a much wider parameter space.

The key purpose of the present work is to offer an effi-
cient analytical path for a consistent account of the non-
linear effects of magnon interactions in the anisotropic-
exchange models, which may allow to draw convincing
quantitative conclusions on the generic features of spin
excitations in their ordered phases. As we have demon-
strated, one can significantly simplify the diagonalization
of the harmonic spin-wave Hamiltonian by a judicious
choice of the parameter subspace leading to the studied
model, which allows to convert the calculation of the non-
linear terms in both zero-field zigzag and field-polarized
phases into a fairly systematic procedure without losing
generality of the consideration.

We have employed this approach to calculate the quan-
tum self-energy corrections to the spin-wave spectrum
in the zigzag state and demonstrated that they are
strongly enhanced due to the three-magnon terms, in-
duced by the anisotropic interaction in the model. We
have found them leading to decays and renormalization
in the magnon spectrum at higher energies, extending
results of the prior works. Strong renormalization of the
spectrum for larger anisotropic term has been taken as
indicative of the instability of the zigzag state, supported
by our exploratory DMRG study of the phase diagram
of the S=1/2 model, which has suggested shifting of the
phase boundaries and shrinking of the zigzag phase.

Due to anisotropic interactions, field-polarized phase
is not free from quantum fluctuations, especially in the
proximity to the critical point separating ordered and
nominally polarized states. Unfortunately, strong un-
physical divergences in the 1/S spectrum at the critical
field, previously interpreted as a sign of the downward
renormalization of the transition, have been observed. As
a significant technical development, our study has offered
a regularization scheme of such divergences based on
the renormalization of the Bogolyubov transformation,
which should be applicable to a large class of anisotropic-
exchange models with complex ground states. The down-
ward shift of the critical field due to quantum effects has
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been also supported by our investigative DMRG calcula-
tion of the model.

Lastly, we have provided a consideration of the char-
acteristic features of the structure factor S(k, ω) at the
k=Γ point in the field-polarized phase in the proximity
to a transition to the ordered zigzag phase. This anal-
ysis has highlighted a generic behavior of S(0, ω) near
the critical field in a wide class of anisotropic-exchange
models, which is shown to be dominated by the effects of
strong coupling of the single-magnon mode to the two-
magnon continuum that are not adequately described by
the LSWT approximation. We believe that our analy-
sis captures essential spectral behavior in many materi-
als including α-RuCl3 and should also be relevant to the
other Kitaev honeycomb magnets with strong easy-plane
anisotropy.
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Appendix A: The model and its classical states

The model (A1) is written in the crystallographic axes
that are related to the honeycomb plane of magnetic ions
with x and y axes perpendicular and parallel to the AB
bond, respectively, and z axis normal to the plane. How-
ever, the nearest-neighbor Hamiltonian can also be writ-
ten in the quantization axes that are related to the ligand
octahedra [44, 91], which were originally used to intro-
duce Kitaev model in the transition metal oxides [5].

The general nearest-neighbor anisotropic-exchange
Hamiltonian in the crystallographic axes is given by

H =
∑
〈ij〉1

{
J
(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
−2J±±

((
Sxi S

x
j − S

y
i S

y
j

)
cα −

(
Sxi S

y
j + Syi S

x
j

)
sα

)
−Jz±

((
Sxi S

z
j + Szi S

x
j

)
cα +

(
Syi S

z
j + Szi S

y
j

)
sα

)}
,

(A1)

where we included all the nearest-neighbor exchange in-
teractions allowed by the symmetry of the edge-sharing
ligand octahedra [7, 44]. The transformation from the cu-

bic to crystallographic reference frame, Scryst =R̂cScubic,

Néel AFM

0

φ = π/2

π

3π/2

θ = π/2

120∘

3π/8
π/4

π/8

stripy-y

stripy-x
FM

J=cos φ sin θ
J±± =sin φ sin θ
J3 =-cos θ

FIG. 11. The classical phase diagram of the J-J±±-J3 model
(9) for J3 < 0.

