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We study the backaction of quantum measurements on heat transport through a two-level system
by considering the continuous quantum measurement onto an eigen state of the two-level system.
For the non-selective measurement, the backaction appears as a dephasing effect on the two-level
system. We formulate the heat current under the selective measurement with a stochastic master
equation and show that the cross-correlation between the measurement outcomes and the heat
current contains information on the backaction. We expect that our findings can be verified by
using a platform of superconducting circuits.

I. INTRODUCTION

Measurement is indispensable to access the informa-
tion on a system. Quantum measurements usually dis-
turb a quantum system and thus destroy quantum cor-
relations, in striking contrast to the classical realm in
which unperturbed measurement is possible in princi-
ple [1]. This backaction of the quantum measurement
triggers many intriguing phenomena. For example, in
quantum many-body systems constituting large-scale en-
tanglements, the quantum backaction induces various
nontrivial effects, e.g., measurement-induced phase tran-
sitions [2–6], non-Hermitian dynamics [7–9], and suppres-
sion of the Kondo effect [10]. Moreover, quantum back-
action has been observed in well-controllable systems of
cold atoms [11–15] and of solid-state nanostructures [16].
In particular, a superconducting circuit is an ideal plat-
form for exploring quantum backaction on many-body
states. This is because experimental efforts toward the
realization of quantum computers have enabled high-
speed readout of qubits’ information and controlled in-
teraction of a single qubit with other qubits or electro-
magnetic fields [17, 18]. Recently, thermal engines under
quantum measurement have been proposed theoretically
in the light of superconducting circuits [19, 20].

Continuous measurement has a significant impact on
transport through a small quantum object since trans-
port properties reflect quantum states of such an ob-
ject [21, 22]. The simplest example is heat transport
through a two-level system, i.e., a qubit. Recent de-
velopments in experimental techniques have enabled us
to accurately measure heat current through a qubit and
have stimulated theoretical and experimental studies [23–
29]. Contrary to its apparent simplicity, quantum trans-
port via a qubit exhibits many-body effects due to strong
qubit-bath coupling, e.g., the Kondo effect [30–36] and
quantum phase transitions [30, 31, 37–44]. Moreover,
since the transferred heat is related to entropy produc-
tion [29, 45], heat transport under measurement is also a
key to demonstrating Maxwells demon and shedding light
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FIG. 1. Schematic diagram of the model considered in this
study. A two-level system is coupled to two bosonic heat
baths and an apparatus for continuous quantum measure-
ment. When the temperature of the heat bath L is higher
than that of the heat bath R, the heat current flows from the
heat bath L to R through the two-level system. The quantum
measurement of the two-level system affects the heat current,
which is called backaction.

on the relation between energy and information [46–51].
In that sense, it is cross-cutting to consider measurement
effects in heat transport from the viewpoint of uniting
condensed matter physics and information theory.

In this study, we consider heat transport through a
two-level system and examine how heat transport is af-
fected by a continuous quantum measurement onto an
eigenstate of the two-level system (see Fig. 1). We calcu-
late the heat current by using the master equation which
takes quantum measurement processes followed by post-
selection into account. First, we show that the dephasing
induced by continuous measurement modifies the heat
current. To clarify the backaction in detail, we further
calculate the cross-correlation between the heat current
and the measurement outcomes in the selective measure-
ment scheme. By introducing this quantity, it becomes
possible to discuss the backaction to non-equilibrium
transport phenomena more directly in feasible experi-
mental setups. We expect that the present experimental
techniques enable the measurement setup to be realized
in the form of superconducting circuits.
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II. MODEL

We consider heat current between two heat baths
through a two-level system under continuous quantum
measurement (see Fig. 1). The system is described by the
spin-boson model, whose Hamiltonian consists of three
terms as H = HTLS +HB +HI. The two-level system is
described by

HTLS = −~∆

2
σx, (1)

where ∆ (> 0) is the tunneling amplitude and σi (i =
x, y, z) are the Pauli matrices. The heat baths are mod-
eled by collections of harmonic oscillators as

