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Quantum many-body scar states are special eigenstates of nonintegrable models with distinctive entanglement
features that give rise to infinitely long-lived coherent dynamics under quantum quenches from certain initial
states. We elaborate on a construction of quantum many-body scar states in which they emerge from Einstein-
Podolsky-Rosen (EPR) states in systems with two layers, wherein the two layers are maximally entangled. We
apply this construction to spin systems as well as systems of itinerant fermions and bosons and demonstrate
how symmetries can be harnessed to enhance its versatility. We show that several well known examples of
quantum many-body scars, including the tower of states in the spin-1 XY model and the η-pairing states in the
Fermi-Hubbard model, can be understood within this formalism. We also demonstrate how an infinite tower of
many-body scar states can emerge in bilayer Bose-Hubbard models with charge conservation.
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I. INTRODUCTION

Quantum many-body scar (QMBS) states are special highly
excited eigenstates with atypical properties relative to other
eigenstates at the same energy density [1–3]. Such eigenstates
emerge in quantum many-body systems that are nonintegrable
and are expected to obey the eigenstate thermalization hypoth-
esis (ETH) [4–6], which states that all eigenstates in a small
energy window should exhibit observable properties that are
identical in the thermodynamic limit. In ETH-obeying sys-
tems, quantum dynamics from typical initial states exhibits
relaxation to a local thermal equilibrium dictated by the eigen-
states with which the initial state has overlap [7, 8]. QMBS
states typically constitute a vanishing fraction of all eigen-
states in the thermodynamic limit and display no dynamical
signature for generic initial states. However, for special ini-
tial states that have overlap either predominantly [9] or ex-
clusively [10, 11] with the scar states, the resulting dynamics
exhibit distinctive coherent features that are absent in generic
quench experiments. QMBS states often appear in “towers”
consisting of a number of states scaling polynomially with
system size [9–23]. When these states are equally spaced in
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energy, the resulting dynamics becomes perfectly oscillatory,
leading to sharp experimental signatures of these rare eigen-
states [24–27]. These coherent dynamics may enable applica-
tions of QMBS states in quantum sensing protocols [28–30].

One important research direction in this field is the devel-
opment of systematic constructions of QMBS state towers
with distinctive dynamical signatures. Techniques for achiev-
ing this include group-theoretic constructions [19, 21, 22],
matrix product state methods [31, 32], and projector embed-
dings [33–41]. These methods provide insight into manifesta-
tions of QMBS states in previously unexplored models, which
constitutes another important direction of ongoing research
that is connected to efforts to realize such states in experi-
ments. While QMBS states have been heavily studied in one-
dimensional (1D) systems, their two-dimensional (2D) coun-
terparts have also begun to attract attention [10, 20, 32, 36–
38], particularly in light of recent experimental progress [42].

Generally QMBS states are identified in a many-body spec-
trum through their subextensive entanglement scaling, which
contrasts with the volume law entanglement scaling of typi-
cal finite-energy-density eigenstates. However, sub-volume-
law entanglement entropy is not a necessary condition for
an eigenstate to be a QMBS [43–45]. In Ref. [43], it was
demonstrated that there exists a class of QMBS states that are
highly entangled while retaining a simple entanglement struc-
ture, and that can be embedded into many-body Hamiltoni-
ans with a suitable bipartite structure. These states, dubbed
“rainbow scars” for their connection to the rainbow state and
its long-range entanglement structure [43, 45–47], display ex-
tensive entanglement scaling for generic bipartitions, going
against the standard definition of QMBS states. Thus, entan-
glement may be a good indicator but not a definitive method to
judge if a quantum state is indeed a nonthermal QMBS state.

In this work, we apply the tools developed in Ref. [43] to
construct a wide variety of models with QMBS states. We
focus our attention on bilayer quantum many-body systems,
which can arise both in systems with two layers separated in
real space as well as systems where two internal states, such
as spin states, play the role of the two layers. We show that
Einstein-Podolsky-Rosen (EPR) states in which the two lay-
ers are maximally entangled give rise to QMBS states, and
refer to these scar states as “EPR scars” to distinguish their
geometric structure from that of the rainbow state. We con-
struct these EPR scars for spin systems like those considered
in Ref. [43], as well as for itinerant fermionic and bosonic de-
grees of freedom, focusing in particular on 2D examples that
cannot be mapped to local spin systems. We lay out the gen-
eral construction in Sec. II.

Our main conclusions are twofold. First, we show that
several known examples of QMBS states fall into the EPR
scar framework. In Sec. III, we show that scars in the spin-
1 XY model [10] can be recast as EPR scars upon mapping
the spin-1 system to a bilayer spin- 12 system projected onto
the local triplet sector. In Sec. IV, we show that the cel-
ebrated η-pairing tower of states [15, 17, 20, 48] also falls
into this construction, in addition to laying out generaliza-
tions beyond the original Fermi-Hubbard model that include
spin-orbit coupling [17, 49] and superconducting pairing [20]

terms. In both of these examples the bilayer structure is emer-
gent, stemming from the rewriting in terms of spin- 12 ’s for the
spin-1 XY model, and from the spin index for η-pairing. Sec-
ond, in Sec. V, we construct an infinite-dimensional tower of
states in bilayer Bose-Hubbard systems. In the simplest case,
this tower emerges in systems where the intra and interlayer
interactions have opposite signs, a scenario that could be engi-
neered in optical lattices for mixtures of two bosonic species.

II. BILAYER EINSTEIN-PODOLSKY-ROSEN QUANTUM
MANY-BODY SCAR STATES

In this section we describe the construction of EPR scar
states in bilayer systems and consider how different choices of
bipartition influence entanglement calculations. Subsequently
we describe a general construction of parent Hamiltonians in
doubled Hilbert spaces that is independent of the concrete de-
tails of the single system HamiltonianH1.

A. The EPR State and its Entanglement Structure

We begin by considering two identical quantum systems,
labeled 1 and 2, which may either be spatially separated (e.g.,
the two layers of a bilayer system) or constructed using an
internal degree of freedom (e.g., electron spin). The Hilbert
spaceH1(2) of each system is spanned by an identical basis of
states |n〉1(2). The single-system Hilbert spaceH1(2) need not
have a local tensor product structure, the lack of which could
arise from projection into a symmetry sector or from kinetic
constraints. A general state in the doubled Hilbert space H =
H1⊗H2 is given by |ψ〉 =

∑
n,ñ ψn,ñ |n〉1⊗|ñ〉2. The many-

body EPR state is a pure state defined in the doubled Hilbert
space as

|EPR〉 =
1√

dim(H1)

dim(H1)∑
n=1

|n〉1 ⊗ |n〉2 . (2.1)

Because of its unique entanglement structure, the EPR state
and its finite temperature variant called the thermofield-double
state,

|TFD(β)〉 =
1√
Z

∑
n

e−βEn/2 |n〉1 ⊗ |n〉2 , (2.2)

where Z =
∑
n e
−βEn is the partition function at inverse

temperature β, are of great research interest across multiple
fields [50–54]. The EPR state that is the focus of our work
is simply the infinite-temperature thermofield-double state:
|EPR〉 = |TFD(β = 0)〉. In the rest of paper, we drop the
subscript labelling the two copies 1 and 2 unless ambiguity
arises.

Now we consider the entanglement structure of |EPR〉.
Throughout the paper, we quantify the entanglement between
a subregion A and its complement B with the von-Neumann
entropy SvN = −Tr(ρA ln ρA), where ρA is the reduced den-
sity matrix of subregion A computed from an eigenstate |E〉,
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i.e. ρA = TrB (|E〉 〈E|). We note that, by construction, the
two copies of the EPR state Eq. (2.1) share the maximal en-
tanglement entropy SvN = ln[dim(H1)], where region A is
defined as in Fig. 1(a).

In the simplest case, each Hilbert space H1(2) has a tensor
product structure. For concreteness, let us consider the Hilbert
space of N qubits with dimension 2N for each copy (gener-
alization to local dimension larger than 2 is straightforward).
In this case, the sum in Eq. (2.1) can be carried out indepen-
dently for each pair of qubits, and the EPR state becomes a
product of local EPR pairs,

|EPR〉 =
1

2N/2

N∏
i=1

(|0i〉 ⊗ |0i〉+ |1i〉 ⊗ |1i〉) . (2.3)

The bipartition in Fig. 1(a) cuts through N EPR pairs, leading
to the maximal entanglement entropy SvN = N ln 2 between
the two copies. On the other hand, the bipartite entanglement
in Fig. 1(b) is zero because of the tensor product structure of
the Hilbert space.

Now we consider the EPR state in Eq. (2.1) for more gen-
eral Hilbert spaces without tensor product structure. As men-
tioned before, by construction, the bipartition in Fig. 1(a)
always leads to the maximal entanglement entropy SvN =
ln dim(H). However, the entanglement entropy for the bipar-
tition in Fig. 1(b) is in general nonzero for Hilbert spaces that
are not factorized. A common approach to realizing such a
Hilbert space is to add a constraint, e.g. from symmetries or
kinetic constraints, to the Hilbert space of N qubits. Suppose
the constraint is implemented by fixing some set {p} of con-
served quantities in H1(2), and let P{p} be the projector into
the constrained Hilbert space. Assuming a bipartition of the
type shown in Fig. 1(b), the EPR state can then be written as

|EPR〉 =
1√

dim(H1)

∑
n

P{p} |n〉1 ⊗ P{p} |n〉2

=
1√

dim(H1)

∑
nA,nB

P{p} |nAnB〉1 ⊗ P{p} |nAnB〉2

(2.4)
where |n〉 now lives in the Hilbert space of qubits and can be
split into two parts |nA〉 and |nB〉. The only nonzero matrix
elements of the density matrix ρA of region A are then given
by

〈nA|1 ⊗ 〈nA|2 ρA |n
′
A〉1 ⊗ |n

′
A〉2 =

∑
nB

pnAnB
pnA′nB

,

(2.5)
where the matrix element pnAnB

equals one up to normaliza-
tion for states |nAnB〉 within the constrained Hilbert space
and zero otherwise.