is given by

R̂c =


1√
6

1√
6
− 2√

6

− 1√
2

1√
2

0
1√
3

1√
3

1√
3

 . (A2)

The exchange parameters of models (2) and (A1) are
related through the linear transformation

J0 =
1

3

(
2J + ∆J + 2J±± −

√
2Jz±

)
,

K = −2J±± +
√

2Jz±, (A3)

Γ =
1

3

(
−J + ∆J − 4J±± −

√
2Jz±

)
,

Γ′ =
1

6

(
−2J + 2∆J + 4J±± +

√
2Jz±

)
,

and the inverse transformation is given by

J = J0 +
1

3
(K − Γ− 2Γ′) ,

∆J = J0 +
1

3
(K + 2Γ + 4Γ′) ,

2J±± =
1

3
(−K − 2Γ + 2Γ′) ,

√
2Jz± =

1

3
(2K − 2Γ + 2Γ′) . (A4)

The phase diagrams in Fig. 1 and Fig. 11 are obtained
using the Luttiger-Tisza method [107]. Here we briefly
outline its basics. Generally, the energy of the interacting
classical spins Si on a lattice is given by

Ecl =
∑
〈ij〉n

∑
αβ

(Sα)
T
i Ĵ

αβ
ij Sβj , (A5)
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where Sα is a 3-dimensional vector and α and β are sub-
lattice indices. The energy minimization is also a subject
of the constraint on the spin length

|Sαi |
2

= S2. (A6)

The most common version of the LT method uses an
approximation of the “strong” spin-length constraint by
an average, or “weak” constraint

N∑
i=1

∑
α

|Sαi |
2

= NNsS
2, (A7)

where N is the number of unit cells and Ns number of
sublattices. The Fourier transform

Sαi =
1√
N

∑
k

Sαke
ikri , (A8)

yields the classical energy

Ecl =
∑
k

∑
αβ

SαkĴ
αβ(k)Sβ−k, (A9)

with Ĵαβ(k) being the Fourier transform of the spin in-
teraction matrix

Ĵαβ(k) =
1

2

∑
δ=rj−ri

Ĵαβij e
ikδ, (A10)

and the weak constraint is given by∑
k

SαkS
α
−k = NS2. (A11)

The minimization of the classical energy with the weak
constraint (A11) yields the eigenvalue equation

Ĵαβ(k)Sβ−k = λSβ−k. (A12)

The energy of the classical state corresponds to the mini-
mal eigenvalue λmin achieved at the ordering vector kmin,
with the latter determining the type of the spin arrange-
ment. If the corresponding state also satisfies the strong
constraint (A6), then LT method gives the correct clas-
sical ground state. In our case, the strong constraint is
satisfied for the FM, zigzag, Néel, and stripy phases in
Figs. 1 and 11. Otherwise, it breaks down, suggesting
a more complicated incommensurate or multi-Q phases,
which is the case of the grey regions in Fig. 1.

Here we also present the classical energies of the single-
Q ordered states, which are shown in the phase diagrams
in Fig. 1 and Fig. 11:

EFM = 3J + 3J3, (A13)

EAFM = −3J − 3J3,

Estripy = −J + 3J3 − 4|J±±|,
Ezigzag = J − 4|J±±| − 3J3,

E120◦ = −6|J±±|.

Similarly to the zigzag-x and zigzag-y, there are two
types of stripy states, as shown in the classical phase
diagram in Fig. 11: stripy-x with magnetic moments in
the x − y plane oriented along the x axis for J±± > 0,
and stripy-y with magnetic moments along the y-axis for
J±± < 0.

Appendix B: Non-linear spin-wave theory formalism

In this section we present details of calculations of
three-magnon and four-magnon self-energies in Fig. 2 and
Eqs. (25) and (29). We should note that the steps pre-
sented here are applicable for both zigzag and polarized
states.

