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Abstract

A novel atomistic effective Hamiltonian scheme, incorporating an original and simple bilinear

energetic coupling, is developed and used to investigate the temperature dependent physical prop-

erties of the prototype antiferroelectric PbZrO3 (PZO) system. This scheme reproduces very well

the known experimental hallmarks of the complex Pbam orthorhombic phase at low temperatures

and the cubic paraelectric state of Pm3̄m symmetry at high temperatures. Unexpectedly, it fur-

ther predicts a novel intermediate state also of Pbam symmetry, but in which anti-phase oxygen

octahedral tiltings have vanished with respect to the Pbam ground state. Interestingly, such new

state exhibits a large dielectric response and thermal expansion that remarkably agree with previ-

ous experimental observations and the x-ray experiments we performed. We also conducted direct

first-principles calculations at 0K which further support such low energy phase. Within this fresh

framework, a re-examination of the properties of PZO is thus called for.
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I. INTRODUCTION

Antiferroelectrics (AFEs) form an important class of materials that are characterized by

antipolar arrangement of dipoles. Because of the various attractive functionalities provided

by these materials, there is a growing interest in their use in technological applications, in

particular for energy storage1–5. PbZrO3 (PZO) is the prototypical antiferroelectric (AFE)

perovskite, and AFE archetype, and its characteristics have been studied since the 1950s.

Recent research activities are aimed to better understand its properties6–12; however, despite

intensive investigations, PZO is still puzzling regarding several issues, including the origin

and complex nature of its ground state and possible existence of intermediate phases before

reaching its paraelectric high temperature state13,14. PZO exhibits a cubic perovskite struc-

ture of Pm3̄m symmetry at high temperatures and an antipolar orthorhombic ground state

below a critical temperature, Tc, of about 505 K, which has the space group Pbam15,16.

This Pbam ground state6–10,12 consists of three structural distortions in terms of phonon

mode instabilities of the cubic parent phase. The first one is a strong R+
4 soft phonon mode

associated with the zone boundary 2π
a
(1
2
, 1
2
, 1
2
) k-point of the cubic first Brillouin zone, where

a is the lattice constant of the five-atom cubic perovskite cell. This mode characterizes an

anti-phase tilting of the oxygen octahedra about the [110] direction in the perovskite lattice.

A second mode is the Σ2 mode and is indexed by the 2π
a
(1
4
, 1
4
, 0) k-point. The Σ2 mode

consists of complex antipolar displacements of Pb ions along [110] accompanied by some

oxygen displacements resulting in an unusual tilting pattern about the [001] pseudo-cubic

axis. There is also a third mode contributing to the Pbam ground state, but that is rather

weak. It has the S4 symmetry and is associated with the 2π
a
(1
4
, 1
4
, 1
2
) k-point17. It has first

been assumed that a trilinear coupling between these three modes, i.e. R+
4 , Σ2, and S4

modes, plays an important role to stabilize PZOs Pbam ground state (see, e.g., Refs.[7,8]).

However, first-principles studies of Ref.[6] revealed that the contribution of this trilinear term

to the total energy is small compared to the energy gain of the ground state with respect

to the cubic phase6. Recently, a theoretical framework has rather suggested that another

trilinear coupling term, which is similar to flexoelectricity but that involves gradients of the

octahedral tilt modes rather than strain, is responsible for the ground state of PZO with

Pbam symmetry18. In contrast, a recent experimental work using resonant ultrasound spec-

troscopy has rather suggested biquadratic and higher order terms couplings through strains
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between R and Σ modes19. Remarkably, Ref.[20] discovered a novel and simpler atomistic

energy which only bi-linearly couples the A-cation displacements and oxygen octahedral

tilting (also known as antiferrodistortive distortion (AFD)) in ABO3 perovskites and which

straightforwardly provided an unified description of many antiferroelectric and incommen-

surate perovskites, as well as ferrielectrics21. This finding therefore raises the question if

such previously overlooked and simple bi-linear coupling is, in fact, the main contributor to

stabilize the Pbam ground state of PZO.

Moreover, new low-energy phases were recently predicted by first-principles calculations

in PZO, such as those of Ima2 and Pnam symmetries containing 30 atoms and 80 atoms

per primitive cell, respectively7,22,23. The energy difference between these phases is very

small and dramatically depends on the pseudopotentials and other computational details,

further emphasizing that PZO is rather challenging to understand and to correctly simu-

late. PZO has another unsettled related question regarding a possible intermediate phase

for temperatures in-between the cubic paraelectric Pm3̄m state and the antiferroelectric

orthorhombic Pbam ground state. Experimentally, such an intermediate phase is sometimes

stabilized for a narrow temperature range between the AFE and the cubic phase but still, the

structure of the intermediate phase is not really fully known24–30. Depending on the crystal

growth conditions, intrinsic or intentional chemical doping/defects may extend the temper-

ature range in which the intermediate phase develops and/or causes the appearance of a

second intermediate phase showing isothermal, i.e., time-dependent, transition process13,31.

