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Many-body phenomena far from equilibrium present challenges beyond reach by classical com-
putational resources. Digital quantum computers provide a possible way forward but noise limits
their use in the near-term. We propose a scheme to simulate and characterize many-body Floquet
systems hosting a rich variety of phases that operates with a shallow circuit, defined as quantum
circuit that does not scale with system sizes. Starting from a periodic circuit that simulates the
dynamical evolution of a Floquet system, we introduce quasi-periodicity to the circuit parameters
to prevent thermalization by introducing many-body localization. By inspecting the time averaged
properties of the many-body integrals of motion, the phase structure can then be probed using
random measurements. This approach avoids the need to compute the ground state and operates
at finite energy density. We numerically demonstrate this scheme with a simulation of the Floquet
Ising model of time-crystals and present results clearly distinguishing different Floquet phases that
are protected by many-body localization. Our results pave the way for mapping out phase diagrams

of exotic systems on near-term quantum devices.

I. INTRODUCTION

Numerical analysis of certain condensed matter prob-
lems constitute an important theme in condensed matter
theory. However it is well known that certain problems
exceed the computational power of classical computers.
A faithful calculation of the properties of certain states
of matter requires exponential computational resources,
which inevitably fails when we try to increase the system
size. It is then no wonder that condensed matter physi-
cists become excited about the advances made in quan-
tum computation and the promise that quantum comput-
ers could provide a way to overcome these computational
obstacles.

Some of the attempts to utilize quantum computa-
tional powers include a variational determination of the
groundstates of certain Hamiltonians. This direction is
termed variational quantum eigensolver (VQE) and some
progress has already been made in this areal®s, Al-
though very useful for small sized systems, such schemes
face difficulties when increasing system sizes because it
has been proven that many classes of quantum Hamil-
tonians are Quantum Merlin Arthur (QMA)-completes.
Among these QMA-complete Hamiltonians are the Bose-
Hubbard models?, which are of great interest to the con-
densed matter community. As a result, it is unclear
whether a protocol utilizing VQE to study condensed
matter systems beyond the reach of classical computers
is attainable.

Contrary to the fact that VQE belongs to QMA-
complete problems, simulating local Hamiltonian evolu-
tion on a quantum computer is known to be Bounded-
error Quantum Polynomial time (BQP)-complete®®. An
illustration of the differences between these two classes
of algorithms are illustrated in fig. [I} Although this does
not guarantee an efficient algorithm to study the many
body problems, we do get some motivation from this line
of thinking, which leads us to consider whether there ex-

ists an algorithm utilizing dynamical simulation on quan-
tum computers. From an experimental perspective, com-
pared to a thorough determination of the eigenstates,
it seems more feasible to compare data with dynami-
cal simulations of quantum systems obtained from quan-
tum computers. With the advances made in constructing
quantum computing devices and platforms, some of the
near-term quantum devices already provide a chance to
approach the limit of classically computational powers of
certain problems. Most notably are those using trapped
ions™, superconducting qubits®¥ and other experimen-
tal platforms such as optical lattices and cold atoms.
Quite a few simulation and detection schemes have been
proposed to construct and study certain interesting many
body phases of matter ™8

In recent years a certain type of many body systems
has attracted significant interest: periodically driven Flo-
quet systemstt13. They are intersting because in many
cases they can exhibit certain properties, topological ones
for example!, not previously seen in equilibrium sys-
tems. One class of Floquet systems of particular interest
might be the recently proposed time crystals. In this
paper we identify a scheme to simulate Floquet quantum
many body phases using a noisy intermediate scale quan-
tum computer (IBM-Q for example). This scheme avoids
thermalization of the system caused by time evolving fi-
nite energy states and identifies ways to detect the phase
using measurement outcomes from a quantum computa-
tion procedure. We support this scheme with numerical
results demonstrating its validity in a model of Floquet
Ising Model.

This paper is organized as follows: In section 2 we
present the ideas underpinning the proposed scheme and
explain how we realize many-body localization to avoid
thermalization. In section 3 we present the quantum cir-
cuits that simulate the Floquet phases. In section 4 we
present measurement protocols that enable the identifica-
tion of phases. Some of our numerical results to demon-
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FIG. 1. Differences between the two classes of algorithms.
QMA-complete algorithms such as VQE might be suitable for
small system sizes, but become inefficient when system size
grows large. BQP-complete algorithms such as Hamiltonian
simulation are efficient with system size scaling (polynomial
for example).
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FIG. 2. An illustration of the circuit setup. The whole evo-
lution consists of identical groups of layers. Each group, or
period, is made up of three layers of quantum gates. The
first layer is composed of single qubit phase rotations, and
the second and third layers are composed of two qubit gates
that simulate the two-body interactions.

strate the validity of our approach is presented in section
5. We conclude by identifying interesting future direc-
tions including potential alternative schemes related to
measurement induced dynamical phase transitions.