HB =
∑
r

HB,r =
∑
rk

~ωrkbrkb†rk, (2)

where brk (b†rk) is a bosonic annihilation (creation) oper-
ator of the kth mode in the heat bath r (= L,R) with
energy ~ωrk. The interaction between the two-level sys-
tem and the heat baths is described by

HI =
∑
r

HI,r = −σz
2

∑
rk

~λrk
(
brk + b†rk

)
, (3)

with coupling strength λrk. The properties of the heat
baths are determined by the spectral density Ir(ω) ≡∑
k λ

2
rkδ(ω − ωrk). In this study, we focus on an

Ohmic heat bath whose spectral density is written in the
form [30, 31]

Ir(ω) = 2αrωe
−ω/ωc , (4)

where αr is a dimensionless coupling strength and ωc is
a cutoff frequency.

We consider the backaction induced by a quantum
measurement onto the ground state |+〉 (or onto the ex-
cited state |−〉) of the two-level system, where |±〉 are
eigenstates of σx (σx |±〉 = ± |±〉). We define projection
operators, P± = |±〉 〈±| = (I ± σx)/2, and operators for
the corresponding continuous quantum measurements,

M± =

√
γ±m P±, (5)

where γ±m indicates the strength of the measurement.

III. NON-SELECTIVE MEASUREMENT

A. Quantum master equation

First, let us consider a non-selective quantum mea-
surement in which the measured values do not affect
the subsequent dynamics. In this case, the quantum dy-
namics can be described by the Lindblad equation after

taking the ensemble average over the measurement out-
comes [52]:

dρ

dt
= − i

~
[H, ρ] +Dm[ρ], (6)

where Dm[ρ] =
∑
i=±(MiρM

†
i − {M

†
iMi, ρ}/2). Here,

ρ denotes the density matrix and [·, ·] and {·, ·} are the
commutator and anti-commutator, respectively. Assum-
ing that the system-bath coupling is weak (αr � 1),
the Lindblad equation for the reduced density matrix,
ρ̃ = trB[ρ], is obtained as [53]

dρ̃

dt
= − i

~
[HTLS, ρ̃] +DB[ρ̃] +Dm[ρ̃], (7)

where DB[ρ̃] =
∑
r,i=± Γri(σ

iρ̃σ−i−{σ−iσi, ρ̃}/2), σ± =

(σz ± iσy)/2, Γr+ = (π/2)nr(∆)Ir(∆) and Γr− =
(π/2)[nr(∆) + 1]Ir(∆) are the absorption and emission
rates, respectively, and nr(ω) = (eβr~ω − 1)−1 is the
Bose-Einstein distribution function at temperature Tr =
1/(kBβr) of the heat bath r. In the Lindblad equa-
tion (7), the effect of the measurement is described by
Dm[ρ̃] = γm(σxρ̃σx − ρ̃)/4 with γm = γ+

m + γ−m. This in-
dicates that the backaction of the non-selective measure-
ment appears through dephasing [54], whose amplitude
is given by γp = γm/2 [55]. Note that we cannot get the
information on which state is detected in this scheme.

B. Heat current

The heat current flowing from the heat bath L to
R through the two-level system is defined as JL =
−dHB,L/dt. Assuming that the temperature difference
between the two heat baths is sufficiently small, i.e.,
TL/R = T ± δT/2 with δT/T � 1, we can obtain
an analytical formula for the steady-state heat current
〈J〉 = 〈JL〉 = −〈JR〉 up to first order in δT by using the
Keldysh formalism, as [35, 56, 57]

〈J〉 =
αηkBδT

16

∫ ∞
0

dω S(ω)Ĩ(ω)
(β~ω)2

sinh(β~ω)
, (8)

where α = αL + αR, η = 4αLαR/α
2, Ĩ(ω) = Ir(ω)/αr,

and β = 1/(kBT ). Here, S(ω) is the Fourier transfor-
mation of a symmetrized correlation function, S(t) =
〈{σz(t), σz(0)}〉/2. From the Lindblad equation (7), S(ω)
reads [58]

S(ω) =
4Γ̃s(∆

2 + Γ̃2
s )

[(ω −∆)2 + Γ̃2
s ][(ω + ∆)2 + Γ̃2

s ]
, (9)

where Γ̃s = (Γs + γm)/2 and Γs =
∑
r(Γr+ + Γr−) [59].