A recent first-principles study by Xu. et al. suggested possible candidates for intermediate

phases of PZO32, including one consisting of a dynamical average between the rhombohe-

dral ferroelectric R3c phase and antiferroelectric Pbam phases. Involvement of ferroelectric

rhombohedral phases and/or intermediate state was also indicated (1) in a high tempera-

ture X-ray diffraction study proposing the existence of a ferroelectric rhombohedral phase on

heating the PZO crystal26; and (2) by Tangantsev et. al.10, who studied the lattice dynamics

of PZO from X-ray and Brillouin scattering and showed that PZO exhibits an intermedi-

ate phase on heating the crystal. One can also find in the literature other possibilities for

that intermediate phase, such as one associated with lattice distortion corresponding to the

M-point (k = 2π
a
(1
2
, 1
2
, 0)) of the first Brillouin zone – as similar to the phase obtained in

Ref [16]. Note also that based on several experimental techniques, some polar clusters have

been proposed to co-exist in the paralectric phase, suggesting that the purely paraelectric
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state is only achieved above 593 K, i.e., far above TC (see Ref. 33).

The goal of this article is two-fold. First of all, to demonstrate, via the development

of a novel ab-initio effective Hamiltonian (Heff), that the bi-linear coupling of Ref.20 can

indeed lead to the stabilization of the complex antiferroelectric orthorhombic Pbam ground

state in PZO; Secondly, to use such novel atomistic scheme to predict that there is indeed

an intermediate state in PZO being in-between the known Pm3̄m and Pbam states, but

which is a state that has never been previously mentioned in the literature – to the best

of our knowledge and that shows instabilities allowing to better understand the reported

experimental observations. Effective Hamiltonian calculations yield that such intermediate

state can be thought as originating from the known Pbam ground state but when removing

the R+
4 phonon mode (and also the S4 mode). Such state, which is further confirmed here to

be of low energy by conducting additional direct ab-initio calculations, is coined here the Σ

phase, due to the predominance of the Σ2 mode. It also has the Pbam symmetry, therefore

resulting in an isostructural transition in PZO with temperature when going from that

phase to the ground state under cooling. Interestingly, the Heff computations also provide

an intermediate state that possesses (i) a large dielectric response, as it is experimentally

known in PZO for temperatures above the transition towards the ground state34–43); and (ii)

a thermal expansion that agrees well with our measurements.These calculations also yield

pseudocubic lattice parameters that are all close to each other in this intermediate state,

which indicates that this novel Pbam Σ state can be thought to be a cubic phase in disguise

and thus may explain why it may have been missed up to now. This Σ state is also found to

be very close in free energy to a tetragonal ferroelectric P4mm phase or other ferroelectric

states that we believe could be easily triggered through constrains such as chemical doping

and defects, as well as the application of external electric or mechanical fields, and, therefore

explain many of the experimental observations.

This article is organized as follows. Section II reports details about theoretical and

experimental methods developed and/or used here. Section III provides and discusses the

results, while Section IV summarizes the article.
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II. METHODS

A. Effective Hamiltonian

As indicated above, an effective Hamiltonian, Heff, is developed in the aim of understand-

ing and modeling finite-temperature properties of PbZrO3 bulk. This Heff has the following

degrees of freedoms: (1) the local soft modes ui in each 5-atom cells i, which are propor-

tional to the electric dipoles of that cell44 and that are centered on Pb ions here; (2) the

ωi pseudo-vectors that describes oxygen octahedral tiltings in the unit cells i45 and that are

centered on Zr ions; ωi is such as its direction is the axis about which the oxygen octahe-

dron of cell i rotates and its magnitude is the angle (in radians) of such rotation; (3) the

{ηH} homogeneous strain tensor for which the zero value of its diagonal elements (in Voigt

notation) ηH,1 = ηH,2 = ηH,3 is associated with the calculated first-principles-derived lattice

constant of the paraelectric cubic state of PbZrO3 at 0 K ; and (4) vi vectors that quantify

the inhomogeneous strain at each 5-atom cell i 44, and that are centered on Zr ions here.