II. AVOIDING THERMALIZATION THROUGH
LOCALIZATION

One would think to start from a clean system and
study its dynamics on a quantum computer, since these
systems are the simplest in some sense. However when it
comes to simulating Floquet dynamics of a clean system
there comes a severe issue one must resolve to get sensi-
ble results—the issue of thermalization?. Since we are
seeking a general algorithm, the systems we deal with
then necessarily have generic interactions, and are not
integrable. Such systems are believed to thermalize after
a sufficient amount of evolution time has passed. Many
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FIG. 3. Floquet non-integrable systems are expected to ther-
malize to infinite temperature after long time evolution”.
Starting from a product state representing two distinct
phases, eventually the evolution will take the product states
to highly entangled state in which no signatures of the origi-
nal phases can be traced out.

subtle quantum phases do not persist to finite temper-
atures, so by only looking at the long time results of
evolution, we lose signatures of the phase diagrams.

A way to 'protect’ these quantum phases from thermal-
ization is proposed inl? utilizing many-body localization.
Many-body localization is a generalization of the Ander-
son localization. When we induce certain degrees of
disorder into the system, the disjoint parts of the system
will only interact with each other weakly. Thus the lo-
cal information is largely preserved during the evolution.
There are many ways to devise this disorder, for exam-
ple by random variables or more recently proposed ’stark
localization™®. In our model design we use the quasi-
periodicity setting merely for simplicity. That is, we let
our parameter ¢ and 6 have a periodicity not commen-
surate with the lattice. More specifically the parameters
have the following fashion:

t =t + t1 cos(2mki + @), (1)

Vool )

where i is the position index of the gate. Remarkably,
the many-body localized systems have an extensive set
of local integrals of motion (LIOMs). Usually they are a
dressed version of some local products of Pauli operators
denoted by 7; as compared to the original Pauli operators
o;. We will see below that these Integrals of motion also
play a crucial role in our detection of specific phases of
matter.

There is, however, no guarantee that there exists a
simple correspondence between the phases of interacting
many-body localized system and that of its single par-
ticle relative. It is also possible that the disorder does
more than just protecting the many-body phases. For
example, in certain models the topological edge modes
are actually suppressed by too strong disorder'?20, The
specific model system we use, on the other hand, has the
desired feature that the topological edge modes predicted
in the single particle clean system are also present upon
adding disorder in a finite range. It is then in this range
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FIG. 4. Phase diagram of the original mode™!. The two axis
are phase rotation angle and hopping strength respectively.
The phase diagram is symmetric around § = 7/2 and ¢t = 7/2.
The red arrow depicts our scanning scheme detailed in the
results section.

our method applies. A study of the generic question of
what types of topological edge modes are preserved in
the presence of disorder is interesting in its own right.

III. MODEL

To illustrate the applicability of our scheme we design
a Floquet quantum circuit to see if its phase structures
can be detected. A Floquet system, by its name, is just
a periodically driven system. The periodicity can eas-
ily be incorporated into circuits arrangements. We can
simply construct a group of quantum gates of several lay-
ers. By repeatedly applying this group of quantum gates
we are then mimicing a periodic evolution. More specif-
ically our model is a circuit analogy of the Floquet Ising
model™. An illustration of the scheme is shown in fig.
The model we design is a variation of the famous Floquet
Ising model first discussed in™. Originally proposed as a
Floquet topological phases of matter, it has a rich phase
diagram containing phases not present in its equilibrium
cousins. Notably, other than the paramagnetic(PM) and
Ferromagnetic(FM) phases, it hosts also the time crys-
tal phase (also called the 7 spin glass phase) and the
other O PM phase. We should mention that although
this model is interesting on its own, it mainly serves as
a demonstration of our methods here. The scheme we
used can actually be applied to more general models and
settings.
The circuits we design to mimic the Floquet evolution
consists of three layers. In Hamiltonian language, it con-

sists of two different Hamitonians acting consecutively in
one period. Namely we have:

H1 = Zﬂiaf,

Hy = Ztiafofﬂ +Voioi,,, 2n+1<t<2n+2
i
(4)

The parameters 6;s and t¢;s are given in equation (1) and
(2). The role of V is to break integrability and is taken as
0.1 hereafter. The first layer is a single phase rotation on
each qubits. The second and third layers are two qubit
gates acting on nearest neighbors. The phase rotation
is analogous to the transverse field, while the two qubit
gates incorporate both the magnetic nearest neighbor in-
teractions and other interactions that make the system
a non-integrable many body system. The exact phase
boundaries are certainly different from the original single
particle phase diagram due to an interplay of interaction
and disorder. But in a sense to be explained below, the
phase structure of our circuits should be similar to the
phase diagram (fig. [4)).

2n<t<2n+1 (3)

IV. MEASUREMENT PROTOCOLS

Now even if we realized a stable phase of matter in
our Floquet dynamics simulation of an Ising-like model,
what are the probes or measurements we could use to
discuss properties of its phases? The notion of an order
parameter certainly exists in equilibrium states of matter,
but whether the same logic could be applied to Floquet
simulations is not so clear. In the following we describe
methods we use to resolve these problems.

A. Order Parameter Dynamics

For parameters falling in different phase regimes, their
LIOMs often take different forms. For example, in the
paramagnetic phase the LIOMs are dressed versions of
the Pauli-Z operators while in the ferromagnetic phase
the LIOMs are dressed versions of the Pauli-XX opera-
tors. It would seem that the LIOMs are related to order
parameters.

However, knowing the connection from LIOMs to order
parameters does not readily give us a way to tell, after
a simulation, what LIOMs do we actually have in the
experiment. To accomplish a detection, we utilize the
fact that the LIOMs are invariant upon time evolution.
If we pick some operator sufficiently close to the LIOMs,
then most of its information gets preserved during the
evolution. By this we simply mean, that the original
operators can be decomposed into a main operator and a
few other operators that have relatively smaller sizes. For
example, when we are in the paramagnetic phase, most of
the information of the Pauli-Z operators will be preserved



while most of the information of the Pauli-X operators
are lost. So if we start with a Pauli-X operator, in the
Heisenberg representation the operator always changes
rapidly. By doing a proper time averaging, those fast
changing parts vanish while those constant parts remain.

A more precise notion of this can be phrased in the
following way. We can define the following quantity to
quantify how close is the evolution of order parameter to
being locally conserved

|ofof (nT)| = Tr((of (nT)of (nT))7,4)/2Y  (5)

with the time average of an operator defined by
. 1< o
Oung(nT) = >~ O(T) (6)
j=1

In other words, it is the size of the time averaged order
parameter. The operators are in the Heisenberg represen-
tation, and being averaged with respect to different time
steps. Physically this measures how close is the operator
under consideration to the real local integrals of motion.
Since the real local integrals of motion are invariant un-
der time evolution, the time average just gives back the
original operators. On the other hand, the parts different
from LIOMs are changing rapidly and vanish upon being
averaged. An illustration of this is presented in fig. [f]

We can estimate how the circuit depth scales with the
system size. All we need is to evolve enough time steps
so that the components in the original order parameter
get 'smeared out’ under time averages. Since the order
parameters are quite local, the time scale associated with
this is equivalent to the relaxation time, which only de-
pends on the support range of the operator in a power-law
fashion®!¥22, Since the support range of the operator is
roughly fixed with increasing size for a given parameter
point in the phase diagram, we estimate that the circuit
depth does not scale with system size. However, since
close to the critical point the support range of the local
integrals of motion will tend to become the size of the
system, we expect the depth of the circuit to increase
siginificantly close to the critical point.

B. Random Measurements

The size of an operator is not an easy one to obtain
with traditional qubits measurements. Here we employ a
method inspired by?? to take advantage of the so called
random measurements. We note here that the full deriva-
tion of the formulas used here and a detailed description
of the setup can be found in the original paper. Here
the only difference is that we will be interested in time-
averaged quantities, and this extra subtlety is resolved at
the end of this subsection.

