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An Archimedean screw is a classical pump that exploits the equivalence of rotation and translation in helices.
Similarly, a spin spiral texture can pump charge and spin by rotating at a frequency ω. In the present paper,
we study these pumping phenomena within a microscopic quantum model by both perturbation theory and
numerical simulations. Inside the spiral region, the spin polarization and charge current are linear in ω whereas
the spin current is ω2 for small ω. We find that the charge current is related to the mixed momentum-phason
Berry phase, which can be viewed as a novel approximate realization of a Thouless pump. It is nearly quantized
in spirals with short pitch λ but decays with λ−1 for longer pitches, unlike true Thouless pumps or Archimedean
screws. Moreover, we study the onset of non-adiabaticity (large ω), the impact of attached non-magnetic or
magnetic contacts, and the real-time evolution of the transport observables. Finally, we analyze the effects of
disorders which, surprisingly, might enhance the spin current but suppress the charge current.

I. INTRODUCTION

The concept of adiabatic charge pumping, as proposed by
Thouless [1, 2], is a fundamental topological phenomenon
where a periodic change of parameters characterizing the
Hamiltonian leads to a real-space shift of charge. Experimen-
tally, Thouless charge pumps have been realized in quantum
dots [3, 4] and cold atom systems [5, 6]. In systems with a
gapped spectrum, this phenomenon is described by the quan-
tum mechanical Berry phase [7]. In particular, the electronic
states in solids are characterized by the Berry phase once the
time-reversal T and/or the inversion symmetry I are broken.
For example, the electric polarization in ferroelectric insu-
lators can be regarded as a fraction of the Thouless charge
pumping associated with the displacement of the atoms from
their centrosymmetric positions [8]. However, the Thouless
charge pump has never been realized in a macroscopic bulk
sample.

In magnets, the time-reversal symmetry T is inherently
broken. The emergent electromagnetic field which stems from
the Berry phase associated with non-collinear spin textures
has been studied extensively [9–12]. In particular, a spin
spiral configuration as shown in Fig. 1 breaks both T and I,
simultaneously. This leads to a variety of phenomena allowed
by this low symmetry, e.g., emergent inductance [13, 14],
nonreciprocal magneto-optical effect [15], or nonreciprocal
charge transport [16, 17] and spin transport [18]. At the same
time, however, spin spirals retain a peculiar symmetry: The
rotation Rn̂(φ) of spins in the spiral plane n̂ is equivalent
to a translation TQ(x) along its Q-vector. This symmetry
is illustrated in Fig. 1 for a helical screw, i.e., where n̂ =
Q/|Q|. Thus, while a rotating spin spiral naturally pumps
spin into attached leads [19, 20], the simultaneously activated
translational mode might also pump electric charge [20, 21],
similar to a classical Archimedean screw pumping fluids [22–
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FIG. 1. Sketch of the considered setup and graph of the electronic
band structure E(k). (a) Visualization of spins in a right-handed
atomic-scale spiral (colored arrows) with wavelength λ/a = 3 with
a the distance between sites. In a helix, the rotation plane n̂ is
parallel to the wave vector Q. Rotating at a frequency ω is equivalent
to translating the indicated screw at a velocity v = −λω/(2π) in
the direction of Q. (b) Dispersion E(k) of a periodic system with
J/tH = 0.5 (colored). The color encodes the momentum-phason
Berry curvatureBk,φ defined in Eq. (14). Dashed black lines indicate
the dispersion in the absence of the spiral (J = 0). Gray bands indicate
the SDW gap, Eq. (6).

25]. However, when considering a discrete lattice of atoms,
the translational symmetry is broken which was neglected in
previous studies.
In the present paper, we theoretically study the charge and

spin pumping in a one-dimensional spiralmagnetwithout spin-
orbit interaction. We consider systems with either (i) periodic
boundary conditions or (ii) metallic contacts attached to both
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ends, see Fig. 1(a). For case (i), using perturbation theory, we
derive the spin polarization s, the electric current je and spin
current js along the Q-vector and discuss their respective de-
pendence on the driving frequency ω, the spiral wavelength λ,
and the Fermi energy EF. In particular, we reveal a connection
between the mixed momentum-phason space Berry curvature
Bk,φ and the pumped electric current je, reminiscent of Thou-
less charge pumping in gapped systems. However, half of the
electronic bands remain gapless, see Fig. 1(b), hence, in con-
trast to true Thouless pumping, the current je is only nearly
quantized in the limit of short wavelengths λ/a . 10. More-
over, for case (ii), we numerically study both non-magnetic and
magnetic leads. Different combinations of attached leads turn
out to show a very different behavior, including spin current
diodes or bi-directional control via the contact magnetization.
Finally, we also study the effect of non-magnetic impurities
which localize the electronic states, resulting in suppression
of the electric current and, surprisingly, enhancement of the
spin current, depending on the Fermi energy.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian describing electrons coupled to the
spin spiral and discuss its symmetries in Sec. II B. We begin
the analysis by presenting the perturbation theory and its re-
sults in Sec. III A, including the connection to Berry curvature
in Sec. III A 2. Next, we switch to non-perturbative simula-
tion results in Sec. III B which focus on (i) periodic boundary
conditions and open systems with non-magnetic contacts in
Sec. III B 1 and (ii) magnetic contacts in Sec. III B 2. We fur-
ther discuss the effect of disorder in Sec. III C. Finally, we
conclude with a discussion of the results and potential experi-
mental realizations in Sec. IV. Additional details are provided
in the Appendix.