Following Refs.[46–48], the total internal energy contains two different main energies:

Etot = EFE({ui}, {ηl}) + Etilt({ωi}, {ui}, {ηl}) (1)

where EFE describes energetics associated with local modes, elastic variables and their in-

teractions, while Etilt characterizes energetics involving oxygen octahedral tilts and their

couplings with local modes and the total {ηl} strain (that is the sum of inhomogeneous and

inhomogeneous strains).

As indicated in Ref.[44], EFE can be decomposed into five terms:

EFE = Eself({ui}) + Edpl({ui}) + Eshort({ui})

+ Eelas({ηl}) + Eint({ui}, {ηl}), (2)

where Eself is the local mode self energy, Edpl pertains to the long-range dipole-dipole inter-

action, Eshort represents the short-range interactions between local modes that go beyond

dipole-dipole interactions, Eelas denotes the elastic energy, and Eint describes the interaction

between elastic variables and local modes. As proposed in Ref.[44], these five energies can
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be written as follows:

Eself =
∑

i

{κ2u
2
i + αu4

i + γ(u2
ixu

2
iy + u2

iyu
2
iz + u2

ixu
2
iz)}

Edpl =
Z∗2

ǫ∞

∑

i<j

ui · uj − 3(R̂ij · ui)(R̂ij · uj)

R3
ij

Eshort =
∑

i 6=j

∑

αβ

Jijαβuiαujβ

Eelas =
N

2
B11(η

2
1 + η22 + η23) +NB12(η1η2 + η2η3 + η3η1)

+
N

2
B44(η

2
4 + η25 + η26)

Eint =
1

2

∑

i

∑

lαβ

Blαβηl(Ri)uα(Ri)uβ(Ri), (3)

with Rij = Ri − Rj for which Ri and Rj are the lattice vectors locating sites i and

j, respectively. α and β denote Cartesian components along the [100], [010] and [001]

directions, that are chosen to span the x-, y-, and z-axes, respectively. The i index runs

over all the Pb ions. For any given Pb-site i, the j index in Edpl runs over all the other Pb

ions. In contrast, the j index in Eshort “only” runs over the first, second and third nearest

Pb neighbors of the Pb ion located at the site i.

Furthermore, the Jijαβ coefficients in Eshort can be written in the following way for the

different nearest neighbor (NN) interactions:

first NN: Jijαβ =(j1 + (j2 − j1)|R̂ij,α|)δαβ;

second NN: Jijαβ =(j4 +
√
2(j3 − j4)|R̂ij,α|)δαβ

+ 2j5R̂ij,α · R̂ij,β(1− δαβ);

third NN: Jijαβ =j6δαβ + 3j7R̂ij,α · R̂ij,β(1− δαβ), (4)

where δ is the Kronecker symbol and R̂ij,α represents the α-component of Rij/Rij. A

detailed explanation of the j3 coefficient is mentioned in Ref [44]. It represents the strength

(and sign) of a specific intersite interaction between second nearest neighbor for the local

mode.

Regarding the second main energy of Eq. (1), we generalize that of Refs.[46–49] by

writing:
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Etilt({ωi}, {ui} , {ηl}) =
∑

i

[κAω
2
i + αAω

4
i + γA(ω

2
ixω

2
iy + ω2

iyω
2
iz + ω2

ixω
2
iz)]

+
∑

ij

∑

αβ

Kijαβωiαωjβ +
∑

i

∑

α

K ′ω3
i,α (ωi+α,α + ωi−α,α)

+
∑

i

∑

αβ

Clαβηl(i)ωiαωiβ

+
∑

i,j

∑

α,β

Dij,αβuj,αωi,αωi,β +
∑

i,j

∑

αβγδ

Eαβγδωiαωjβujγuiδ

+
∑

i,j

∑

α,β

Fij,αβωi,αuj,β (5)

where the sums over i run over all the Zr sites. The first sum of Etilt describes the

onsite contributions associated with the oxygen octahedral tilts, as proposed in Refs.[49–52].

The second and third terms represent short-range interactions between oxygen octahedral

tiltings49,51 being first-nearest neighbors in the Zr sublattice. Note that j runs over the six

Zr sites that are first-nearest neighbors of the Zr site i in the second term while ωi+α,α in

the third term denotes the α-component of the ω pseudo vector at the site shifted from the

Zr site i to its nearest Zr neighbor along the α axis. Note also that the Kijαβ parameters of

this second energy are written as:

first NN: Kijαβ =(k1 + (k2 − k1)|R̂ij,α|)δαβ (6)