The steady-state heat current 〈J〉 is plotted as a func-
tion of temperature in Fig. 2. It shows a non-monotonic
behavior as a function of temperature. This behavior can
be described by sequential tunneling process in which heat
is transported by a combination of energy absorption and
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FIG. 2. Temperature dependence of the steady-state heat cur-
rent under a non-selective quantum measurement for ∆/ωc =
0.1, α = 0.01, ε/ωc = 0 and γm/ωc = 0, 10−3, 10−2, and
10−1. The inset is an enlarged view near the peaks calculated
for γm/ωc×103 = 0, 1, 2.5, 5, 7.5, and 10 from top to bottom.

emission accompanied by transitions between the ground
and excited states of the two-level system [60, 61]. In this
process, the heat current is enhanced when the temper-
ature is compatible with the energy splitting ~∆ of the
two-level system. As the strength of continuous quantum
measurement, γm, increases, the peak of the heat current
is suppressed. As indicated, this suppression is induced
by an increase in the level broadening in the response
function (9) (Γs → 2Γ̃s) due to the additional damping
induced by the non-selective quantum measurement.

Here, we briefly explain how the non-selective measure-
ment is related to the selective measurement discussed in
Sec. IV. In general, the backaction of quantum measure-
ment depends on its outcomes. In the non-selective mea-
surement, however, the backaction is averaged out for
all the possible outcomes with their probabilities. Fig-
ure 3 illustrates the relation between the heat current
for the non-selective measurement and an original single-
shot sample. Before ensemble averaging, the heat current
changes instantaneously according to the measurement
outcomes at random times. The set of times at which
the heat current jumps is different from other ensembles
and the ensemble-averaged heat current is reduced to the
one on the non-selective measurement. Therefore, to ac-
cess information on the backaction effect depending on
the outcomes, we need to consider a physical quantity
that represents the correlation between the outcome and
the corresponding resultant heat current. For this pur-
pose, we will introduce the correlation function in the
next section.

IV. SELECTIVE MEASUREMENT

A. Stochastic quantum master equation

Next, let us discuss selective measurement onto |i = ±〉
by considering physical quantities which depend on mea-

surement outcomes. For this purpose, we treat discontin-
uous changes in the density matrix, i.e., quantum jumps
using the stochastic master equation for a conditional
density matrix ρc [1, 62]:

ρ′c = ρc −
i

~
[H, ρc] ∆t+D(1)

m [ρc] ∆t+D(2)
m [ρc] ∆Ni,

(10)

where ρ′c = ρc(t + ∆t), D(1)
m [ρc] = −{M†iMi, ρc}/2 +

tr[ρcM
†
iMi]ρc, D(2)

m [ρc] = MiρcM
†
i /tr[ρcM

†
iMi]−ρc, and

we have neglected the higher-order terms of ∆t∆N ∼
o(∆t). The total density matrix is reproduced by tak-
ing the ensemble average, ρ = E[ρc], where E[·] denotes
the ensemble average. The measurement outcomes are
described by a Poisson process with a stochastic variable
∆Ni, which takes 1 when the two-level system is detected
as being in state |i〉 and 0 otherwise during time ∆t. Note
that ∆Ni = 0 does not mean that the quantum measure-
ment is not performed; This means that the two-level
system is measured not to be eigenstate |i〉 and the time-

evolution of the system is affected by D(1)
m [ρc] in Eq. (10).

The ensemble average of the Poisson variable is written
as

E[∆N±] = tr[ρcM
†
±M±]∆t = γ±m

1± 〈σx〉c
2

∆t. (11)

For the weak system-bath coupling (αr � 1), the
time-evolution equation for the reduced density matrix
ρ̃c = trB[ρc] is obtained in the same manner as the non-
selective case, as

ρ̃′c = ρ̃c −
i

~
[HTLS, ρ̃c] ∆t+DB[ρ̃c]∆t

+D(1)
m [ρ̃c]∆t+D(2)

m [ρ̃c]∆Ni. (12)

From this equation, one can derive time-evolution equa-
tions for the conditional coherences and population
〈σi(t)〉c (See the details in Appendix A).