From the above calculation, it becomes clear that the entan-
glement entropy of |EPR〉 for the bipartition in Fig. 1(b) is the
same as that of the following state defined in a single copy of
the system,

|ψ〉 =
1√

dim(H1)

∑
n

P{p} |n〉 . (2.6)

FIG. 1. Entanglement bipartitions for bilayer systems. (a) A bipar-
tition of type I, where subregions A and B are the top and bottom
layers, respectively. (b) Contrarily a bipartition of type II includes
degrees of freedom from both layers in each subregion (A or B). In
the 2D geometry shown here, each pair of sites i (from the top and
the bottom layer) that interact with each other are sites with the same
coordinates (x, y) and different z-coordinates.

Without the constraint imposed by the set {p}, this state is the
x-basis product state |+〉 · · · |+〉, where |+〉 = (|0〉+|1〉)/

√
2.

Adding a constraint results in entanglement. For instance, in
the case of U(1) symmetry, the projection of this state into
a generic magnetization sector (i.e., one with a finite mag-
netization density above a fully polarized state) has bipartite
entanglement entropy of order lnN . Another example for
a system with a constrained Hilbert space is the well-known
PXP model, which captures the physics of Rydberg atoms in
the regime when two neighboring atoms cannot be simultane-
ously in the excited state [9, 42, 55–57]. Here the single-layer
state and thus the constrained EPR states display an area law
entanglement entropy.

B. Constructing the Parent Hamiltonian for the EPR Scar
State

Because of the maximal entanglement between the two
copies, the EPR state in Eq. (2.1) has the special property that
applying an operator O to one copy is equivalent to applying
its transpose OT to the other copy. To show this, consider the
single-copy operator O =

∑
mn |m〉Omn 〈n| and its trans-

pose OT =
∑
mn |m〉Onm 〈n|, which we take to act within

H1. Using the definition of the EPR state in Eq. (2.1), one can
show that

O ⊗ I |EPR〉 =
1√

dim(H1)

∑
mn

Omn |m〉 ⊗ |n〉

= I⊗OT |EPR〉 .
(2.7)

Based on this property, one can construct a family of interact-
ing parent Hamiltonians for which |EPR〉 is an exact eigen-
state. Since |EPR〉 has a very simple entanglement structure
described in the last section, it is not thermal and becomes
a QMBS state, which we call the EPR scar state, when the
parent Hamiltonian is nonintegrable.

We now outline the construction of the parent Hamiltonian.
Consider the Hamiltonian in the doubled Hilbert space:

H = H1 ⊗ I+ I⊗H2 +H12 . (2.8)
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In the above, H1 and H2 are the Hamiltonians within each
copy and H12 describes the interaction between the two
copies, which can be expanded in the basis {OA} of one-copy
Hermitian operators as

∑
A,B λABOA⊗OB . Using Eq. (2.7)

to move the nontrivial actions ofH on |EPR〉 to a single copy,
we find that the general condition for the EPR state to be an
eigenstate ofH with energy E is that

H1 +H∗2 +
∑
A,B

λABOAO∗B = EI . (2.9)

Notice that
∑
A,B λABOAOB now acts on a single copy, and

hence this is an operator equation in a single copy of the
Hilbert space. The construction Eq. (2.8) is valid in arbitrary
spatial dimensions. In our previous work [43], we considered
a less general construction also requiring H1 +H∗2 = 0. The
general construction can be further enriched by considering
local unitary transformations and symmetries. In the follow-
ing sections, we demonstrate the general construction using
specific examples with different Hilbert space structures in-
cluding spins, fermions, and bosons and uncover EPR scars in
some well-studied many-body Hamiltonians.

III. SPIN SYSTEMS

In the first part of this section devoted to spin systems we
formulate the EPR scar construction for spin-S degrees of
freedom. We then proceed to demonstrate that the tower of
QMBS states in the spin-1 XY model [10] can be recast as
EPR scars in a bilayer spin- 12 system, which in 1D reduces
to a ladder geometry. In the process, we illustrate how the
general construction outlined in Sec. II can be enriched by
unitary transformations and U(1) symmetry. Finally, we con-
sider a bilayer Heisenberg model on the triangular lattice and
illustrate the even richer interplay of SU(2) symmetry with
our construction.

A. Spin EPR State

We start by considering a spin-S model on a lattice of N
sites with Szi ∈ {−S, . . . ,+S}, ∀ i = 1, . . . , N . For such a
system, the EPR state in the doubled Hilbert space takes the
form

|EPR〉 =
1

(2S + 1)
N/2

N⊗
i=1

+S∑
m=−S

|mi〉 ⊗ |mi〉 =
1

(2S + 1)
N/2

N⊗
i=1

S∑
m=−S

Γ(S,m)
(
S+
i ⊗ S

+
i

)m+S |−Si〉 ⊗ |−Si〉 (3.1)

with Γ(S,m) = (S−m)!
(2S)!(m+S)! and S+

j = Sxj + iSyj . In this spin
EPR state, spins from Hilbert spacesH1 andH2 that share the
same site index i are perfectly correlated.

In cases where the parent Hamiltonian of the EPR state
(3.1) respects a global symmetry, the projection of |EPR〉 into
each symmetry sector becomes an independent eigenstate of
the Hamiltonian. For example, it is easy to see that, when mul-
tiplied out, the state |EPR〉 (3.1) consists of several terms that
each can be associated with an eigenvalue of the total magne-
tization operator

Sztot =
∑
i

(Szi ⊗ I+ I⊗ Szi ) . (3.2)

Consequently, in models with a U(1) symmetry generated by
Sztot, the projections of the EPR state (3.1) into each magneti-
zation sector become scar states themselves. More generally,
as we will see in Secs. III B and III C and in Appendix B,
the total number of scar states into which Eq. (3.1) separates
depends on the symmetries of the underlying bilayer construc-
tion. For example, for a bilayer spin- 12 system with only U(1)
symmetry, we will see that the number of EPR scars is N + 1.

B. Spin-1 XY Model: U(1) Symmetry

An early example of an exact QMBS tower and the associ-
ated periodic dynamics was found in Ref. [10], which studied

the spin-1 XY model on a D-dimensional hypercubic lattice.
The model hosts a tower of scar states with anomalously low
entanglement entropy, with each scar state obtained from the
previous one through a raising operator due to an emergent
SU(2) algebra. Furthermore, time evolution from an initial
state has finite overlap with the tower and exhibits perfect pe-
riodic revivals, while generic initial states rapidly thermalize
as dictated by ETH. We will show how these scars are in fact
EPR scars.

For concreteness, let us first consider the spin-1 XY model
on a 1D chain with N sites given by

HS=1
XY =

N−1∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1

)
. (3.3)

We take N to be even for convenience. In the following,
we map the spin-1 chain onto a ladder composed of spin-
1
2 degrees of freedom (see Fig. 2) and demonstrate that the
new Hamiltonian obeys the operator equation in Eq. (2.9) af-
ter a local unitary transformation. As a result, the EPR state
emerges as a scarred eigenstate of the original Hamiltonian.

First, we replace each spin-1 operator by a sum of two spin-
1
2 Pauli operators:

Sαi 7→
1

2
(σαi ⊗ I+ I⊗ σαi ) , (3.4)

where σαi ⊗ I and I⊗σαi (α = x, y, z) are the Pauli operators
on site i of the top and bottom leg.
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The spin-1 Hamiltonian then becomes a ladder Hamiltonian

HS=1/2
XY =

N−1∑
i=1

(σxi σ
x
i+1 ⊗ I+ I⊗ σxi σxi+1)

+(σxi ⊗ σxi+1 + σxi+1 ⊗ σxi ) + (x→ y) .

(3.5)

By construction, the ladder Hamiltonian commutes with the
total spin on each rung, which takes value 0 (singlet) or 1
(triplet). The subsector with all triplets coincides with the
original spin-1 Hamiltonian. This subsector is defined by the
global projector P(1) =

∏N
i=1 P

(1)
i with

P(1)
i =

1

4

∑
α=x,y,z

σαi ⊗ σαi +
3

4
. (3.6)

Equipped with Eqs. (3.3)-(3.6), it is easy to see that

HS=1
XY = P(1)

(
HS=1/2

XY

)
P(1) . (3.7)

At first glance, the Hamiltonian in Eq. (3.5) does not obey
the general construction in Eq. (2.9). However, there exists a
simple local unitary transformation bringing it to the required
form. Consider the unitary transformation

C = I⊗
N/2∏
i=1

σz2i−1 . (3.8)

Under this transformation, I⊗σxi and I⊗σyi acquire a minus
sign for odd i. Now we split the transformed ladder Hamilto-
nian into terms within each leg and terms connecting the two
legs, i.e.

C HS=1/2
XY C = H1 ⊗ I+ I⊗H2 +H12 , (3.9)

where

H1 =
1

4

∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
,

H2 = −1

4

∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
,

H12 =
1

4

∑
i∈odd

(
σxi ⊗ σxi+1 − σxi+1 ⊗ σxi

)
− 1

4

∑
i∈even

(
σxi ⊗ σxi+1 − σxi+1 ⊗ σxi

)
+ (x→ y) .