1. Three-magnon interaction

The anisotropic terms of the Hamiltonian (9) induce
three-magnon interaction due to the broken SU(2) sym-
metry. For the collinear zigzag and polarized states,
shown in Fig. 1, the formalism of the three-magnon inter-
action can be structured in a general manner presented
below. The second member of the J±± term in (9) is
solely responsible for the anharmonic (cubic) coupling of
magnons. After rotation to the local reference frames
(11) and (36), as can be seen from Eqs. (12) and (37), it
is given by

H(3) ⇒ 2J±±
∑
i∈A

[
eiQriSzi

∑
δα

Sxj sin ϕ̃α (B1)

+ Sxi
∑
δα

eiQ(ri+δα−δ1)Szj sin ϕ̃α

]
,

where, i ∈ A, j ∈ B, rj = ri + δα, see Fig. 1. Note
that since ϕ̃1 = 0, cubic terms are generated only due
to couplings along the δ2 and δ3 bonds. With a little
bit of algebra, the phase factor in the second term of
(B1) simplifies to the same eiQri as in the first term.
The ordering vector Q characterizes the ground state,
thus, Q = (0, 2π/3) for the zigzag state and Q = 0 in
the uniformly polarized state. This expression is valid
for zigzag-x state and polarized state for H ‖ x, while
the results for zigzag-y and H ‖ y polarized state are
obtained with J±± → −J±± due to the symmetry of the
Hamiltonian (9).

After Holstein-Primakoff and Fourier transforms (14)

and using sin ϕ̃2(3) =±
√

3/2 the three-magnon terms are
given by

H(3) =
J̃ (3)

√
N

∑
∑

ki=Q

(
γ′′q−Qa

†
qb
†
kb−p

+γ′′∗q b†qa
†
ka−p + H.c.

)
, (B2)
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where J̃ (3) =−3
√

2SJ±±,
∑

ki=p+k+q, and
∑

ki=−Q
in the H.c.-terms. The amplitude γ′′q is

γ′′q =
1

3

∑
α

sαe
iqδα =

1

2
√

3

(
eiqδ2 − eiqδ3

)
= |γ′′q |eiψq ,

(B3)

Note that the three-magnon vertex strength J̃ (3) is
only dependent on the bond-anisotropic interaction J±±.
The unitary transformation (18) transforms (B2) to

H(3) =
J̃ (3)

√
N

∑
∑

ki=Q

∑
ηνµ

(
F ηνµq,kpc

†
ηqc
†
νkcµ−p+H.c.−Q

)
,(B4)

where F ηνµ,iq,kp is the dimensionless vertex

F ηνµq,kp =
|γ′′q |e

iψQ
2

2
√

2

∑
α 6=β

V αηV βνV βµ ei(−1)
βϕ̃q,kp , (B5)

where the “total” phase factor

ϕ̃q,kp =
ψQ

2
+ ψq +

ϕk + ϕp − ϕq

2
, (B6)

is introduced.
Using the symmetry of the vertex in (B5) to permu-

tations of k and p momenta (together with the ν and µ
boson indices) F ηνµq,kp =F ηµνq,pk, antisymmetry of the phase

ϕ̃−q,−k−p = −ϕ̃q,kp that gives
(
F ηνµ−q,−k−p

)∗
= F ηµνq,kp,

and explicit expression for F ηνµq,kp in (B5), one can consid-
erably simplify individual terms of the tensor to

F 111
q,kp =F 122

q,kp =−F 221
q,kp =−F 212

q,kp =
i|γ′′q |e

iψQ
2 sin ϕ̃q,kp√

2
,(B7)

F 222
q,kp =F 211

q,kp =−F 112
q,kp =−F 121

q,kp =
|γ′′q |e

iψQ
2 cos ϕ̃q,kp√

2
.

In anticipation of the decay rates, it is already clear that
different decay channels, say 2→{1, 1}, do not mix terms
of the tensor of different symmetries (cos ϕ̃ with sin ϕ̃).

Finally, the Bogolyubov transformation (22) yields the
cubic Hamiltonian for the magnon normal modes in the
following form

Ĥ(3) =
1

3!
√
N

∑
∑

ki=Q

∑
ηνµ

(
Ξηνµqkpd

†
ηqd
†
νkd
†
µp + H.c.