B. Heat current

The heat current under the condition that the state
|i〉 of the two-level system is not detected (∆Ni = 0)
is formulated as follows [63]. In the Markov limit and
assuming that the coherence can be neglected on the
relevant time scale, the heat current flowing from the
heat bath r (= L,R) into the two-level system is ex-
pressed as [60] 〈Jr(t)〉c = ~∆[Γr+p

g
c(t)−Γr−p

e
c(t)], where

p
g(e)
c = 〈g(e)| ρ̃c |g(e)〉 = (1 ± 〈σx〉c)/2 is the population

of the ground (excited) state. For simplicity, we will con-
sider a symmetric heat bath (α/2 = αL = αR) hereafter.
When the temperature difference δT is sufficiently small,
the net heat current flowing from the heat bath L to R,
〈J(t)〉 = (〈JL(t)〉 − 〈JR(t)〉)/2, can be expressed to first
order in δT as

〈J(t)〉c =
πI(∆)kBδT

8 sinhc2(β~∆/2)
〈σx(t)〉c , (13)
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FIG. 3. Heat current under quantum measurement onto |+〉
as a function of time. The parameters are ∆/ωc = 0.1,
α = 0.01, γ+

m/ωc = 0.01, and kBT/~ωc = 0.1. The blue
line represents the heat current obtained from one sample of
quantum trajectories which includes three quantum jumps in
the range of the plot. The numerical ensemble average of
the heat current, E[〈J(t)〉c], using 104 quantum trajectories
(the red line) coincides with the heat current obtained un-
der the non-selective measurement (the black dashed line).
We set the initial conditions as 〈σx(0)〉c = 〈σy(0)〉c = 0 and
〈σz(0)〉c = 1.

where I(∆) =
∑
r Ir(∆) and sinhc(x) = sinh(x)/x.

A sample of the conditional heat current 〈J(t)〉c under
a continuous quantum measurement onto |+〉 is shown in
Fig. 3. Several quantum jumps in the time evolution of
〈J(t)〉c are characteristic to the selective measurement.
After detection, the conditional heat current jumps to a
definite value because the state of the two-level system is
projected to the state |+〉. On the contrary, the heat cur-
rent tends to relax to a stationary point during periods
in which there were no detections (∆N+ = 0). Thus, the
dynamics of the conditional heat current can be described
by stochastic quantum trajectories composed of continu-
ous dynamics during the no-detection periods (∆N+ = 0)
and quantum jumps (∆N+ = 1). The conditional heat
current under selective measurement onto |−〉 can be for-
mulated in a similar way. The ensemble average of the
conditional heat current on these trajectories, E[〈J(t)〉c],
(the red line in Fig. 3) reproduces the heat current under
the non-selective measurement (the dashed line in Fig. 3)
[64],

〈J(t)〉 = πI(∆)kBδT
(β~∆)2

16 sinh(β~∆)

(
1− e−Γst

)
. (14)

C. Cross-correlation

So far, we focused on the steady-state heat current.
From now on, let us consider to what extent the mea-
surement outcomes and the heat current are correlated
in time to discuss the backaction due to the continuous
quantum measurement onto |i = ±〉. For this purpose,
we introduce the cross-correlation between the measure-

ment outcomes and the heat current defined by

Fi(t) = E

[
1

t1 − t0

∫ t1

t0

dt′ δ∆Ni(t
′)δ 〈J(t+ t′)〉c

]
,

(15)

where δA = A − E[A]. Using Eq. (13), the cross-
correlation reads

Fi(t) =
πI(∆)kBδT

8sinhc2(β~∆/2)
Fi(t), (16)

where

Fi(t) =
1

t1 − t0

∫ t1

t0

dt′
{
E[∆Ni(t

′) 〈σx(t+ t′)〉c]

− E[∆Ni(t
′)]E[〈σx(t+ t′)〉c]

}
. (17)