(3.10)

This transformed Hamiltonian obeys Eq. (2.9) with E = 0.
Therefore, the unconstrained EPR state in Eq. (2.3) is a zero-
energy eigenstate of the transformed ladder Hamiltonian, i.e.,
CHS=1/2

XY C |EPR〉 = 0. Multiplying both sides by C and using
C2 = I, we find that the transformed EPR state

C |EPR〉 =
1

2N/2

N⊗
i=1

(|0i〉 ⊗ |0i〉+ (−1)i |1i〉 ⊗ |1i〉)

(3.11)

FIG. 2. The spin-1 XY chain. (a) A spin-1 degree of freedom ex-
pressed in terms of two spin- 1

2
particles. The operator P(1)

i projects
a pair of spins i onto the triplet subspace to recover the spin-1 degree
of freedom. (b) A one-dimensional chain of S = 1 spins expressed
as a ladder of spin- 1

2
particles. Each leg is composed of spin- 1

2
de-

grees of freedom, where sites on the upper (lower) leg are denoted by
i. The green ovals denote the local projections P(1)

i onto the spin-1
space, while the solid horizontal lines depict the intra-leg coupling,
i.e. H1 andH2. Dashed lines indicate the coupling between the two
legs, i.e. H12.

is an eigenstate of the original ladder Hamiltonian,

HS=1/2
XY C |EPR〉 = 0 . (3.12)

Note that C |EPR〉 lives in the subsector of HS=1/2
XY that co-

incides with the spin-1 Hamiltonian. It turns out the above
construction can be generalized to the spin-1 XY model on
any bipartite lattice, including the D-dimensional hypercubic
lattice studied in Ref. [10]. The only required modification is
that the product in C should be taken only over one of the sub-
lattices. We henceforth restrict to the 1D case for simplicity.

To connect the EPR scar state C |EPR〉 to the tower of states
found in Ref. [10], we rewrite Eq. (3.11) in the spin-1 lan-
guage:

C |EPR〉 =
1

2N/2

N⊗
i=1

(|+1i〉+ (−1)i |−1i〉) . (3.13)

Next, note that HS=1
XY (HS=1/2

XY ) conserves the total magne-
tization

∑
i S

z
i . The projection of C |EPR〉 into each magne-

tization sector therefore remains an eigenstate. Notice that
C |EPR〉 overlaps with only the even magnetization sectors,
leading to N + 1 degenerate scarred eigenstates including the
two fully polarized states |+1 · · ·+ 1〉 and |−1 · · · − 1〉. Ex-
plicitly, we can write C |EPR〉 as

C |EPR〉 = (−1)N/2
1

2N/2

N∑
n=0

√(
N

n

)
|Sn〉 , (3.14)

where

|Sn〉 =
1

n!
√(

N
n

) (J+)n |−1 · · · − 1〉 (3.15)

is the (normalized) projection of C |EPR〉 into the sector with
magnetization 2n−N . The raising operator J+ is given by

J+ =
1

2

N∑
i=1

(−1)i(S+
i )2 . (3.16)
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The states |Sn〉 are precisely the scar states constructed by
other means in Ref. [10]. They are degenerate eigenstates of
HS=1

XY , but adding a magnetic field hz
∑
i S

z
i lifts the degener-

acy and results in a tower of states with equal energy spacing
2hz . The state C |EPR〉 belongs to the family of initial states
shown in Ref. [10] to exhibit perfect periodic revivals with
period π/hz under a quantum quench.

Finally, we remark that the (N + 1)-fold degeneracy is a
generic feature of the EPR scars in systems with U(1) sym-
metry. In Appendix B, we consider two square-lattice Heisen-
berg layers coupled by an Ising interaction as another example
of a spin system with a U(1) EPR scar tower.

C. Bilayer Triangular-Lattice Heisenberg Model: SU(2)
Symmetry

Having studied a U(1) symmetric spin model in the pre-
vious section, we now move on to an SU(2) symmetric spin
model and show how the SU(2) symmetry leads to an EPR
scar tower with a rich structure. We consider the follow-
ing bilayer triangular-lattice Heisenberg model consisting of
exchange-coupled ferromagnetic and antiferromagnetic lay-
ers,

H = H1 ⊗ I+ I⊗H2 +H12 . (3.17)

The individual Hamiltonians take the form

H1 =
∑
〈ij〉

Jij ~Si · ~Sj , H2 = −H1,

H12 = λ
∑
i

~Si ⊗ ~Si .
(3.18)

The operators Szi and ~Si = (Sxi , S
y
i , S

z
i ) are spin- 12 operators

acting on sites i in either the top or bottom layer.
This model has an SU(2) symmetry with commuting gen-

erators

Sztot = Sz,1tot + Sz,2tot =
∑
i

Szi ⊗ I+ I⊗ Szi ,

S2
tot =

(∑
i

~Si ⊗ I+ I⊗ ~Si

)2

,

(3.19)

which correspond respectively to the magnetization and the
total spin. With SU(2) symmetry, the unconstrained EPR
state of 2N qubits, Eq. (2.3), can be projected into each
sector with fixed S2

tot = S(S + 1) and Sztot to yield a
scar state in that sector. Generally speaking for a system of
2N spin-1/2 particles we can have S ∈ {0, 1, . . . , N} and
Sztot ∈ {−S,−S + 1, . . . , S − 1, S}. However, as is evi-
dent from Eq. (2.3), the EPR scars can only reside in sec-
tors with Sz,1tot = Sz,2tot = {−N/2,−N/2 + 1, . . . , N/2}.
Hence, the allowed values of Sztot for the EPR scars to exist
are Sztot = {−N,−N + 2, . . . , N} in increments of 2. Like-
wise, the allowed values of the total S also decrease from N
in steps of 2.

To count the total number of EPR scars, it is necessary to
distinguish the cases where the number N of spins in each
layer is even or odd. For N odd the allowed values of S are
{1, 3, . . . , N}, whereas for even N they are {0, 2, . . . , N}.
For each S, the EPR state overlaps with S + 1 of the 2S + 1
possible magnetization sectors. We therefore conclude that
the total number of scars in an SU(2)-invariant bilayer spin
system is Nscars =

∑
allowed S(S + 1), i.e.,

Nscars =
1

4
×

{
(N + 1)(N + 3) for N odd
(N + 2)2 for N even

. (3.20)

As a concrete example, we now consider a bilayer system
living on a triangular lattice with 2N = 14 spins. The shape
of eachN = 7 layer is shown in the inset of Fig. 3(a). SinceN
is odd, the EPR state has overlap with sectors of spin quantum
number, Stot ∈ {1, 3, 5, 7} and total magnetization

Sztot = ±p with p = 1, 3, 5, 7 . (3.21)

Each of these magnetization sectors contains 4, 3, 2, or 1 scars
with corresponding values for Stot (see Table I). We visual-
ize this set of EPR scars by performing an exact diagonaliza-
tion study. To fully resolve all scar states, we diagonalize the
Hamiltonian

H+ Sztot + S2
tot , (3.22)

which ensures that all scar states are nondegenerate. In our nu-
merics, we draw the exchange couplings Jij uniformly from
the interval [0.9, 1.1] to break the rotational symmetry of the
lattice, and set the interlayer coupling λ = 1.

In Fig. 3(a) we compute the overlap |〈En|EPR〉|2 between
the EPR state (2.3) and each energy eigenstate of Eq. (3.22).
We utilize different colors (see legend) to label scars with
quantum numbers (Stot, S

z
tot) according to their Sztot sec-

tor. One clearly sees that the entropically most likely allowed
magnetization sectors Sztot = ±1 (light and dark purple, re-
spectively) have the highest total weight when summing over
allowed values of Stot, as should be expected from the fact
that |EPR〉 is an equal amplitude superposition of allowed spin
configurations.

In Fig. 3(b) and (c) we plot the entanglement entropy SvN

of all eigenstates for bipartitions of types I and II, respectively

Bilayer Triangular Lattice Heisenberg Model
Sztot −7 −5 −3 −1 +1 +3 +5 +7

total spin Stot 7 5,7 3,5,7 1,3,5,7 1,3,5,7 3,5,7 5,7 7
Nscars 1 2 3 4 4 3 2 1

TABLE I. EPR scar states in the Heisenberg bilayer model on the
triangular lattice. Due to Sztot and S2

tot = S(S + 1) being con-
served quantities we distinguish the single members of the EPR scar
tower by their respective quantum numbers (S, Sztot). For a bi-
layer consisting of 2N = 14 sites, the allowed values of Sztot are
Sztot = ±1, ±3, ±5, ±7 with each Sztot-sector containing 4, 3, 2,
or 1 scars with corresponding values for S. In total, we have 20 scar
states.
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FIG. 3. Heisenberg spin-1/2 bilayer system on a triangular lattice. Results were obtained from exact diagonalization of Eq. (3.22) with
random Jij ∈ [0.9, 1.1] and λ = 1 for a 2N = 14-site bilayer with hexagon-shaped layers [see inset of panel (a)]. (a) Overlap |〈En|EPR〉|2
between the EPR scar and each eigenstate. Each eigenstate is characterized by the quantum numbers (Stot, S

z
tot); for the scar states, Stot ∈

{1, 3, 5, 7} and Sztot ∈ {−S, . . . ,+S} in increments of 2 with S = 7 (see Table I). Colors are used to identify multiplets of scar states with
fixed Sztot and all allowed corresponding Stot. We do not resolve the symmetries (Stot, S

z
tot) for the non-scar states. (b) The von-Neumann

entanglement entropy SvN for a bipartition (see inset) parallel to the two layers reveals that the scar states have maximal entanglement entropy
for their symmetry sector. (c) The entanglement entropy SvN for a bipartition perpendicular to the two layers reveals that the scar states have
atypically low entanglement. A dome-shaped structure formed by eigenstates associated with a fixed Stot is also clearly visible.