Generally there are two random measurement proto-
cols that can achieve such measurements, one based on
global random states and the other based on locally ran-
dom states. Since the generation of global random states
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FIG. 5. Effects of LIOMs (Local Integrals of Motion) on the
evolution of physical observables. In Heisenberg picture those
LIOMSs preserve their initial values while operators other than
the LIOMs oscillate rapidly. Under time average only infor-
mation of the LIOMs are preserved.

with quantum circuits requires comparatively more lay-
ers and is yet another independent direction in quantum
computations, we will restrict ourselves to the protocol
based on local random states. Basically it goes like this:
we prepare a product state but each qubit is random-
ized independently. This state then undergoes a time
evolution after which the measurement of the desired op-
erator is taken. The size of the operator can be extracted
from the statistical correlations of these different results
when different initial states are prepared (the statistical
correlations have nothing to do with probabilistic out-
comes due to uncertainty principles). An illustration is
presented in fig. [f]

More specifically, we prepare a product state in the
computational basis with all qubits set to '0’. We will
denote this state as |kg). We then form an ensemble of
states by flipping a total of m qubits, which consists of
2™ different states. Sampling now the local random gates
and denote this specific instance of random circuits as u,
we then calculate the quantity

(O(nT))u(O(nT))u (7)

We now need to do a weighted sum over all the 2™ states
in the ensemble, with weights (—1/2)# of flipped qubits
Then we sample other local random circuits and repeat
this process. Eventually this gives the equality

(3" G T[] Swar 052 0)
) ) Jj<n X X (8)
[1(Ox © O + Swap, (O @ On))).
k>n

(0)u(0).

It important to note that the general operator O is rep-
resented in a matrix product form. Different O;s should
be understood as having two extra legs contracted with
O;_1 and Oj4;. The swap operator, after acting on the
tensor product and being traced over, gives contraction
of Oy and Oy.

The rather complicated expression of Eq. [§ will look
very simple and ideal for our case if we take m to be L,
in which case the right hand side of the equation is just
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FIG. 6. The setup of random measurements. The initial state
is drawn from an ensemble which is independently Haar ran-
dom on each spin. A Floquet circuit is then applied to this
random state and normal measurements are taken. By aver-
aging the square of the measurement outcomes with respect
to the random state ensemble, for example, one can get in-
formation regarding the size of the measurement operator in
the Heisenberg picture.

proportional to Tr(OA?). So one can view the m parameter
as the level of approximation. However, the quantity
we aim to include in the expression is Ogyq(nT), which
according to the properties of LIOMs should be a local
operator. Thus we should need a relatively small m to
still give good enough results, in other words the results
converge rapidly with increasing m.

Some may wonder if this is readily applicable to our
scheme since what appears in the dynamics of order pa-
rameters is not a genuine operator but a time average of
it. In fact, applying to our scheme require one to evaluate

{Oavg(nT)) = = (O(T)) 9)

A convenient way would be to record the measurement
results for each time step. One then needs to square the
time averaged measurement results to proceed with what
we described above. We should note that in our classical
simulations we do not take into account finite m effects
and the statistical error of sampling random unitaries.
Classical simulation is able to directly compute the size
of the time-averaged order parameters since we study a
small system.

Our method is readily generalizable to probe the other
phases in the phase diagram, and also a class of models
introduced in this referencel?. For example, the time-
crystal phase can be probed by measuring (o707 (nT))
using random measurements and observing the 2T pe-
riodicity in time. For the more general class of models
that completely breaks an on-site symmetry group G, the
Floquet phases are classified by Z(G). Take Z,, as an ex-
ample, one can similarly measure (g; g;r (nT)), g being the
symmetry generator of Z,,, and using the phase jump per
period to determine the corresponding phase.

V. RESULTS

We now present our results. Our first result is the
order parameter dynamics for different parameters. All
the results below are obtained with exact diagonalizing
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FIG. 7. Behaviours of the order parameters dynamics in two
different phases(V=0.1). The order parameter is chosen as
ojoj which is the order parameter for the FM phase. In the
PM phase this order parameter dropped to zero in a finite
number of steps. However in the FM phase the order param-
eter stays finite within the time steps taken.

the Hamiltonian with quasi-periodicity. The phase fac-
tor ¢ in the quasi-periodicity function does not affect
the results siginficantly so we randomly choose 100 dif-
ferent ¢s and average the physical quantities over these
samples just to make the results smooth. More specifi-
cally, we choose two points in the parameter space, one
with ¢ = 0.2, = 0.8 (PM phase) and another with
t =0.8,0 = 0.2 (FM phase) and see how our the dynam-
ics of the order parameter behaves for these two circuits
individually. We can see that for the Pauli-XX order pa-
rameter, the value of the order parameter dropped close
to zero with finite time steps in the paramagnetic phase,
while remaining finite throughout the time steps we take
in the ferromagnetic phase. This is consistent with the
intuition that FM phase has a X X-like order.