At large t0, t1 � Γ−1
s , we can replace E[〈σx(t)〉c]

with the stationary solution, 〈σx〉ss = tanh(β~∆/2) [65].
Moreover, the averaged interval time between adjacent
measurement events (∆Ni = 1) can be assumed to be
much longer than the inverse of the decay rate of 〈σx(t〉),
i.e., (E[∆Ni]/∆t)

−1 � Γ−1
s . This assumption is justified

in our setup, in which a detection is a rare event accord-
ing to the Poisson process. In this situation, the con-
tributions from two different measurement events can be
neglected after taking the ensemble average, and the first
term in the integrand in Eq. (17) can be replaced with a
product of the probability of ∆Ni(t

′) = 1 and 〈σx(t+ t′)〉
with the initial condition 〈σx(t′)〉 = ±1. Finally, we ob-
tain the analytic expression for the cross-correlation as

F±(t)

∆t
= ±γ±m

πI(∆)kBδT

16sinhc2(β~∆)
e−Γst. (18)

This expression indicates that the cross-correlations un-
der the continuous quantum measurement onto |±〉 decay
exponentially with the decay rate Γs and have opposite
signs, i.e., F+(0+)/γ+

m = −F−(0+)/γ−m > 0.
Figure 4 (a) shows the results of numerical simulations

of the cross-correlation F+(t). We can observe that the
cross-correlation decays exponentially, F+(t)/F+(0) =
e−Γst, and its decay is faster as the coupling becomes
stronger. This numerical result completely agrees with
the analytical expression (18), indicating that the as-
sumption of the rare detection holds well. As shown in
the inset of Fig. 4 (a), we observe that the normalized
cross-correlations Fi(t)/Fi(0

+) for different γim = 0.01−
0.1 collapse to the same curve. This indicates that the
strength of the quantum measurement appears only in
the amplitude of the cross-correlation, being linear to γim.
The inset also confirms that F+(t)/γ+

m = −F−(r)/γ−m > 0
holds.

Finally, let us consider the integrated cross-correlation,

Gi =

∫ ∞
0

dt Fi(t). (19)
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FIG. 4. (a) Cross-correlation function F+(t) under selective
measurement onto |+〉 for different values of α = 0.01, 0.025,
0.05, 0.075, and 0.1 using 104 ensembles. The parameters
are ∆/ωc = 0.1, γ+

m = 0.01, kBT/~ωc = 0.1, t0ωc = 500,
and t1ωc = 1000. The inset shows the cross-correlation func-
tions, F+(t) (solid lines) and F−(t) (dashed lines), for different
γi
m = 0.01, 0.025, 0.05, 0.075, and 0.1. (b) Integrated cross-

correlation G+ as a function of temperature for α = 0.01,
0.05, and 0.1 using 5× 103 ensembles. The other parameters
are the same as in panel (a). The solid line represents an ana-
lytical expression (20). For both panels, the initial conditions
are the same as those in Fig. 3.

The temperature dependence of the integrated cross-
correlation is shown in Fig. 4 (b) for α = 0.01, 0.05, and
0.1. The numerical simulations for different values of α
collapse to the same curve, which indicates that the in-
tegrated cross-correlation is independent of the coupling
strength α. These numerical simulations coincide with
the analytic expression of G+/∆t obtained from Eq. (18),

G±
∆t

= ±γ±mkBδT
tanh(β~∆/2)

8sinhc2(β~∆)
, (20)

which is indicated by the solid line in Fig. 4 (b). The rea-
son why G± is independent of α is explained as follows.
The integrated cross-correlation can be rewritten as

Gi
∆t

= E[∆Ni]ssQ
ex
i , (21)

where E[∆Ni]ss is a stationary solution of the Poisson
increment and Qex

i is excess heat due to the quantum

measurement defined by

Qex
i =

∫ ∞
0

dt [〈J(t)〉 − 〈J〉ss] . (22)

The excess heat represents a disturbance of the two-level
system by the quantum measurement, and therefore, it is
expected to be independent of the system-bath coupling,
which governs the time scale of relaxation. In fact, we
can explicitly write down excess heat as

Qex
± = ± lim

δT→0

nL(∆)− nR(∆)

2

∆

2

∣∣∣∣Γa

Γs

∣∣∣∣ Γ±
Γs
, (23)

where Γa =
∑
r(Γr+ − Γr−) and Γ± = ΓL± + ΓR±.