(see insets and Fig. 1). The scar states are highlighted using
the color scheme of Fig. 3(a). In Fig. 3(b), the entanglement
with respect to the type-I cut scales extensively. Indeed, each
scar state is a projection of |EPR〉 into a symmetry sector, so
the two layers retain the maximal entanglement allowed by
the dimension of that sector, consistent with the discussion in
Sec. II. In comparison, Fig. 3(c) utilizes a type-II cut for which
the scar states appear as states with anomalously low entangle-
ment. Note that we have not resolved any symmetries for the
non-scar states in Fig. 3(b) and (c) which is why the distri-
bution of entanglement entropy appears broad. Nonetheless,
the dome-like structure for each set of states with fixed Stot is
clearly visible.

We stress that the 2D bilayer Heisenberg model in
Eqs. (3.17) and (3.18) with and even without random in-
tralayer exchange couplings is nonintegrable. To confirm
this, we study its level statistics. We utilize the same cou-
pling parameters Jij and λ as before and fix the magneti-
zation to Sztot = +5. We find the mean level-spacing ra-
tio 〈r〉 ≈ 0.50379, which is in reasonably close agreement
with the Gaussian orthogonal ensemble (GOE) [6], which ac-
cording to random matrix theory has 〈r〉GOE ≈ 0.536. To
compare the Poisson distribution value found in integrable (lo-
calized) models is 〈r〉Poisson ≈ 0.386 [58]. More details on
the level statistics are presented in the Appendix A, where we
also discuss a spin- 12 bilayer system with U(1) symmetry on
the square lattice. Moreover, the Appendix B provides ad-
ditional information on the spin- 12 bilayer models and on a
Bose-Hubbard model that will be scrutinized in Sec. V B.

IV. FERMIONIC SYSTEMS

In this section, we apply the general construction outlined
in Sec. II to spinful fermionic systems, where we take advan-
tage of the internal spin degree of freedom to obtain the de-

sired doubled Hilbert space structure.

A. Fermionic EPR State

A generic spinful fermionic Hamiltonian H is written
in terms of the fermionic creation (annihilation) operators
c†i,σ (ci,σ) on site i with spin σ = {↑, ↓}. To directly apply the
formalism in Sec. II and decompose the full Hilbert space as
H↑ ⊗H↓, one has to be careful about fermionic anticommu-
tation; fermionic operators with opposite spins anticommute
with each other, therefore they do not act totally independently
on the two copies of the Hilbert space. To mitigate this prob-
lem, we introduce two flavors of spinless fermionic operators
ψi,1 and ψi,2. They are related to the original spinful fermions
via

ψi,1 = ci,↑,

ψi,2 = (−1)N↑ci,↓,
(4.1)

where N↑ =
∑
j c
†
j,↑cj,↑, and (−1)N↑ ≡ F↑ is the par-

ity of the spin-up fermions. One can readily check using
{ci,↑,F↑} = 0 that they satisfy the commutation relations:

{ψi,1, ψ†j,1} = δij , {ψi,2, ψ†j,2} = δij , [ψi,1, ψj,2] = 0 .
(4.2)

Therefore, ψi,1 and ψi,2 have fermionic self-statistics and
bosonic mutual statistics. Hence, one can treat the Hilbert
space spanned by the two flavors of fermions as independent
and construct EPR scars in a way analagous to spin systems.
The inverse mapping of Eq. (4.1) is given by

ci,↑ = ψi,1,

ci,↓ = (−1)N1ψi,2,
(4.3)

whereN1 =
∑
j ψ
†
j,1ψj,1. In what follows, we shall represent

these two flavors of fermions using notation consistent with
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previous sections, i.e.

ψi,1 → ψi ⊗ I,

ψi,2 → I⊗ ψi .
(4.4)

The unconstrained EPR state Eq. (2.3) in H↑ ⊗H↓ can be
written as

|EPR〉 =
1

2N/2

N∏
i=1

(I⊗ I+ ψ†i ⊗ ψ
†
i ) |0〉

=
1

2N/2
e

∑
i
ψ†

i⊗ψ
†
i |0〉

=
1

2N/2
e
∑

i−F↑c
†
i,↑c

†
i,↓ |0〉 ,

(4.5)

where ψ†i ⊗ ψ†i ≡ ψ†i,1ψ
†
i,2 = −F↑c†i,↑c

†
i,↓, and |0〉 ≡⊗N

i=1 |0i〉⊗|0i〉 is the vacuum for 2N sites on the two layers.
In the presence of U(1) charge conservation, the projection
of |EPR〉 into each charge sector also becomes an eigenstate,
leading to a U(1) tower of EPR scars of the following form
upon expanding the exponential function in Eq. (4.5):

|EPR〉n =
1

n!
√(

N
n

)
(∑

i

c†i,↑c
†
i,↓

)n
|0〉 . (4.6)

Note that in each charge sector the factor −F↑ becomes an
overall phase of±1 and can therefore be omitted. The particle
number of the state |EPR〉n is 2n for 0 ≤ n ≤ N . As a result,
there are N + 1 states in the U(1) tower.

In the following, we show that applying appropriate trans-
formations to |EPR〉 yields two towers of exact eigenstates in
the Fermi-Hubbard model. One unitary transformation, which
is well defined only on bipartite lattices, yields the celebrated
η-pairing states [48]. The other transformation, which can be
defined on any lattice, yields another tower of eigenstates that
was also considered in Refs. [19, 20]. We further give the
necessary conditions for the EPR state to remain an eigenstate
of the most general quadratic interaction, including spin-orbit
coupling [49] and superconducting pairing [20] terms.

B. Fermi-Hubbard Model

The Fermi-Hubbard model on an arbitrary lattice with N
sites is given by

H = −t
∑
σ

∑
〈ij〉

(
c†σ,icσ,j + H.c.

)
+ U

∑
i

(
n↑,i −

1

2

) (
n↓,i −

1

2

)
,

(4.7)

where we label sites with indices i, j and where 〈ij〉 denotes
a pair of nearest-neighbor sites. The operators nσ,i = c†σ,icσ,i
are the standard number operators. The Hubbard onsite in-
teraction in Eq. (4.7) is formulated in such a way that it is
invariant under particle-hole symmetry as is the kinetic part.

To check whetherH obeys the general criterion in Eq. (2.9), it
is easier to rewrite it in terms of the spinless fermion operators
ψi. We also define the spinless number operator ni = ψ†iψi.
With these operators,

H = H↑ ⊗ I+ I⊗H↓ +H↑↓ +
NU

4
, (4.8)

where

H↑ = H↓ = −t
∑
〈ij〉

(ψ†iψj + H.c.)− U

2

∑
i

ni,

H↑↓ = U
∑
i

ni ⊗ ni .
(4.9)

When deriving these terms, we used the identity F2 = I so
F does not appear. Although these terms do not obey the
criterion (2.9), we demonstrate below that there exist simple
unitary transformations bringing the Hamiltonian to the re-
quired form. We consider two transformations. The first one,
denoted C, is similar to the chiral transformation used in our
treatment of the spin-1 XY model in Sec. III B and works for
bipartite lattices. The second one, denoted π, is a particle-hole
transformation and works for any lattice.

1. Chiral Transformation

For a bipartite lattice, we can associate each site i with one
of the two sublattices A or B. We define the chiral transfor-
mation C to act on one of the spin species (say σ =↓) and on
one of the sublattices (say B), so that C : c↓,i → −c↓,i for
i ∈ B, or equivalently

C : I⊗ ψi → −I⊗ ψi for i ∈ B . (4.10)

The nearest neighbor hopping term in H↓ links the two sub-
lattices and therefore acquires a minus sign under the trans-
formation. The Hamiltonian in Eq. (4.9) becomes

CH↑C = −t
∑
〈ij〉

(ψ†iψj + H.c.)− U

2

∑
i

ni,

CH↓C = +t
∑
〈ij〉

(ψ†iψj + H.c.)− U

2

∑
i

ni,

CH↑↓C = U
∑
i

ni ⊗ ni .

(4.11)

Using the property (2.7) of the EPR state and n2i = ni, one
can verify that Eq. (4.11) obeys the general criterion Eq. (2.9)
with E = 0. Hence, taking account the constant piece NU/4,
we have demonstrated that the C-transformed EPR state is an
eigenstate of the Hubbard model on arbitrary bipartite lattices,
i.e.,

HC |EPR〉 =
NU

4
C |EPR〉 . (4.12)
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The C-transformed EPR state takes the following form in
terms of the original c operators:

|EPR〉C = C |EPR〉 =
1

2N/2

N∏
i=1

(1− ξiF↑c†i,↑c
†
i,↓) |0〉 ,

(4.13)
where ξi = +1 (−1) for i ∈ A (B).