)
(B8)

+
1

2!
√
N

∑
∑

ki=Q

∑
ηνµ

(
Φηνµqk;pd

†
ηqd
†
νkdµ−p + H.c.

)
,(B9)

where the combinatorial factors are due to symmetriza-
tion in the source (B8) and decay (B9) vertices

Ξηνµqkp = J̃ (3) Ξ̃ηνµqkp, Φηνµqk;p = J̃ (3) Φ̃ηνµqk;p (B10)

with the corresponding dimensionless vertices given by

Ξ̃ηνµqkp = F ηνµq,kp(uηq + vηq)(uνkvµp + vνkuµp) (B11)

+ F νηµk,qp(uνk + vνk)(uηqvµp + vηquµp)

+ Fµηνp,qk(uµp + vµp)(uηqvνk + vηquνk) ,

Φ̃ηνµqk;p = F ηνµq,kp(uηq + vηq)(uνkuµp + vνkvµp) (B12)

+ F νµηk,pq(uνk + vνk)(uηquµp + vηqvµp)

+ Fµηνp,qk(uµp + vµp)(uηqvνk + vηquνk).

The decay rate in the lowest Born approximation due
to the cubic term (B12) of the k magnon from a branch
µ in the µ→{η, ν} channel is given by

Γ
µ→{η,ν}
k =

π

2N

∑
q

∣∣Φηνµq,k−q+Q;−k
∣∣2 (B13)

× δ (εµk − εηq − ενk−q+Q) ,

where integration is over the Brillouin zone of the hon-
eycomb lattice, see Fig. 1(d).

2. Hartree-Fock corrections

In this section we show the details of calculations of
the four-magnon corrections from Fig. 2(b). The four-
magnon correction terms originate from “even” parts of
the spin-wave Hamiltonian, which in the case of zigzag
state is given by

Heven
zigzag =

∑
i,δ1

{(
J − 2 |J±±|

)
Sxi S

x
j −

(
J + 2 |J±±|

)
Szi S

z
j

}
+
∑
i,δ2,3

{(
J + |J±±|

)
Sxi S

x
j +

(
J − |J±±|

)
Szi S

z
j

}
+J3

∑
i,δ

(3)
α

(
Sxi S

x
j − Szi Szj

)
, (B14)

and in the case of the polarized phase, respectively,

Heven
pol =

∑
〈ij〉1

{(
J + 2J±±cα

)
Sxi S

x
j +

(
J − 2J±±cα

)
Szi S

z
j

}
+J3

∑
〈ij〉3

(
Sxi S

x
j + Szi S

z
j

)
(B15)

as can be inferred from Eqs. (12) and (37). Keeping
higher-order terms in the Holstein-Primakoff expansion
(13), such as

Sx ≈
√
S

2

(
a+ a† − a†aa+ a†a†a

4S

)
, (B16)

yields the four-magnon terms in the spin-wave Hamilto-
nian:

Sxi S
x
j → −

1

8

(
ai b
†
jbjbj + ai b

†
jb
†
jbj + (a→ b) + H.c.

)
Szi S

z
j → a†iai b

†
jbj (B17)
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Decoupling of the four-magnon terms is given by

Sxi S
x
j → −

1

2

[
(ni + nj)

(
∆̄(n)
α +m(n)

α

)
+

(
n+

δ

2

)(
a†i bj + b†jai + ai bj + a†i b

†
j

)
+

1

4

(
∆̄(n)
α +m(n)

α

)(
bjbj + a†ia

†
i + H.c.

)]
, (B18)

Szi S
z
j →n (ni + nj) +m(n)

α

(
a†i bj + b†jai

)
+∆̄(n)