Here, k2 characterizes the strength and sign of a specific interaction between first nearest

neighbors for the tilting modes (it is the equivalent of j2 shown in Fig. 1 of Ref. [44] but for

the tilting degrees of freedom rather than the local modes). Moreover and following Ref.[51],

the fourth term of Etilt characterizes the interaction between strain and tiltings. As first pro-

posed in Ref.[49], the fifth term (that depends on the Dij,αβ coefficients) represents a trilinear

coupling between oxygen octahedral tiltings and local modes. The sixth energy, which in-

volves the Eαβγδ parameters, characterizes bi-quadratic couplings between such tiltings and

modes51. Note that the j index runs over the eight Pb ions that are first nearest neighbors

of the Zr-site i in these fifth and sixth terms. Finally, the seventh term is the novelty here

with respect to the energies provided in Refs.[49–52]. It represents a recently discovered

energy that couples oxygen octahedral tiltings and local modes in a bi-linear fashion20,53. It

is allowed by symmetry and was proposed to explain the occurrence of complex antiferro-

electric, ferrielectric and even incommensurable phases in some materials20,21,53. Note that
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the sum over j is about the eight Zr-sites that are nearest neighbors of the Pb-sites i. It is

given, in a less compact form than in Eq. (5), by

∆E =Fii

∑

i

[(ui,x + ui,y)(− ωi100,z + ωi010,z − ωi101,z + ωi011,z)

+(−ui,x + ui,y)(− ωi,z + ωi110,z − ωi001,z + ωi111,z) + cyclic permutation] (7)

where Fii is a material-dependent constant that characterizes the strength of this coupling.

The sum over i runs over all the 5-atom cells of the perovskite structure, and the x, y, and z

subscripts denote the Cartesian components of the ui vectors and ωi pseudo-vectors. ωilmn,

with l, m or n being 0 or 1, characterizes the ω pseudo-vectors located at a(lx̂ + mŷ + nẑ

from that of site i), with a being the 5-atom lattice parameter and x̂, ŷ and ẑ being the

unit vectors along the x-, y- and z-axes, respectively. Note that the Zr site i is located at

−a(1
2
x̂ + 1

2
ŷ + 1

2
ẑ) with respect to the Pb site i. Figure 1 schematizes the coupling terms

inherent to the first line of Eq. (7). This new coupling term is important in some systems

having Pb atoms (Ref [20]), hence relaxors.

All the parameters of this effective Hamiltonian are provided in Table 1. They are

determined by conducting first-principles calculations using the local density approximation

(LDA)54 within density functional theory. Cells containing up to 40 atoms are employed,

along with the CUSP code55 and the ultrasoft-pseudopotential scheme56 with a 25 Ry plane-

wave cutoff. Practically, we use the same pseudopotentials than those of Ref.[57], and thus

consider the following valence electrons: Pb 5d, Pb 6s, Pb 6p, Zr 4s, Zr 4p, Zr 4d, Zr 5s, O

2s and O 2p electrons. It is important to know that these effective Hamiltonian parameters

are determined by considering small perturbations with respect to the cubic state, and thus

do not involve the full ionic and cell relaxation of any phase44. Consequently, the fact that

we used LDA to obtain these parameters does not automatically imply that our energetic

results for relaxed structures predicted by the effective Hamiltonian will be closer to those

resulting from the direct use of LDA than to those obtained from other functionals such as the

generalized gradient approximation (GGA) in the form of revised Perdew-Burke-Ernzerhof58

(PBEsol). This is especially true if employing these two functionals within first-principles

calculations provides similar results in term of structure but rather small differences between

the total energy of different relaxed phases – as it is, in fact, known in PbZrO3 bulk59.
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This Heff, along with its parameters, is then used in Monte-Carlo (MC) computations on

12× 12 × 12 supercells (which contains 8,640 atoms) for different temperatures. Typically,

40,000 MC sweeps are conducted for each considered temperature, with the first 20,000

sweeps allowing the system to be in thermal equilibrium and the next 20,000 sweeps being

employed to obtain statistical averages. However, near phase transitions, a larger number of

MC sweeps is needed to have converged results, namely up to 1 million (with the first half

used for reaching thermal equilibrium and the next half to extract statistical averages). It

is also important to know that a temperature-dependent pressure is added in these Monte-

Carlo simulations, with this pressure, P, acting on the strains to produce the following

energy:

Epres = Pa3(1 + ηH,1)(1 + ηH,2)(1 + ηH,3) (8)

where ηH,i, with i = 1, 2 and 3, being the diagonal elements of the homogeneous strain

tensor in Voigt notations60 (note that the shear strains are neglected in Equation (8) because

they are either null for the cubic paralectric phase or found to be rather small for the other

phases encountered in the simulations). Such dependence is assumed here to be linear, as

proposed in Ref.[61], and is given, in GPa, by: P = −5.489655172−0.001034483×T , where

T is the temperature in Kelvin with the two coefficients having been numerically found by

trying to reproduce the experimental lattice constants at 10K and 300K.