The Hubbard model separately conserves the number of
spin-up fermions N↑ and the number of spin-down fermions
N↓. In the C-transformed EPR state, a spin up creation opera-
tor and a spin down creation operator always appear together.
As a result, N↑ = N↓ = n, ranging from 0 to N . Project-
ing C |EPR〉 into each allowed total charge sector yields the
following modification of Eq. (4.6):

C |EPR〉n =
1

n!
√(

N
n

)
(∑

i

ξi c
†
i,↑c
†
i,↓

)n
|0〉 . (4.14)

This tower of N + 1 states is nothing but the η-pairing states.
The construction of this tower in the Hubbard model is very
similar to that in the spin 1 XY model discussed in Sec. III B,
consistent with the connection found in Ref. [15].

2. Particle-Hole Transformation

Now we consider another transformation, the particle-hole
transformation π, which we apply to one of the spin species
(say, σ =↓) . This transformation exchanges creation and an-
nihilation operators, π : c†↓,i ↔ c↓,i, or equivalently

π : I⊗ ψ†i ↔ I⊗ ψi . (4.15)

This transformation flips the sign of t for the spin-down
fermions as well as that of the interaction strength U . Under
the transformation, the Hamiltonian becomes

πH↑π = −t
∑
〈ij〉

(ψ†iψj + H.c.) +
U

2

∑
i

ni,

πH↓π = +t
∑
〈ij〉

(ψ†iψj + H.c.) +
U

2

∑
i

ni,

πH↑↓π = −U
∑
i

ni ⊗ ni ,

(4.16)

which obeys the general criterion (2.9) with E = 0. There-
fore, the π-transformed EPR state is an eigenstate of the Hub-
bard model on arbitrary lattices,

Hπ |EPR〉 = −NU
4
π |EPR〉 . (4.17)

The minus sign comes from the fact that the constant piece
in the Hamiltonian changes sign under π. The π-transformed
EPR state takes the following form in terms of the original c
operators:

|EPR〉π = π |EPR〉 =
1

2N/2

N∏
i=1

(1−F↑c†i,↑ci,↓) |Ω〉 ,

(4.18)

where the particle-hole-transformed vacuum

|Ω〉 =
∏
i

c†i,↓ |0〉 (4.19)

is the spin polarized state in which each site is occupied by
a spin-down fermion. Since c†↑ appears together with another
c↓ operator, the π transformed state has a fixed total particle
number N↑ + N↓ = N . However, the total magnetization
N↑−N↓ varies from −N to N in steps of 2, leading to a new
tower of N + 1 states [19, 20],

π |EPR〉n =
1

n!
√(

N
n

)
(∑

i

c†i,↑ci,↓

)n
|Ω〉 (4.20)

with total magnetization −N + 2n. That is distinct from the
C-transformed EPR states which instead has varying charge
but zero magnetization.

We remark that in the standard Hubbard model, both the C
and π towers of states are not regarded as many-body scars,
since their existence is enforced by symmetry. For instance,
the Hubbard model has a spin SU(2) symmetry, and the π
tower of N + 1 states are the unique states with maximal
total spin N/2 and their respective magnetizations. Further-
more, on bipartite lattices, the Hubbard model acquires an-
other SU(2) symmetry of the charge degrees of freedom [48],
and the C tower of N + 1 states are enforced in an analogous
fashion. However, a variety of extended Hubbard models are
known in which these enforcing symmetries are broken such
that these two towers become genuine scar towers [15, 17, 20].

3. Two Towers of States on the Square Lattice

We have shown that the standard Hubbard model on a bi-
partite lattice hosts two towers of states from the C- and π-
transformed EPR states, respectively. To visualize these tow-
ers, we consider the Hubbard model on the square lattice in
the presence of a chemical potential µ and a magnetic field h
in the z-direction:

H = −t
∑
σ

∑
〈ij〉

(
c†σ,icσ,j + H.c.

)
+ U

∑
i

(
n↑,i −

1

2

) (
n↓,i −

1

2

)
+ µ

∑
i

(ni,↑ + ni,↓) + h
∑
i

(ni,↑ − ni,↓) .

(4.21)

The chemical potential µ and magnetic field h lift the degen-
eracies of the C and π EPR towers, respectively. From the
analysis of the last two subsections, the energies of the two
towers of states are

ECn =
NU

4
− 2µn,

Eπn =

(
−U

4
− µ+ h

)
N − 2hn

(4.22)
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FIG. 4. Fermi-Hubbard bilayer system on a square lattice. Results are obtained from exact diagonalization of Eq. (4.21) for a square lattice
of dimension (Lx, Ly) = (3, 2), with hopping amplitude t = 1 and interaction strength U = 0.56, chemical potential µ = 3.0, and magnetic
field h = 5.25. (a) Overlap between each energy eigenstate of Eq. (4.7) and the C- (magenta) and π-transformed (purple) EPR state, i.e.∑
n |〈En| |EPR〉C(π)〉|

2 = 1. (b) Von-Neumann entanglement entropy as a function of energy for a type-I bipartition (see inset) for which
the EPR towers exhibit high entanglement. (c) Same as in (b) except for a type-II bipartition (see inset) for which the EPR towers exhibit low
entanglement.

for 0 ≤ n ≤ N .
We explicitly verify the two towers by diagonalizing

Eq. (4.21) on a 3×2 square lattice, choosing t = 1, U = 0.56,
µ = 3.0 and h = 5.25. In Fig. 4(a), we plot the overlap be-
tween each eigenstate and the C- (magenta) and π-transformed
(purple) EPR states, highlighting both towers of states with
the expected equal energy spacings. Fig. 4(b) and (c) show
the entanglement entropy for bipartitions of types I and II, re-
spectively. Note that the entanglement entropy for the type-I
bipartition is interpreted in this setting as an entanglement in
spin space, rather than real space. As expected, the entan-
glement entropy for the type-I bipartition takes the maximum
value allowed within each symmetry sector, while that for the
type-II bipartition is markedly smaller for the scar states than
for typical eigenstates.

C. Generalized Fermi-Hubbard Models

In this section we generalize the Fermi-Hubbard model
(4.7) to include spin-orbit coupling and superconducting pair-
ing terms and derive the conditions under which the EPR state
and its C- and π-transformed variants are eigenstates. We
work on an arbitrary lattice and consider a generic Hamilto-
nian of the following form

H = Hk +Hint , (4.23)

where Hk is quadratic in fermion operators and Hint =∑
i Ui(ni,↑ − 1/2)(ni,↓ − 1/2). |EPR〉 is an eigenstate of

Hint with eigenvalue
∑
i Ui/4. The quadratic part Hk con-

tains hopping, spin-orbit coupling, and superconducting pair-
ing terms:

Hk =
∑
σ,σ′

∑
i,j

(
tσσ

′

ij c†i,σcjσ′ + H.c.
)

+
∑
σ,σ′

∑
i,j

(
∆σσ′

ij c†i,σc
†
j,σ′ + H.c.

)
.

(4.24)

Here tσσ
′

ij (∆σσ′

ij ) are spin- and position-dependent hop-
ping (pairing) strengths for i 6= j, and the Hamiltonian is
manifestly Hermitian in this form. We emphasize that the
terms tσσ

′

ii correspond not to hopping but rather to a chemi-
cal potential when σ = σ′ or a magnetic field for σ 6= σ′.
The parameterization of t and ∆ contains a redundancy that is
removed by setting

tσσ
′

ij =
(
tσ

′σ
ji

)∗
, ∆σσ′

ij = −∆σ′σ
ji . (4.25)

Demanding that Eq. (4.24) satisfy Eq. (2.9) when written in
terms of the ψ operators, we find the following constraints
on t and ∆ such that H |EPR〉 is confined to a two di-
mensional subspace spanned by |EPR〉 and its parity partner
F↑ |EPR〉 (see Appendix C for further details):

t↑↑ij + t↓↓ji = 0, ∆↑↑ij + ∆↓↓ji = 0,

t↑↓ij − t
↑↓
ji = 0, ∆↑↓ij + ∆↓↑ij = 0 .

(4.26)

Note that the above criteria are not satisfied for the standard
Fermi-Hubbard model (4.7)—for example, the above condi-
tions imply that the two spin species have hopping amplitudes
of opposite signs. To ensure that |EPR〉 is an exact eigenstate
there is an additional constraint, namely,

∑
i ∆↓↑ii = 0.

In the most general case, the model (4.23) does not con-
serve U(1) charge owing to the pairing terms ∆σσ′

ij , and only
the global fermion parity is conserved. In this case, the only
eigenstates guaranteed by Eq. (4.26) are |EPR〉 and its parity
partner. If instead ∆σσ′

ij = 0 and charge is conserved, we
recover the U(1) EPR towers obtained from projecting these
states onto each U(1) sector.

In order to connect the general Hamiltonian Eq. (4.23) to
the standard Fermi-Hubbard model, we consider the effect of
the particle-hole transformation π and the chiral transforma-
tion C on the above conditions. We first discuss the trans-
formation π : ci,↓ ↔ c†i,↓, whose action on the EPR state
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is shown in Eq. (4.18). Under this transformation, the con-
straints Eq. (4.26) become

t↑↑ij − t
↓↓
ij = 0, ∆↑↑ij + ∆↓↓ji = 0,

t↑↓ij + t↓↑ij = 0, ∆↑↓ij −∆↑↓ji = 0 .
(4.27)

Notice that, under this transformation, the spin-orbit coupling
and pairing between opposite spins exchange with one an-
other. As with the constraints (4.26), the constraints (4.27)
only ensure that Hπ |EPR〉 resides in a two-dimensional sub-
space spanned by π |EPR〉 and πF↑ |EPR〉. To ensure that
π |EPR〉 is an eigenstate we must add the condition

∑
i t
↓↑
ii =

0.
We now make a connection with the C-EPR tower and the

η-pairing states, and specialize to the case of a Bravais lat-
tice in which site i is located at position ri. We consider the
transformation

CQ :

{
ci,↓

c†i,↓
→

{
eiQ·ri ci,↓

e−iQ·ri c†i,↓
, (4.28)

where Q is a generic momentum vector. The transformed
EPR state becomes,

CQ |EPR〉 =
1

2N/2

N∏
i=1

(1− e−iQ·riF↑c†i,↑ ⊗ c
†
i,↓) |0〉 .