α

(
ai bj + a†i b

†
j

)
, (B19)

where the Hartree-Fock averages are defined as

n = 〈a†iai 〉 = 〈b†jbj〉 =
1

2N

∑
k

(
v21k + v22k

)
, (B20)

m(1)
α = 〈a†i bj〉 =

1

2N

∑
k

cosφk,α
(
v22k − v21k

)
,

m(3)
α = 〈a†i bj〉 =

1

2N

∑
k

cosφ
(3)
k,α

(
v22k − v21k

)
,

δ = 〈aiai 〉 = 〈bjbj〉 =
1

2N

∑
k

(u1kv1k + u2kv2k) ,

∆̄(1)
α = 〈ai bj〉 =

1

2N

∑
k

cosφk,α (u2kv2k − u1kv1k) ,

∆̄(3)
α = 〈ai bj〉 =

1

2N

∑
k

cosφ
(3)
k,α (u2kv2k − u1kv1k) ,

where

φk,α = ϕk − kδα, (B21)

φ
(3)
k,α = ϕk − kδ(3)α ,

and i∈ A, rj =ri + δ(δ(3))α. We should note that all of
these averages are purely real.

After the Fourier transform (14) four-magnon correc-
tions are given by

δH(4) =
∑
k

{
δAk

(
a†kak + b†kbk

)
+
(
δBka

†
kbk + H.c.

)
+
(
δCka

†
kb
†
−k + H.c.

)
+ δDk

(
aka−k + bkb−k + H.c.

)}
,

(B22)

The unitary transform (18) yields Eq. (28) where

δA
(4)
µk = δAk + (−1)µRe

(
δBke

−iϕk
)
,

δB
(4)
µk = (−1)µ+1Re

(
δCke

−iϕk
)
− 2δDk. (B23)

Finally, Bogolyubov transformation (22) gives the four-
magnon corrections to the magnons as

δH(4) =
∑
k,µ

{
δε

(4)
µkd
†
µkdµk+

1

2

(
V od
µk d

†
µkd
†
µ−k+H.c.

)}
,

(B24)

where δε
(4)
µk is defined in Eq. (29), and V od

µk is given by

V od
µk =

BµkδA
(4)
µk −AµkδB

(4)
µk

εµk
. (B25)

The procedure above is applicable for both zigzag and
polarized states. The only difference is in the δAk, δBk,
δCk, δDk terms in Eq. (B22). In the case of the zigzag
phase, they are given by

δAk =
J

2

[
2n−

∑
α

(
∆̄α +mα

)]
− J3

2

[
6n+

∑
α

(
∆̄(3)
α +m(3)

α

)]
− |J±±|

[
4n−

∑
α

cα
(
∆̄α +mα

)]
, (B26)

δBk =J

[
m2e

ikδ2 +m3e
ikδ3 −m1e

ikδ1 − 3

4
(2n+ δ)γk

]
− J3

[∑
α

m(3)
α eikδ

(3)
α +

3

4
(2n+ δ)γ

(3)
k

]

− |J±±|
[
2m1e

ikδ1 +m2e
ikδ2 +m3e

ikδ3 − 3

4
(2n+ δ)γ′k

]
, (B27)

δCk =J

[
∆2e

ikδ2 + ∆3e
ikδ3 −∆1e

ikδ1 − 3

4
(2n+ δ)γk

]
− J3

[∑
α

∆̄(3)
α eikδ

(3)
α +

3

4
(2n+ δ)γ

(3)
k

]

− |J±±|
[
2∆1e
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In the polarized phase the terms in Eq. (B22) are given by

δAk =
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, (B30)
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Figure 12 shows the results of the calculations of the
spectrum within the linear and non-linear approxima-
tions for the representative values of J±± and J3 = |J | in
the zero-field zigzag state. The selected parameter sets
are shown by the two magenta points in the phase dia-
gram in Fig. 12(a). Their coordinates are J±± = 0.2J
and 0.4J , J3 = |J |, all for J < 0.

Appendix C: Dynamical structure factor

Dynamical structure factor in the local magnetization
axes for zigzag-x and H ‖ x polarized state is given by

S (q, ω) =
q2y
q2
Szz (q, ω) +

q2x
q2
Sxx (q, ω) + Syy (q, ω) ,

where q is defined in the crystallographic {x, y, z} axes,
while components of the structure factor Sab in the local
spin axes, see Fig. 1. Here we omit higher order off-
diagonal terms and set qz = 0.