We then obtain results by scanning through a range of
parameter values that cross the phase boundary. Ideally
one could wait long enough to see the ’true’ saturation
value of the order parameters. In our simulation we treat
1000 time steps more than as enough to produce reliable
results. In this case one can see that the saturated value
of order parameter starts to deviate from 0 at certain
values of ¢. In simulations on NISQ devices, one cer-
tainly has no access to this amount of time steps due
to noise limitations that restrict the circuit’s gate depth.
So we also plot results we obtain by restricting to 30
time steps, a fair amount for a near-term quantum com-
puter. By utilizing the previous time steps, we extend
beyond 30 time steps by fitting them to a power-law de-
cay. This heuristic approach seems a stronger indicator
of our known long time results than just by looking at
the 30 time steps alone. So either with 1000 time steps or
30 time steps we find signatures of the phases of matter
in our time-and-ensemble averaged order parameters.
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FIG. 8. A simulation of scanning through the phase bound-
aries(V=0.1). An illustration of the scanning trajectory is
depicted as the red arrow in fig. [f] The extrapolated results
for 30 time steps agree qualitatively with the ideal case (n =
1000).

VI. CONCLUSION & OUTLOOKS

To summarize, in this paper we proposed a scheme
to stabilize and dynamically detect Floquet phases of
matter on a near term quantum computer. The central
concept we seek to utilize is many-body localization,
which prevents our circuits to thermalize and render a
featureless phase diagram. Instead, with many-body
localization the circuits in different phases show distinct
behaviours even after undergoing significantly long
times. The distinction between different phases is
encoded in the LIOMs of the circuits, which is detected
by measuring time-and-ensemble averaged order param-
eters.

A crude estimate for the quantum volume (the number
of qubits times the gate depth accessible to a quantum

information processor) required to exceed the classical
simulation power of this problem for a quantum com-
puter would be approximately 30%20. We expect this
scheme could be deployed on the IBM Q quantum com-
puting platform upon adaptation in the near term, es-
pecially on their recently announced 127-quantum bit
(qubit) "Eagle™4,

Some future directions to look into would be to include
noise expected in a quantum computer into our scheme
and assess how the noise changes the validity of our pro-
posal. Specifically how does noise alter the behaviours of
LIOMs in the presence of localization? It is also worth
noting that the random measurement schemes proposed
in this paper seem natural fits to explore more about the
local integrals of motion in many-body localized systems,
which are crucial for understanding many-body localized
phases. Also, in our approach to study the phase dia-
gram of a model, we effectively take the clean model and
insert randomizing gates that randomize the parameters.
Other interesting schemes certainly exist. For example,
by setting up a ramping protocal and inspecting the dy-
namics of certain order parameters, one could pin-point
the phase boundary of the system in equilibrium?®. An
alternative approach could be to insert random measure-
ments and drive the clean model through a measurement
induced phase transition to an area law entanglement
phase?9 28, At some level, this alternative approach is
a space-time rotation of the approach discussed in this
manuscript?? and may similarly allow the computation
of phase diagrams.
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Appendix A: Finite Size Effect

We report our results on the finite size effect of our method below. In the maintext we chose the system size to

be L = 10. In a realistic quantum device the system size could be larger than that, we show evidence that such an
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increase of system size improves the sharpness of our results.

We again scan through the phase boundaries as we did in Fig. [8| but with system size L = 8,10, 12 respectively. The
results are shown in the lower panel of Fig. 0] To get consistent results we define a 'normalized order parameter’.
Namely one note that throughout the phase region we scanned the order parameter always acquires a minimum
value in the disorderd phase, and we normalize the order parameter for different system sizes by dividing the order
parameter by this minimum. We denote the normalized order parameter by |O|ny. A comparison of this normalized
order parameter is shown in the upper panel of Fig. [0] As one can see by increasing the system size this normalized
order parameter shows a sharper signatures of phase transition.
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FIG. 9. A simulation of scanning through the phase boundaries(V=0.1). An illustration of the scanning trajectory is depicted
as the red arrow in fig. @ The extrapolated results for 30 time steps agree qualitatively with the ideal case (n = 1000).
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