(4.29)
This transformed state generalizes the C-transformed EPR
state in Eq. (4.13)—for example, on the 2D square lattice,
choosing Q = (π, π) (in units where the lattice spacing is
one) results in Eq. (4.13). Under this transformation, the con-
straints in Eq. (4.26) become

t↑↑ij = −t↓↓ji e
iQ·(ri−rj), ∆↑↑ij = −∆↓↓ji e

iQ·(ri+rj),

t↑↓ij = t↑↓ji e
iQ·(ri−rj), ∆↑↓ij = −∆↓↑ij e

iQ·(ri+rj) .
(4.30)

The EPR state CQ |EPR〉 is an exact eigenstate when∑
i ∆↓↑ii e

iQ·ri = 0. Note that, when Q = 0, the above con-
straints reduce to those in Eq. (4.26).

As a specific example of applying Eq. (4.30), first demand
that the couplings are translation invariant, i.e, tσσ

′

ij ≡ tσσ
′

i−j .
Since the phase factors on the ∆ constraints oscillate with
(ri + rj), breaking the assumption of translation invariance,
we set the pairing terms to zero. We now rewrite the remain-
ing two conditions in momentum space as follows:

t↑↑k = −t↓↓−k+Q, t↑↓k = t↑↓−k+Q . (4.31)

These constraints are the same as the ones found in Ref. [49]
guaranteeing that the η-pairing states are eigenstates of the
Fermi-Hubbard model with spin-orbit coupling. More generic
Fermi-Hubbard models are realized through the use of the
constraints in conjunction with unitary transformations, such
as the Hirsch model [15, 59–62].

V. BOSONIC SYSTEMS

We now focus on bilayer systems consisting of bosonic de-
grees of freedom. Advances and new possibilities of engineer-
ing lattice models with ultra-cold gases in optical lattices have
delivered a plethora of new discoveries experimentally and
theoretically [63–67]. Phonons in trapped-ion crystals (see,
e.g., [68–72]) and optomechanical arrays (see, e.g., [73–75]),
as well as photons in multi-mode cavities (see, e.g., [76]) and
cavity arrays (see, e.g., [77–79]), are also often well-described
by bosonic lattice Hamiltonians. The aim of the present sec-
tion is to formulate the EPR scar construction in bilayer sys-
tems of itinerant bosonic degrees of freedom. In the case
of U(1) symmetry, we uncover an infinite tower of EPR scar
states labeled by the total U(1) charge, which is unique to the
bosonic case. We then discuss different options for the in-
terlayer interaction and comment on experimental settings for
possible realization and detection.

A. Bosonic EPR State

Consider a bosonic model on a lattice of N sites with an-
nihilation (creation) operators bi (b†i ) defined on each site i
that satisfy the canonical commutation relation [bi, b

†
j ] = δij .

Defining the normalized local number states for individual
sites in H1(2),

|Mi〉 =
(b†i )

M

√
M !
|0i〉 , (5.1)

we can write the EPR state in the doubled Hilbert space as

|EPR〉 =

N⊗
i=1

( ∞∑
M=0

|Mi〉 ⊗ |Mi〉

)

= exp

(
N∑
i=1

b†i ⊗ b
†
i

)
|0〉 ,

(5.2)

where |0〉 ≡
⊗N

i=1 |0i〉 ⊗ |0i〉 is the vacuum state. Note
that this state is not normalizable, a feature unique to bosonic
systems due to their infinite-dimensional local Hilbert space.
However, in the presence of U(1) symmetry, the projection of
this state into each charge sector is normalizable. Expanding
the exponential in the second line of Eq. (5.2), we find an in-
finite tower of states spanned by

|EPR〉M =
1

M !
√(

N+M−1
M

)
(

N∑
i=1

b†i ⊗ b
†
i

)M
|0〉 , (5.3)

which are normalized states with fixed boson number 2M .

B. Bose-Hubbard Models

Now we are ready to construct a bosonic many-body bilayer
model that realizes this infinite tower of states. Consider the
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FIG. 5. Bose-Hubbard bilayer system on a square lattice. Results shown are from exact diagonalization of CHC [see Eqs. (5.4)–(5.7)] for two
square-lattice layers of size (Lx, Ly) = (3, 2), for a total of 2N = 12 sites. Ui and tij are uniformly drawn from the interval [0.9, 1.1] while
the interlayer interaction λ = 1. The chemical potential µ = 1.0 is responsible for the position of the four scars in the energy spectrum (see
Eq. (5.12)). (a) The overlap between the EPR scar C |EPR〉0:3 [see Eq. (5.11)] and each energy eigenstate. Each M -sector contains exactly
one scar state. (b) Entanglement entropy utilizing the the type-I bipartition shown in the inset for M = 0, . . . , 3. The respective single scar
state in each M -sector is identified with a closed square highlighted by a circle. (c) Same as in (b) but with a type-II bipartition.

following bilayer Bose-Hubbard model

H = H1 ⊗ I+ I⊗H2 +H12 (5.4)

with

H1 = −
∑
〈ij〉

(
tijb
†
i bj + H.c.

)
+
∑
i

Uini (ni − 1)

H2 = +
∑
〈ij〉

(
t∗ijb
†
i bj + H.c.

)
+
∑
i

Uini (ni − 1)
(5.5)

where ni = b†i bi is the number operator, tij are nearest-
neighbor hoppings which in general can be complex, and Ui
is the onsite interaction strength. The Hamiltonian Eq. (5.5)
conserves the boson numberM =

∑
i ni in each layer. One

choice of interlayer coupling such that |EPR〉 is an eigenstate
is

H12 = λ
∑
i

(ni ⊗ I− I⊗ ni)2 , (5.6)

which explicitly penalizes differences in particle number
between corresponding sites in different layers. It is
then straightforward to show, e.g. using Eq. (2.7), that
H12 |EPR〉 = 0, such that Eq. (2.9) is satisfied with E = 0.

The hopping terms in the two layers are related by complex
conjugation with a minus sign, and thus become the same if tij
is purely imaginary. When tij is real, the relative minus sign
can be partially removed on bipartite lattices with sublattices
A and B by performing a chiral transformation on bosons in
one of the layers,

C : I⊗ bi → −I⊗ bi for i ∈ B . (5.7)

This transformation commutes with H1 and H12 but changes
the sign of the hopping term inH2:

CH2C = −
∑
〈ij〉

tij

(
b†i bj + H.c.

)
−
∑
i

Uini (ni − 1) .

(5.8)

The C-transformed EPR state

C |EPR〉 = exp

(
N∑
i=1

ξib
†
i ⊗ b

†
i

)
|0〉 , (5.9)

where ξi = +1 (−1) for i ∈ A (B), and the associated U(1)
tower of states,

C |EPR〉M =
1

M !
√(

N+M−1
M

)
(

N∑
i=1

ξib
†
i ⊗ b

†
i

)M
|0〉 ,

(5.10)
are then eigenstates of CHC.

To visualize the U(1) scar tower of CHC, we perform an
exact diagonalization study. For practical reasons, we limit
the number of bosons to a maximum of Mmax per layer, i.e.,
we consider the C-transformed version of the truncated EPR
state

|EPR〉0:Mmax
= Γ(N,MMax)

Mmax∑
M=0

√(
N +M − 1

M

)
|EPR〉M

(5.11)

with a normalization factor of Γ(N,MMax) = 1√
(N+Mmax

Mmax
)

.

For the numerical study, we set Mmax = 3; we then ex-
pect four EPR scar states with 0 ≤ M ≤ 3. We consider
a bilayer square lattice where each layer is of dimensions
(Lx, Ly) = (3, 2). The site-dependent Hubbard interaction
Ui and hopping matrix elements tij are uniformly drawn from
the interval [0.9, 1.1] while the interlayer interaction strength
λ = 1. Since the states |EPR〉M described by Eq. (5.3) are
eigenstates of Eq. (5.4) with the same energy, we numerically
scrutinize a slightly modified Hamiltonian by adding a chem-
ical potential to Eq. (5.4) so that the newly designed Hamilto-
nian

H+ µ

N∑
i=1

ni ⊗ I+ I⊗ ni, (5.12)
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with µ = 1.0, hosts a tower of EPR scars with equal energy
spacing.

In Fig. 5(a), we plot the overlap between Eq. (5.11) and
each eigenstate of the bilayer system as a function of en-
ergy. The four scars with boson numbers 2M (M = 0, 1, 2, 3,
with data from different sectors plotted in different colors) are
clearly visible and are located at energies µM . Note that the
overlap of the scar states with C |EPR〉0:3 increases monoton-
ically with particle number, since the total number of config-
urations grows as more bosons are added. We also compute
the entanglement entropy for bipartitions of types I and II in
Fig. 5(b) and (c), respectively. As in Secs. III and IV, the
bipartition-dependence of the entanglement entropy charac-
teristic of EPR scars is again clearly visible.