Since the rates Γs, Γa, and Γ± are determined by Fermi’s
golden rule, they are proportional to the spectral density.
Therefore, excess heat is independent of the information
of the system-bath coupling, i.e., the coupling strength,
the cutoff function, and the type of heat bath. Since
E[∆Ni]ss is also independent of α, the integrated cross-
correlation Gi given in Eq. (21) becomes independent of
the system-bath coupling.

V. EXPERIMENTAL REALIZATION

We expect that our theoretical proposal can be ver-
ified experimentally by using a platform consisting of
superconducting circuits. The heat current through a
small circuit can be measured with present technology,
as demonstrated in a recent experiments [26–29]. In
Ref. [26], a transmon-type qubit was used as a two-level
system with frequency ∆ ≈ 5.30 GHz, corresponding to
~∆/kB ≈ 40.5 mK, and the measurement was performed
in the temperature range of T ≈ 75 ∼ 350 mK. Thus, the
condition, ~∆ ≈ kBT , required to observe the backaction
discussed in this work can be fulfilled. To measure the in-
tegrated cross-correlation, the outcomes from continuous
monitoring of the two-level system should be used as a
trigger for the subsequent measurement of the integrated
heat current within a finite period, which should be larger
than the inverse of the decay rate Γ−1

s . This conditional
heat current will deviate from the steady-state heat cur-
rent without monitoring. We emphasize that the sign
of this deviation depends on which of the states |±〉 is
used for the continuous quantum measurement on the
two-level system.

VI. SUMMARY

We considered heat transport through a two-level sys-
tem under a continuous quantum measurement onto the
ground or excited state of the two-level system. We
found, in the non-selective measurement scheme, that the
heat current is affected by the quantum measurement
through the dephasing effect. In addition, to observe
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the backaction effect directly, we calculated the cross-
correlation between the measurement outcomes and the
heat current. The introduction of this quantity makes a
first step for evaluating the backaction to non-equilibrium
transport phenomena by the continuous quantum mea-
surement in light of feasible setups. We found that the
cross-correlation depends on which of the eigenstates of
the two-level system is to be measured and that the inte-
grated cross-correlation is enhanced when the tempera-
ture becomes comparable with the energy splitting of the
two-level system. Our work, focusing on a weak system-
bath coupling, represents a starting point for further re-
search on measurement-induced transport phenomena in
feasible setups. It remains challenging to clarify new
quantum many-body effects induced by quantum mea-
surement. We believe that our work provides a cross-
cutting bridge between condensed matter physics and in-
formation theory from the viewpoint of non-equilibrium
transport phenomena under continuous quantum mea-
surement.
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Appendix A: Numerical calculation of 〈σi(t)〉c

Here, we provide details on the numerical calculation of
the conditional coherences and population 〈σi(t)〉c, which
allowed us to plot Fig. 3 in the main text.

We start by expressing the reduced conditional density
matrix using the Bloch vector as

ρ̃c(t) =
1

2
(I + 〈~σ(t)〉c · ~σ) , (A1)

where 〈~σ(t)〉c = (〈σx(t)〉c , 〈σy(t)〉c , 〈σz(t)〉c)t and ~σ =
(σx, σy, σz)