In order to determine which structural phases are predicted from the effective Hamiltonian

simulations, the following quantities are extracted from the outputs of the MC simulations

at any investigated temperature:

uk,α =
1

N

∑

i

ui,αexp(ik ·Ri) (9)

ωk,α =
1

N

∑

i

ωi,αexp(ik ·Ri) (10)

where k are vectors belonging to the cubic first Brillouin zone, α denotes Cartesian compo-

nents and the sums run over all the 5-atom sites. Typically, for the local modes, we look at

the k-vectors at the zone-center (for the polarization) but also at the Σ-point (for complex

antipolar displacements associated with the Pbam state) that is defined as Σ = (1
4
, 1
4
, 0) in

2π/a units. Such latter point is also investigated for the tilting of the oxygen octahedra,
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in addition to the R-point that is given by R = (1
2
, 1
2
, 1
2
) still in 2π/a units. Note that a

non-zero ωR,α characterizes antiphase tilting about the α-axis while a finite ωΣ,β should also

happen for the Pbam ground state with β being different from α.

B. Direct First-principles calculations

We also used direct first-principles calculations to check some unexpected predictions

arising from the use of the effective Hamiltonian and that will be discussed in the Results’

section. Practically, we use the generalized gradient approximation (GGA) within the revised

Perdew-Burke-Ernzerhof functional (PBEsol)58, as implemented in the VASP package62,

for these first-principles computations. The projector augmented wave (PAW)62,63 is also

applied to describe the core electrons, and we consider the Pb (5d106s26p2), Zr (4s24p65s24d2)

and O (2s22p4) as valence electrons with a 520 eV plane-wave cutoff.

C. Experiments

The lattice parameters have been determined by X-ray diffraction using a high resolution

diffractometer with a Copper radiation (λ=CuKα,1
=1.5405 Å) issued from an 18 kW-rotating

anode from room temperature to 750K using a furnace with a resolution better than 0.1K.

The X-ray diagrams were analyzed fitted with a pseudo-tetragonal unit cell due to the overlap

of the peaks related to the a and b lattice parameters of the orthorhombic unit cell. The lat-

tice parameters at 10K and 300K have been obtained by Rietveld analysis (Jana software)64

on results obtained from neutron diffraction performed at the Laboratoire Léon Brillouin

(beam line 3T2 , λ = 1.2252 Å). The lattice parameters obtained at room temperature from

neutron diffraction and from X-ray diffraction are in very good agreement. The orthorhom-

bic unit cell parameters (ao, bo, co) are presented in Fig.(3b) in a pseudo-tetragonal (apt,

cpt) setting where ao =
√
2apt, bo ≈ 2

√
2apt and co = 2cpt. At room temperature the or-

thorhombic cell parameters are ao=5.878Å, bo=11.783Å, co=8.228Å while, at 10K, they

are ao=5.878Å, bo=11.784Å, and co=8.197Å.
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III. RESULTS

A. Results from the Heff simulations and X-ray diffractions

Let us now report the predictions of the effective Hamiltonian with the parameters indi-

cated in Table 1 and the total energy described in Equation (1), with the additional feature

that the second line of Equation (7) is dropped out. This dropping is made because we

numerically found that incorporating all the terms of Eq.(7) provides unphysical solutions

for tilting arrangements (such as tiltings associated with the X-point of the first Brillouin

zone, which is given by (0, 0, 1
2
) in 2π/a units) while keeping the first eight terms of Eq.(7)

gives rise to a selected Pbam ground state (Note that dropping all terms of Eq.(7) will not

yield such latter ground state).

Figure 2(a) reports the temperature evolution of the non-zero tilting-related quantities,

namely ωR,x = ωR,y and ωΣ,z, while Figure 2(b) shows that the only significant local mode

quantity is uΣ,x = uΣ,y, as obtained by heating up the system from the ground state (note

that identical results are obtained by cooling down the system, and that the Heff calculations

also provide a S4 mode, but for which the weight is rather small, namely less than 0.32%).

The fact that all these quantities are finite at small temperature does characterize a Pbam

ground state.