We close this section by summarizing two alternative parent
Hamiltonians for EPR scar states in Bose-Hubbard systems.
We present these Hamiltonians assuming a bipartite lattice so
that hoppings of the same sign can be used in both layers; the
relevant scar state is then the C-transformed EPR state.

The first parent Hamiltonian we consider is defined by

H1 = −
∑
〈ij〉

tij(b
†
i bj + H.c.) + U

∑
i

ni(ni − 1)

= H2 (5.13)

H12 = −2U
∑
i

ni ⊗ ni .

This is simply a system of two identical Bose-Hubbard lay-
ers coupled by an interlayer density-density interaction. The
hopping terms in H1 and H2 cancel when acting on the state
C |EPR〉, however the interaction terms do not as they are in-
variant under C. However, the coefficient of the interaction
term in H12 is chosen such that it cancels the intralayer inter-
action terms upon applying Eq. (2.7):

(H1 +H∗2 − 2U
∑
i

n2i )C |EPR〉 = −2U
∑
i

niC |EPR〉 .

(5.14)

The leftover term is just a chemical potential that is fixed
within each U(1) charge sector. Therefore the states in the
infinite U(1) C-EPR tower Eq. (5.10) are eigenstates of the
Hamiltonian defined by Eq. (5.13):

HC |EPR〉M = −2UMC |EPR〉M . (5.15)

The second parent Hamiltonian we consider is defined by

H1 = −
∑
〈ij〉

tij(b
†
i bj + H.c.) + U

∑
i

ni(ni − 1)

+
λ

2

∑
i

[
(b†i )

2 + b2i

]
= H2,

H12 = −λ
∑
i

(b†i ⊗ bi + bi ⊗ b†i ) .

(5.16)

In this case, the layers are coupled by an interlayer tun-
neling, which is present in experimental realizations of

Bose-Hubbard bilayers [80]. The U(1)-nonconserving term
λ
2

∑
i

[
(b†i )

2 + b2i

]
in both layers is necessary to retain

C |EPR〉 as an eigenstate in the presence of interlayer tunnel-
ing. Such pair creation-annihilation Hamiltonians can be en-
gineered, for example, in photonic [81] and atomic [82] sys-
tems using a coherent state of another species of bosons that
can be coherently converted into a pair of bi bosons. Since the
operators bi and b†i are real in the Fock basis, mapping H12

onto a single layer using Eq. (2.7) yields−λ
∑
i

[
(b†i )

2 + b2i

]
,

which then cancels against the corresponding terms in H1(2)

whenH is applied to C |EPR〉. Note that the model (5.16) con-
serves the parity of the total number of bosons—thus, there
are two EPR scar states corresponding to the projection of
C |EPR〉 into each parity sector.

VI. CONCLUSION

In this work, we elaborated on a construction [43] in which
maximally entangled EPR states between two copies of a
quantum many-body system give rise to scar states with a dis-
tinctive entanglement structure. We applied this construction
to systems of spins, fermions, and bosons and demonstrated
that it can be used to obtain several well-known examples of
scar states, including the towers of states in the spin-1 XY [10]
and Fermi-Hubbard [15, 17, 19, 20, 48] models. We also
demonstrated a qualitatively distinct infinite tower of states in
number-conserving bosonic models.

Our work motivates several directions of future research.
One direction is to apply the construction to constrained de-
grees of freedom such as anyons and dimers, the latter of
which can be realized experimentally in systems of Rydberg
atoms [83, 84]. Our results on bosonic systems also raise
the possibility of finding scar states in Bose-Hubbard bilay-
ers [80] or multispecies mixtures. An important concern in
experimental realizations is the ability to prepare a state hav-
ing large overlap with the EPR state for a subsequent quantum
quench, which reveals coherent dynamical signatures of these
scar states [43]. A variety of state preparation protocols are
possible depending on the nature of the experimental appara-
tus. For example, in hybrid analog-digital setups such as the
one detailed in Ref. [85], the EPR state can be prepared using
digital gates before performing an analog quantum quench.
An alternative possibility is to prepare the EPR states adia-
batically using an appropriately engineered Hamiltonian. An-
other intriguing option is to use non-unitary methods, e.g. as
described in Ref. [86].
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Appendix A: Bilayer Square-Lattice Heisenberg Model: U(1)
symmetry

To emphasize that the number of EPR scars does not depend
on the geometry but rather on the symmetries of the Hamilto-
nian, we study in this Appendix the Heisenberg model on a
square lattice utilizing our bilayer prescription. For this ex-
ample, we take the Hamiltonian of the form

H = H1 ⊗ I+ I⊗H2 +H12 , (A1)

where

H1 =
∑
〈ij〉

Jij
(
S+
i S
−
j + S−i S

+
j

)
+
∑
〈ij〉

∆ijS
z
i S

z
j ,

H2 =
∑
〈ij〉

Jij
(
S+
i S
−
j + S−i S

+
j

)
−
∑
〈ij〉

∆ijS
z
i S

z
j ,

H12 = λ
∑
i

Szi ⊗ Szi .

(A2)

Notice that, unlike in Eq. (3.18), we assume interlayer Ising—
rather than Heisenberg—coupling. The minus sign from the
construction relating the single-copy Hamiltonians is partially
gauged away under the transformation

C : I⊗ S±i → −I⊗ S
±
i for i ∈ B , (A3)

which acts on one sublattice (B) of one layer. Consequently,
the intralayer couplings Jij in Eq. (A2) appear with the same
sign, while the parameters ∆ij in the two layers are still re-
quired to appear with opposite signs. Similar to the case de-
scribed in Sec. III B the C-transformed EPR state is

C |EPR〉 =
1

2N/2

N⊗
i=1

(|0i〉 ⊗ |0i〉+ (−1)i |1i〉 ⊗ |1i〉) .

(A4)
The Hamiltonian Eq. (A1) has two independent U(1) sym-

metries associated with Sz,1tot =
∑
i S

z
i ⊗ I and Sz,2tot =∑

i I⊗ Szi . However, we stress that despite the two indepen-
dent symmetries present in Eq. (A2), only the U(1) symmetry
associated with the total Sztot = Sz,1tot +Sz,2tot is relevant for the
tower of scar states.

To visualize this tower of EPR scar states we perform an
exact diagonalization study. To fully resolve all scar states, we
add to Eq. (A1) a term proportional to Sztot = Sz,1tot + Sz,2tot to
guarantee that each of the N + 1 EPR scar states arising from
projecting Eq. (A4) into different Sztot sectors has a distinctive
energy offset. Specifically, we diagonalize the Hamiltonian

H+ h
∑
i

(Szi ⊗ I+ I⊗ Szi ) , (A5)

with H defined in Eq. (A1). We study a system of 2N =
18 spins on a square lattice bilayer, where each layer is of
size (Lx, Ly) = (3, 3) (see Fig. 6(a) inset). The intralayer
exchange couplings Jij and ∆ij are uniformly drawn from
the interval [1.0, 2.0] to break the π/2 rotational symmetry of
the square lattice. The interlayer coupling and the magnetic
field are set to one, i.e. λ = 1 and h = 1.

In Fig. 6(a) we compute the fidelity |〈En|C|EPR〉|2 between
each energy eigenstate |En〉 of the Hamiltonian (A5) and the
EPR state (A4). Due to the correlated nature of the EPR state,
the total magnetization Sztot of the states in the scar tower is
restricted to values

Sztot = {±1,±3,±5,±7,±9} (A6)

associated with N + 1 = 10 scar states projected into each
non-zero total magnetization sector as seen in Fig. 6(a). In
analogy with the bilayer system discussed in Sec. III C we
clearly see that the entropically most likely allowed magne-
tization sectors Sztot = ±1 have the highest total weight, as
should be expected from the fact that C |EPR〉 is an equal am-
plitude superposition of allowed spin configurations.

We study the entanglement properties of the eigenstates in
Fig. 6(b) and (c) for two different bipartitions, type I and II, re-
spectively (see insets and Fig. 1) in the Sztot = +5 sector. The
single scar state associated with Sztot = +5 is highlighted by
a closed purple square. In Fig. 6(b), the entanglement entropy
of the scar state with respect to the type-I cut takes the max-
imum value allowed by the dimension of its Sztot sector, con-
sistent with the discussion in Sec.II. In comparison, Fig. 6(c)
utilizes a type-II cut for which the scar state appears as a state
with anomalously low entanglement. The dome-like structure
for each set of states with fixed Stot is clearly visible.

We point out that the 2D bilayer Heisenberg model in
Eqs. (A1) and (A2) is nonintegrable with and without ran-
dom intralayer exchange couplings. To provide evidence for
this, we study the level statistics. Specifically, we utilize the
same coupling parameters Jij ,∆ij and λ as before and fix the
magnetization to Sztot = +5. In Fig. 7, we plot the proba-
bility distribution P (r) of the ratio r between the spacings of
adjacent eigenvalues of Eq. (A1), defined as

rn =
min(En+1 − En, En+2 − En+1)

max(En+1 − En, En+2 − En+1)
. (A7)

Here the {En} form an ordered list of energy eigenvalues.
We compute the mean level-spacing ratio to be 〈r〉 = 0.528,
which is in excellent agreement with the Gaussian orthogonal
ensemble (GOE) [6], which according to random matrix the-
ory has 〈r〉GOE ≈ 0.536. We stress that this is markedly
different from the Poisson distribution value 〈r〉Poisson ≈
0.386 [58] found in integrable (localized) models.