II. THE MODEL

In the following, we first introduce the basic model which
is the basis of this study. Next, we briefly discuss symmetries
of this model and their implications for the universality of
our results and, finally, we shortly review the electronic band
structure of the static model.

A. Magnetization, electrons, observables

We are interested in the electronic response to rota-
tions/translations of a magnetic spiral; see Fig. 1(a) for a
schematic sketch of the setup. To this point, for simplicity, we
neglect the influence of conduction electrons on the magneti-
zation dynamics in our one-dimensional toy model. Instead,
we postulate that the magnetization is described by

M(x, t) = ê1 cos θ(x, t) + ê2 sin θ(x, t) , (1)

where θ(x, t) = Qx + φ(t) is the phase of the spiral. The
normalized vectors ê1 and ê2 define the spiral plane n̂ = ê1 ×
ê2, i.e., the y-z-plane in Fig. 1(a). The wavelength λ enters via
Q = 2πη/λ, where η distinguishes right-handed (η = 1) and

left-handed spirals (η = −1). Within this simplified approach,
all magnetization dynamics are reduced to the dynamics of
the time-dependent phason φ(t): As indicated in Fig. 1(a), the
phason dynamics φ(t) can be interpreted as both, a rotation
with an angular velocity ω or a translation with velocity v =
−ηλω/(2π). Our discussion of results in Sec. III is based
on the right-handed helix in Fig. 1(a). However, other the
results for different spiral planes or handedness are related by
symmetry, see Sec. II B.
The electronic system with its full dynamics is described by

a standard tight-binding model

H =
∑
j

− tH
(
c†
j+1c j + h.c.

)
− J c†j (σ ·M) c j . (2)

We use the spinor notation c j =
(
cj,↑, cj,↓

)T for the up/down-
spin electron annihilation operators cj,↑/↓ at site j and σ is
a 3-vector which contains the Pauli matrices. The transfer
integral tH describes hopping of electrons between adjacent
sites and the exchange constant J couples the electrons to the
magnetization.

The rotating spiral induced dynamics in the electronic sys-
tem. In order to quantify these dynamics, we evaluate the spin
polarization s, the charge current je, and the spin current js .
Note that the vector notation of s and js refers to the spin-
components. The real-space direction of the currents je and
js is given by the spiral’s Q-vector and, hence, we neglect
it in the following. For the observables, the local quantum
mechanical operators for site i and spin-component α = x, y, z
are given by

ŝα,i = c†jσαc j , (3)

ĵe,i = −q i tH
(
c†
j+1c j − c†j c j+1

)
, (4)

ĵs,α,i = −i tH
(
c†
j+1σαc j − c†jσαc j+1

)
. (5)

with q = −e < 0 the electron charge. In the following, the aver-
age 〈...〉 denotes the temporal average, if not stated otherwise,
and the site index i is dropped for convenience. Moreover, for
the helical screw in Fig. 1 that we consider during most of this
study, only the spin polarization 〈sx〉 and spin current 〈 js,x〉
can be non-zero by symmetry.

B. Symmetries and generalization

As motivated in the introduction, even though the non-
magnetic part of the tight-binding Hamiltonian H in Eq. (2)
is highly symmetric, the magnetic texture breaks both time-
reversalT and inversion symmetryI. However, some symme-
tries remain intact or can be restored by proper transformation
of the magnetic spiral. When combined with the symmetries
of the observables in Eqs. (3)-(5), they reveal characteristic
features or can be used to transfer our results for the specific
system in Fig. 1 to other spirals. The details are discussed in
the following with a summary provided in Tab. I.