As the temperature increases up to ≃ 650K, uΣ,x = uΣ,y decreases while ωΣ,z is barely

affected and ωR,x = ωR,y (anti-phase oxygen octahedra tilts) gets reduced significantly until

vanishing through a jump. A first-order transition to what we call here the Σ-phase, and

that is only characterized by non-zero uΣ,x = uΣ,y and ωΣ,z (complex tilts along z direction),

occurs. Such latest phase still has the Pbam symmetry with space group no. 55 (as indicated

by the FINDSYM software66,67), therefore indicating that our predicted transition around

650K is isostructural in nature68–70. Note that isostructural transitions are usually of first-

order, which is consistent with the jump of ωR,x = ωR,y seen here at 650K7. Interestingly, it

is experimentally known that the Pbam ground state phase disappears around 511K, which

is not so far away from our predicted 650K – especially taking into account that effective

Hamiltonians have the tendency to not accurately predict transition temperatures (while

qualitatively reproducing phase transition sequences, as demonstrated, e.g., by Ref.[44]).

However, we are not aware of any previous work mentioning that the Pbam ground-state
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phase transforms into another Pbam state (that is, the Σ phase here) under heating, therefore

making our predictions provocative and novel. Within this Σ phase, Figs 1a and 1b indicate

that both ωΣ,z and uΣ,x = uΣ,y decrease with temperature and then vanish through a jump

at about 1300K. A first-order transition to cubic paraelectric Pm3̄m is thus predicted to

happen, according to our effective Hamiltonian simulations.

In order to determine if these rather surprising predictions of the Heff can be realistic,

Fig. 3 reports the computed χ11, χ22 and χ33 diagonal elements of the dielectric tensor as

well as their average χav =
1
3
(χ11+χ22+χ33) as a function of temperature. One can see that

χ33 and thus χav adopt very large values at the temperatures around which the known Pbam

ground state transforms into the novel Σ phase, which is consistent with the experimental

observation of a large dielectric response around the temperatures at which the known Pbam

ground state disappears34–43. Strikingly too, the coefficient C in the fitting of χ33 and χav by

C
T−T0

is predicted to be 1.81×105K and 1.49×105K, respectively, in the Σ phase, which is of

the same order of magnitude than the experimental values ranging between 1.36×105K and

2.07 ×105K (see Refs.[36,71] and references therein) for temperatures at which the known

Pbam ground state has vanished.

Note that we found that the increase of χav and χ33 when the temperature gets reduced

in the Σ phase towards the known Pbam state can be thought to originate from the fact

that there is a P4mm ferroelectric state (with a polarization along the z-axis and no oxygen

octahedral tilting) that is very close in free energy for these temperatures. In fact, reducing

the Fii parameter in Table I to a certain critical value of 0.019 makes the intermediate phase

in-between the known Pbam state and the Pm3̄m cubic state becoming P4mm rather than

Σ. Note also that the large dielectric response shown in Fig. 3 implies that the zone-

center mode should soften when approaching the known Pbam phase from above, which has

been indeed observed10,72. It is also worth mentioning that the proximity in energy of the

ferroelectric P4mm state (or other ferroelectric states) could also explain the experimental

electric-field- or defect-driven single ferroelectric P-E loop observed above the known Pbam

phase13, or stabilized under epitaxial strain73.

Let us now take a look at the behavior of the pseudocubic lattice parameters as a function

of temperature. Figure. 4a reports our predictions from the use of the presently developed

effective Hamiltonian (obtained from the strain outputs) while Fig. 4b displays our own

experimental results along with those of Ref.[74]. One can see that, within the known
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Pbam state, several features of the measurements are well reproduced, namely the a and

b pseudocubic lattice constants are basically independent of the temperature while the c

pseudocubic lattice parameter significantly increases when heating PZO. The jump in the

c lattice constant seen in Fig. 4a at around 650K confirms the first-order character of the

isostructural transition between the known Pbam state and the Σ phase. What is remarkable

is that, within the error bars (the range of error bars for the a and b pseudocubic lattice

parameter is from 0.0013 to 0.007 Å for the whole temperature range, while it is less than

0.0038 Å for the c lattice parameter), the a, b and c parameters are identical within our

predicted Σ phase, which may thus give the (wrong) impression that PZO is cubic if solely

focusing on pseudocubic lattice parameters or strains. One can thus think that this Σ phase

is a cubic state in disguise, when focusing on pseudocubic lattice parameters. In fact, the

predicted temperature evolution of 1
3
(a+b+c) adopts a thermal expansion that is very close

in the Σ and paraelectric Pm3̄m phases, and that is characterized by an average coefficient

of 7.97 × 10−6K−1, –which is in good agreement with the present measurements giving

7.4× 10−6K−1 (note that such coefficient is numerically found to be 7.77 × 10−6K−1 in our

Σ phase versus 8.36 × 10−6K−1 in the simulated Pm3̄m state). This facts suggests, once

again, that the present simulations can be realistic. On the other hand, comparing Fig.