Appendix B: Additional Information on the Spin- 1
2

Bilayer
Models and the Bose-Hubbard Model

In this Appendix we provide the full set of parameters for
the spin- 12 models scrutinized in Sec. III C and in Appendix A
and the Bose-Hubbard model in Sec. V B.
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FIG. 6. Heisenberg spin-1/2 bilayer system on a square lattice. (a) Overlap |〈En|C|EPR〉|2 between the EPR scar and each eigenstate |En〉
of Eq. (A1) as a function of energy. The full EPR scar (A4) is projected into each non-zero magnetization sector in the range [−N,N ] in
steps of 2 with N = 9 leading to N + 1 = 10 scars. Each of the two layers is of size (Lx, Ly) = (3, 3) (see inset). (b) The Von-Neunmann
entanglement entropy SvN utilizing the bipartition given in the inset within the magnetization sector Sztot = +5 where the single EPR scar
is denoted with a square. (c) The same as in (b) with a different bipartition to demonstrate that the EPR entanglement scaling depends on the
chosen system bipartition. Here we choose a cut (see inset) that does not cut the interlayer interactionH12.

The numerics presented for the SU(2) symmetric spin-12 bi-
layer model in Sec. III C are obtained from a system which
consists of two N = 7 triangular lattice layers (see inset
Fig. 3(a) or Fig. 8(a). The intralayer couplings Jij acting on a
pair of sites (i, j) are given in Table II. Labeling of the sites is
shown in Fig. 8(a). The Heisenberg-type interlayer interaction
is given by λ = 1.

In Appendix A we scrutinize another spin- 12 model, namely

FIG. 7. Heisenberg spin-1/2 bilayer system on a square lattice.
Probability distribution P (r) for the energy level spacing parame-
ter r from exact diagonalization. The curves represent the analytical
predication from Wigner-Dyson statistics (green) and Poisson statis-
tics (magenta). We also find the average level spacing parameter
〈r〉 ≈ 0.528, which is near the GOE predication 〈r〉GOE ≈ 0.53
indicating a thermalized system. The parameters used here are the
same as in the data shown in Fig. 6, i.e. a square lattice bilayer of
size 2N = 18 with layer dimensions (Lx, Ly) = (3, 3), restricted
to the magnetization sector Sztot = 5. The results are averaged over
2000 independent disorder (Jij ,∆ij ∈ [1.0, 2.0]) realizations.

FIG. 8. Square and triangular lattices for the bilayer systems. (a)
shows the N = 7 single layer triangular lattice that in its doubled
form is utilized for the SU(2) symmetric spin- 1

2
Heisenberg bilayer

system discussed in Sec. III C while (b) shows the (Lx, Ly) = (3, 3)
square lattice that is used for the U(1) symmetric spin- 1

2
bilayer sys-

tem scrutinized in Appendix A. (c) shows the (Lx, Ly) = (3, 2)
square lattice that the Bose-Hubbard bilayer model presented in
Sec. V B lives on. Links representing the periodic boundaries are
given by dashed lines. Sites number in connection with couplings
listed in Tables II, III, and IV give information on the parameters
used in the numerics.

a Heisenberg model living on two square lattice layers of size
(Lx, Ly) = (3, 3). The two layers interact via an Ising in-
teraction resulting in a bilayer model with U(1) symmetry.
The intralayer interaction couplings Jij and ∆ij [pairs of sites
(i, j) are as shown in Fig. 8(b)] for the U(1) symmetric model
are uniformly drawn from the interval [1.0, 2.0], and the spe-
cific values are given in Table III. The interlayer coupling pa-
rameter λ is set to one.

In Sec. V B we present a Bose-Hubbard bilayer model that
hosts an infinite U(1) tower of scar states. We offer numer-
ical data on a bilayer system where each layer is a square
lattice of size (Lx, Ly) = (3, 2) utilizing periodic boundary
conditions [87]. The hopping parameters tij and the onsite
Hubbard interaction Ui are uniformly drawn from the interval
[0.9, 1.1], and the specific values are given in Table IV. Pairs
of sites (i, j) are as shown in Fig. 8(c).
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Bilayer Triangular Lattice Spin-1/2 Model
pair (i, j) coupling Jij pair (i, j) coupling Jij

(1, 0) 1.02907 (4, 3) 1.03556
(2, 0) 1.06241 (5, 2) 1.04165
(3, 0) 0.99934 (5, 3) 1.07462
(3, 1) 1.04354 (6, 3) 0.94805
(3, 2) 1.05231 (6, 4) 0.958189
(4, 1) 1.07878 (6, 5) 0.921175

TABLE II. Random intralayer couplings Jij for the SU(2) symmetric spin- 1
2

Heisenberg bilayer model on the triangular lattice. Shown are
all coupling parameters Jij uniformly drawn from the interval [0.9, 1.1] for each of the twelve links, i.e. pairs of sites (i, j) as depicted in
Fig. 8(a).

Bilayer Square Lattice Spin-1/2 Model
pair (i, j) coupling Jij coupling ∆ij pair (i, j) coupling Jij coupling ∆ij

(1, 0) 1.09727 1.76540 (5, 4) 1.23907 1.64768
(2, 1) 1.54445 1.52591 (6, 3) 1.90745 1.22202
(3, 0) 1.45301 1.31678 (7, 4) 1.24303 1.58075
(4, 1) 1.12546 1.68808 (7, 6) 1.20747 1.08961
(4, 3) 1.44898 1.13261 (8, 5) 1.12325 1.45412
(5, 2) 1.06910 1.89085 (8, 7) 1.88908 1.55184

TABLE III. Random intralayer couplings Jij and ∆ij for the U(1) symmetric spin- 1
2

Heisenberg bilayer model on the square lattice. Shown
are all coupling parameters Jij and ∆ij uniformly drawn from the interval [1.0, 2.0] for each of the twelve links, i.e. pairs of sites (i, j) as
depicted in Fig. 8(b).

Bilayer Bose-Hubbard Model
pair (i, j) hopping tij pair (i, j) hopping tij site i coupling Ui

(0, 1) 1.08498 (0, 3) 0.98946 0 1.07920
(1, 2) 1.04128 (3, 0) 0.90974 1 1.03249
(2, 0) 1.00495 (1, 4) 1.05341 2 1.08896
(3, 4) 0.97037 (4, 1) 1.04650 3 1.01060
(4, 5) 1.07180 (2, 5) 0.99541 4 1.00565
(5, 3) 0.90285 (5, 2) 1.06707 5 0.90678

TABLE IV. Random hopping strengths tij and onsite Hubbard repulsion Ui for the U(1) symmetric Bose-Hubbard bilayer model on the
square lattice. Shown are all hopping parameters tij and onsite Hubbard interaction strength Ui uniformly drawn from the interval [0.9, 1.1]
for each of the twelve links, i.e. pairs of sites (i, j) as depicted in Fig. 8(c). Pairs of sites (i, j) with i > j refer to links representing the
periodic boundaries (see dashed links in Fig. 8(c)).
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Appendix C: Generalized Fermion Constraints

1. Deriving the EPR constraints.

In this Appendix, we give an explicit example of how
the constraints in Eqs. (4.26)–(4.30) are derived and how
the action of H on the EPR state is constrained to a two-
dimensional EPR scar subspace unless an additional condi-
tion is imposed. As our example, we will derive the third
constraint in Eq. (4.27) on the spin-orbit coupling constants

t↑↓ij . Consider the Hamiltonian under the π transformation:

πH↑↓π =
∑
i,j

t↑↓ij c
†
i,↑c
†
j,↓ + (t↑↓ij )∗cj,↓ci,↑ . (C1)

In the following derivation, we will use the following forms
of Eq. (2.7):

ci,↓ |EPR〉 = F↑c†i,↑ |EPR〉

c†i,↓ |EPR〉 = F↑ci,↑ |EPR〉 ,
(C2)

which follows from applying Eq. (2.7) to the ψ fermions and
rewriting the result in terms of c fermions We now give a step-
by-step procedure for determining the constraints on t↑↓ij :

πH↑↓π |EPR〉 =
∑
i,j

[
t↑↓ij c

†
i,↑c
†
j,↓ − (t↑↓ij )∗ci,↑cj,↓

]
|EPR〉

= −
∑
i,j

[
t↑↓ij F↑c

†
i,↑cj,↑ − (t↑↓ij )∗F↑ci,↑c†j,↑

]
|EPR〉

= −
∑
i,j

[
t↑↓ij F↑c

†
i,↑cj,↑ + (t↑↓ij )∗F↑c†j,↑ci,↑

]
|EPR〉+

∑
i

(t↑↓ii )∗F↑ |EPR〉

= −
∑
i,j

[
t↑↓ij + (t↑↓ji )∗

]
F↑c†i,↑cj,↑ |EPR〉+

∑
i

(t↑↓ii )∗F↑ |EPR〉 .

(C3)

In the first line above we anticommuted the second set of
fermionic operators. In the second line we applied the iden-
tity Eq. (C2) and moved the parity operator to the left using
the relations [F↑, ci,↓ (c†i,↓)] = 0 and {F↑, ci,↑ (c†i,↑)} = 0.
In the third line, we normal ordered the second term, giv-
ing rise to an extra term ∼ F↑ |EPR〉. To arrive at the con-
straint, we set the first term in the final line to zero and find

that
(
t↑↓ij + t↓↑ij

)
= 0, which matches the main text. When

this constraint is satisfied, we find that πH↑↓π maps |EPR〉 to
its parity partner F↑ |EPR〉 (up to a constant). To obtain the
EPR state as a true eigenstate, we must additionally demand
that

∑
i t
↑↓
ii = 0. All other constraints found in the main text

are derived in a similar manner to the above.
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