t The stochastic master equation (8) then
reads, in the matrix representation,

(
1 + 〈σ′z〉c 〈σ′x〉c − i 〈σ′y〉c

〈σ′x〉c + i 〈σ′y〉c 1− 〈σ′z〉c

)
=

(
1 + 〈σz〉c 〈σx〉c − i 〈σy〉c

〈σx〉c + i 〈σy〉c 1− 〈σz〉c

)
−∆

(
〈σy〉c i 〈σz〉c
−i 〈σz〉c −〈σy〉c

)
∆t

− Γs

2

(
〈σz〉c 2 〈σx〉c − i 〈σy〉c

2 〈σx〉c + i 〈σy〉c −〈σz〉c

)
∆t− Γa

(
0 1
1 0

)
∆t

∓ γ±m
2

(
〈σx〉c 1

1 〈σx〉c

)
∆t∓ γ±m

2
〈σx〉c

(
1 + 〈σz〉c 〈σx〉c − i 〈σy〉c

〈σx〉c + i 〈σy〉c 1− 〈σz〉c

)
∆t

−
(

〈σz〉c 〈σx〉c ∓ 1− i 〈σy〉c
〈σx〉c ∓ 1 + i 〈σy〉c −〈σz〉c

)
∆N±, (A2)

where we omitted the time arguments as 〈σi(t)〉c → 〈σi〉c
and 〈σi(t+ ∆t)〉c → 〈σ′i〉c. Here, ± denotes the contin-

uous quantum measurement onto an eigen state |±〉 of
σx. Therefore, the time evolution of the conditional co-
herences and population can be described by

〈σx(t+ ∆)〉c = 〈σx(t)〉c −
[
Γs 〈σx(t)〉c ±

γ±m
2

(
1− 〈σx(t)〉2c

)
+ Γa

]
∆t− (〈σx(t)〉c ∓ 1) ∆N±, (A3)

〈σy(t+ ∆t)〉c = 〈σy(t)〉c +

(
∆ 〈σz(t)〉c −

Γs

2
〈σy(t)〉c ±

γ±m
2
〈σx(t)〉c 〈σy(t)〉c

)
∆t− 〈σy(t)〉c ∆N±, (A4)

〈σz(t+ ∆t)〉c = 〈σz(t)〉c −
(

∆ 〈σy(t)〉c +
Γs

2
〈σz(t)〉c ∓

γ±m
2
〈σx(t)〉c 〈σz(t)〉c

)
∆t− 〈σz(t)〉c ∆N±. (A5)

Next, the Poisson variable ∆N±, which takes 0 or 1, is generated with the probability,

P [∆N± = 1] =
γ±m∆t

2
(1± 〈σx(t)〉c) , (A6)

P [∆N± = 0] = 1− P [∆N± = 1]. (A7)
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Then, we can obtain 〈σi(t+ ∆t)〉c numerically by using
values of 〈σi(t)〉c and Eqs. (A3)-(A5) iteratively from the
initial conditions, 〈σx(0)〉c = 〈σy(0)〉c = 0 and 〈σz(0)〉c =
1.

Appendix B: Heat current under the selective
measurement for ∆Ni = 1

Here, we discuss the heat current when the detected
state of the two-level system is an eigen state |i = +〉 or
|i = −〉 (∆Ni = 1).

Using the definition of the heat current and the Heisen-
berg equation, the heat current is expressed as

〈JL(t)〉c = −
〈
dHB,L

dt

〉
c

=
i

2

∑
k

λLk~ωLk
〈
σz(t)

[
bLk(t)− b†Lk(t)

]〉
c
.

(B1)

where 〈O〉c = tr[ρcO]. Instantaneously after the detec-

tion at t, the conditional density matrix is projected to
the eigen state |i〉,

ρc(t) =
Piρc(t−∆t)Pi
〈Pi(t)〉c

. (B2)

where P± = |±〉 〈±| is the projective operator. By plug-
ging the conditional density matrix (B2) into the bracket
in the heat current (B1), we obtain〈

σz(t)
[
bLk(t)− b†Lk(t)

]〉
c

= tr
[
ρc(t)σz

(
bLk − b†Lk

)]
=

tr
[
ρc(t−∆t)PiσzPi

(
bLk − b†Lk

)]
〈Pi(t)〉c

= 0, (B3)

where we have used the cyclic property, [Pi, b
(†)
Lk] = 0,

and PiσzPi = 0. Therefore, when ∆Ni = 1, heat current
does not flow, i.e., 〈JL(t)〉c = 0.

Finally, we note that the contribution of the heat cur-
rent at the detection does not matter for the ensemble
values in our numerical simulations at the ∆t→ 0 limit.
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