4a and 4b tells us that the jump in the c pseudocubic lattice parameter when the known

Pbam state disappears is more pronounced in experiments than in our present calculations.

Such quantitative discrepancy can be due to the facts that this disappearance happens at

higher temperature in the simulations and/or that the computations use relatively small

12 × 12 × 12 supercells (implying that the first-order character of that transition can be

reduced by the increase in critical temperature and/or finite-size effects).

Interestingly, near the temperatures at which the known Pbam state disappears, it has

been observed in Ref [71] (see Fig. 2.9 there) that the (1
2
, 3
2
, 1
2
) diffractions peak typically

associated with antiphase oxygen octahedral tiltings disappears at a temperature lower than

the (1
4
, 3
4
, 0) diffraction peak that typically characterizes antiparallel displacements of Pb

associated with the Σ k-point. Such features appear to be qualitatively consistent with our

predictions shown in Figs 1a and 1b. Note that our predicted Σ-phase can be of short-

range or broken into small domains in grown samples, which may explain why it has not

been directly reported and reported yet. It is also interesting to realize that, in addition

to a zone-center soft-mode, a central mode, with a frequency being very low, has been

13



experimentally reported for temperatures above the known Pbam state10,33,72. Such feature

may be representative of dynamical jumps between different Σ-phases, that are with positive

or negative ωΣ,z, ωΣ,y and ωΣ,x. Such dynamical jumps will render cubic the overall structure

of PZO, while not affecting 1
3
(a+ b+ c).

B. Results from first-principles calculations

Let us now check if such Σ phase is also seen as a low-energy state within direct first-

principles calculations. Table 2 reports the energy of such Σ phase, but also those of the

known Pbam and R3c states, choosing the zero of energy to correspond to the cubic paraelec-

tric Pm3̄m state. One can first see that the known Pbam is the state with the lowest energy

but by only a small amount of about 1 meV/f.u. with respect to R3c. Very interestingly,

Table 2 also tells us that Σ is indeed a low-energy state in PZO, with its decrease in energy

being about 235.6 meV/f.u. with respect to the cubic state, to be compared with 278.8

meV/f.u. for the known Pbam phase. In other words, having finite ωΣ,z and uΣ,x = uΣ,y

(like in the Σ and known Pbam phases) brings about 85% of the energy of the known Pbam

state with respect to Pm3̄m state, with the other 15% being due to ωR,x = ωR,y. Such

percentages highlight the importance of the bilinear couplings of Eq. (7), which are respon-

sible for the finite values of ωΣ,z and uΣ,x = uΣ,y in both the Σ and known Pbam states,

as well as their low energies. Table 3 provides the crystal structure and atomic positions of

the known Pbam and the presently discovered Σ phase, respectively, as predicted by direct

first-principles calculations at 0K, in the hope they can be used in the future to investi-

gate and/or revisit structural phases of PZO. One can see from Table 3 that the pseudo

lattice parameters of the Σ phase are not close to each other at 0K, while they are at high

temperatures (see Fig 4a)

IV. CONCLUSIONS

We developed and used an original atomistic effective Hamiltonian, incorporating the

bilinear coupling discovered in Ref.[20], in order to investigate structural and dielectric

properties of bulk PZO as a function of temperature. We also conducted X-ray diffrac-

tion measurements for various temperatures. This effective Hamiltonian reproduces well (i)
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the existence of the known low-temperature AFE orthorhombic Pbam phase and the high-

temperature paraelectric cubic phase; (2) the large dielectric response; and (3) the thermal

expansion of the pseudocubic lattice parameters of PZO. Its most provocative prediction

is the existence of an intermediate phase named here as the Σ phase and that occurs in-

between the known Pbam and cubic phases. This Σ phase has the Pbam symmetry too,

therefore yielding an isostructural transition in PZO bulks. It mostly differs from the Pbam

ground state of PZO by the vanishing of anti-phase octahedral tiltings, and its low energy

is confirmed by conducting additional direct first-principles calculations. Both the known

Pbam state and this Σ phase are numerically found to emerge due to the bilinear coupling

terms defined in Eqn. (7). Possible reasons explaining why this Σ phase may have been

previously overlooked are provided here too. They include the possibilities that the Σ phase

only exists in a short-range fashion or is broken into small domains in real materials. An-

other plausible reason is that its three pseudocubic lattice parameters are basically equal to

each other, therefore giving the wrong impression that it is cubic in nature when conducting,

e.g., diffractions studies. Moreover, it is also possible that the ferroelectric tetragonal-like

phase (that is found to be very close in energy to the Σ phase) is experimentally observed,

as it might be triggered under external stimulus (electric field, doping/defects or stress)

which can thus explain some reported polar intermediate phase or polar clusters far above

the known Pbam state. We hope that the present work, predicting a phase that has never

been mentioned in the rich literature of the textbook antiferroelectric compound to the best

of our knowledge, will generate new experimental, theoretical and computational studies

and/or analysis on PZO.
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TABLE 1: Parameters of the presently developed effective Hamiltonian for PbZrO3. Atomic units

are used and the reference cubic lattice parameter is 7.763 Bohr.