1. Transverse fluctuations

The one-magnon terms of the dynamical structure fac-
tor (C1) are given by Eq. (41), which intensity factors are
given by

Fxx1k = sin2 ϕk

2
(u1k + v1k)

2

Fxx2k = cos2
ϕk

2
(u2k + v2k)

2
(C1)

Fyy1k = cos2
φk,Q

2
(u1k+Q − v1k+Q)

2

Fyy2k = sin2 φk,Q
2

(u2k+Q − v2k+Q)
2
, (C2)

where

φk,Q = ϕk+Q −Qδ1, (C3)

and the ordering vector Q is chosen appropriately for the
zigzag and polarized states.

2. Longitudinal fluctuations

The two-magnon (longitudinal) component is given by

Szz (k, ω) =
∑
q,µν

Fµνkqδ (ω − εµq − ενk−q) . (C4)

The sum is over two magnon bands µ, ν = 1, 2.

The expression for the intensity of two-magnon con-
tribution to the dynamical structure factor (C4) can be
seen as a sum over two-magnon density of states with
each component having different intensities. The expres-
sion for these intensities is generally given by

Fµνkq =
∑
αα′

(
uµqαu

µ∗
qα′v

ν
q−kα′v

ν∗
q−kα + uµqαv

µ∗
−qα′v

ν∗
q−kαu

ν∗
−q+kα′

)
(C5)

The sum is over α, α′ = A,B. The elements of transfor- mation matrix are given by

uµkα =

(
u1kA u1kB
u2kA u2kB

)
=

(
u1k√

2
eiϕk/2−iQδ1 ±u1k√

2
e−iϕk/2

u2k√
2
eiϕk/2−iQδ1 u2k√

2
e−iϕk/2

)
,

(C6)
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same for vµkα. The plus sign and Q = 0 are for the polar-

ized state, minus sign and Q=
(
0, 2π3a

)
are for the zigzag

state. Using the explicit form of the transformation one

obtains

F11
kq = sin2 φ̃qk,Q

2

[
(u1qv1q−k)

2
+ u1qv1qu1q−kv1q−k

]
,

(C7)

F12
kq = cos2

φ̃qk,Q
2

[
(u1qv2q−k)

2
+ u1qv1qu2q−kv2q−k

]
,

(C8)

F21
kq = cos2

φ̃qk,Q
2

[
(u2qv1q−k)

2
+ u2qv2qu1q−kv1q−k

]
,

(C9)

F22
kq = sin2 φ̃qk,Q

2

[
(u2qv2q−k)

2
+ u2qv2qu2q−kv2q−k

]
,

(C10)

where

φ̃qk,Q = ϕq + ϕk−q −Qδ1. (C11)

Figure 13 shows our results for S(k, ω) along the high-
symmetry in-plane k-path in the Brillouin zone in the
polarized state for H = 1.1Hc and various J±± and J3
in comparison to the linear spin-wave theory. Magnon
interactions effects are stronger for larger J±± due to
stronger three-magnon interactions, see Sec. III C and B.
Third-neighbor exchange, while not directly related to
the three-magnon interactions, affects the magnon spec-
trum and four-magnon interactions. One can see that
quantum effects are generally stronger for smaller J3 due
to smaller gap in the spin-wave spectrum.

Our results for the dynamical structure factor S(k =
0, ω), which includes both transversal and longitudinal
components of the spin-spin correlator, as a function of
magnetic field in the polarized phase are shown in Fig. 14
for J3 = |J |. Similarly to the results in Fig. 10, larger val-
ues J±± yield stronger renormalization of the spectrum
near the critical point of transition to the long-range-
ordered state.
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[82] P. M. Cônsoli, L. Janssen, M. Vojta, and E. C. Andrade,

Phys. Rev. B 102, 155134 (2020).
[83] S. R. White, Physical Review Letters 69, 2863 (1992).
[84] M. Fishman, S. R. White, and E. M. Stoudenmire, The

ITensor software library for tensor network calculations
(2020), arXiv:2007.14822.

[85] Z. Wang, S. Reschke, D. Hüvonen, S.-H. Do, K.-Y. Choi,
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