Dipole Z∗ +6.383 ǫ∞ +6.970

u on-site κ2 +0.00628158 α +0.00943 γ -0.00201

u short range

j1 -0.004023 j2 +0.008550

j3 +0. 000614 j4 -0.0005768 j5 +0.0004896

j6 +0.0000301 j7 +0.0000151

Elastic B11 +4.775 B12 +1.302 B44 +0.0.912

u-strain coup. B1xx -0.293 B1yy +0.0522 B4yz +0.00294

ω on-site κA -0.15579 αA +3.523804 γA -3.20618

ω short-range k1 +0.0389464 k2 +0.00413634 K ′ -0.1241

ω-strain coup. C1xx -0.317612 C1yy +1.440823 C4yz -0.011972

ωu coup. (bilinear) Fii +0.02117

ωu coup. (trilinear) Dii,xy -0.0430

ωu coup. (bi-quadratic) Exxxx +0.13945 Exxyy +0.339915 Exyxy -0.667303

TABLE 2: Energetic gain for different low-energy states with respect to the cubic paraelectric

Pm3̄m state, as predicted by direct first-principles calculations of PbZrO3

Phases Energy(meV/fu)

Pbam 278.8

R3c 277.7

Σ 235.6
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TABLE 3: Crystal structure and Atomic positions of the Pbam and Σ phases at 0K obtained from

first-principles calculations

Pbam phase

Lattice Constants Cell angles

a b c α β γ

11.782 5.887 8.188 90 90 90

Label Symbol Multiplicity Wyckoff label
Fractional coordinates

Occupancy
x y z

Pb1 Pb 4 g 0.87505 0.20121 0.00000 1

Pb2 Pb 4 h 0.87134 0.20890 0.50000 1

Zr1 Zr 8 i 0.62378 0.24246 0.24995 1

O1 O 4 e 0.00000 0.00000 0.20287 1

O2 O 4 f 0.00000 0.50000 0.77054 1

O3 O 8 i 0.76195 0.03295 0.28113 1

O4 O 4 h 0.09438 0.19920 0.50000 1

O5 O 4 g 0.15771 0.22353 0.00000 1

Σ phase

Lattice Constants Cell angles

a b c α β γ

11.717 5.913 4.076 90 90 90

Label Symbol Multiplicity Wyckoff label
Fractional coordinates Occupancy

x y z

Pb1 Pb 4 g 0.64479 0.30421 0.00000 1

Zr1 Zr 4 h 0.61911 0.75709 0.50000 1

O1 O 4 h 0.73631 0.45735 0.50000 1

O2 O 2 d 0.00000 0.50000 0.50000 1

O3 O 2 b 0.00000 0.00000 0.50000 1

O4 O 4 g 0.35576 0.28658 0.00000 1
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FIG. 1: Sketch of the bilinear coupling terms of the first line of Eq. (7). The red and blue arrows

on the central Pb cations represent the ui,x and ui,y displacements, respectively. The green arrows

on some Zr cations represent the ω pseudovectors.

FIG. 2: (a) Temperature dependence of some physical properties of PbZrO3 bulk under heating:

(a) the x- and y- components of the antiphase tilting < ωR > and the z-component of the complex

tilting < ωΣ > respectively, of the oxygen octahedra, (b) the x- and y- components of the < uΣ >

vector characterizing antipolar displacements centered on Pb cations and associated with the Σ

point of the cubic first Brillouin zone.

FIG. 3: Temperature dependence of the diagonal elements of dielectric tensor χ11, χ22, χ33, and

χav (which is 1
3
(χ11 + χ22 + χ33)) of bulk PbZrO3.
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FIG. 4: Temperature dependence of the lattice parameters predicted by the Effective Hamiltonian

(panel a), and those measured in the present work as well as in Ref.[74] (panel b) where a pseudo-

tetragonal unit cell (apt, cpt) has been utilized to represent the orthorhombic phase (ao, bo, co)

where ao =
√
2apt, bo ≈ 2

√
2apt and co = 2cpt).
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