U(1) phase — A time-independent spiral phase φ of Hamil-
tonianH is absorbed by the spin-dependent U(1) gauge trans-
formation, cj,↑(↓) → cj,↑(↓)e−σiφ/2 where σ = +(−)1 for up
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transformation symmetry v s je js

n̂ → R̂ n̂ SU(2) — R̂ s — R̂ js

η→ −η I −v — − je − js

ω→ −ω T −v −s − je —
EF → −EF Ξ — — − je —

TABLE I. Overview of transformations, related symmetries, and
their effects on the spiral velocity v, spin accumulation s, charge
current je, and spin current js , assuming a constant angular velocity
ω of the spiral. The transformations are a rotation R̂ of the normal
vector of the spiral plane n̂ in spin-space, inverting the handedness
η, inverting the rotation frequency ω, and inverting the Fermi energy
EF. A horizontal bar indicates that the respective quantity is invariant
under a transformation. Details are given in the main text.

(down) spin. Meanwhile, the observables given in Eqs. (3)-
(5) are invariant under the gauge transformation. This implies
that the time-averaged observables are independent of the pha-
son φ(t) itself and can only depend on derivatives thereof.
Moreover, the only symmetry-allowed direction for the spin
accumulation and spin current is perpendicular to the spiral
plane.

SU(2) phase — The aforementioned U(1) symmetry is gen-
eralized to an SU(2) symmetry, i.e., rotations of all spins with
respect to any common axis leave the electronic part of H
invariant. Similar to the U(1) case, the magnetic texture needs
to be rotated which may not only involve the phason φ(t) but
the entire spiral plane defined by its normal vector n̂ = ê1× ê2.
While the charge current je is also SU(2) symmetric, the spin
accumulation s and current js are not. For both s and js ,
the only non-vanishing spin component is given by the rotated
normal vector n̂ = R̂ êx . The results presented in the following
for the righthanded helix in Fig. 1 with n̂ = êx thus directly
apply also to righthanded cycloids or arbitrary spiral planes
with the rotated spiral plane n̂.
Inversion I — Upon inversion I, the handedness η of the

magnetic spiral is inverted. Simultaneously, the signs of both
currents je and js are flipped as can be seen directly from
in Eqs. (4) and (5) where exchanging site indices leads to an
additional minus sign. The sign of the spin accumulation s
(and the hopping term inH ) remain unaffected.
Time reversal T — Changing the sign of the rotation fre-

quency ω → −ω (or drift velocity v) is obtained by rotating
the entire setup which corresponds to a combined time reversal
and a phase shift of π. While any magnetic texture breaks T
symmetrywithT(M) = −M (orT(ci,σ) = −ci,−σ), in a spiral
this is equivalent to a phase shift of π. Thus, it can be gauged
away by exploiting the U(1) symmetry of the electronic sys-
tem but switches the sign of the spin-dependent observables.
Therefore, the symmetry T switches the signs of the spin ac-
cumulation s and the current je, but the doubled sign change
in the spin current js cancels.

Particle-hole symmetry Ξ— The composite symmetry Ξ =
ΓT , composed of the chiral symmetry Γ(ci,σ) = (−1)ici,σ and
time reversal symmetry T , is anti-unitary with Ξ2 = −1. It
transforms the Hamiltonian as Ξ−1HΞ = −H . Thus, Ξ acts as

particle-hole symmetry, i.e., it changes the sign of the Fermi
energy EF. While the spin accumulation s and spin current js
are invariant under Ξ, the current je changes its sign.

C. Helical and spin-density wave channels

Before we study the response properties of the dynamical
system, let us briefly summarize the electronic properties of
the static system.
The electronic band structure for λ/a = 3 is shown in

Fig. 1(b). For comparison, Fig. 1(b) also includes the band
structure without magnetic order where all bands are 2-fold
degeneracy. At crossing points, E/tH = ±1, the latter system
with J = 0 realizes a 4-fold degenerate point. In contrast,
for finite J , 0 one pair of bands hybridizes and opens a
gap whereas the other pair of bands remains gapless. This
observation for λ/a = 3 is universal.
For any λ > 2a, due to the existence of spiral order, one

of two degenerate spin state pairs hybridizes and opens a spin
density-wave (SDW) gap of size ∆ = 2|J | at momenta where
the nesting condition is satisfied. In one-dimensional systems,
the SDW gaps appear at two different energies; the centers of
upper and lower SDW gap are located at

Egap = ±2tH cos Qa/2 , (6)

respectively, where a is the lattice constant. The other pair
of bands remains gapless. The gapless channels inside of the
SDW gaps are fully spin-polarized, so-called helical channels.
As a result, only the gapped (hybridized) SDW channels carry
a high concentration of mixed momentum-phason Berry cur-
vature Bk,φ , which is defined further below in Eq. (14). In
turn, the in-gap helical channels do not carry Berry curvature.
Nonetheless, they play an important role and are responsible
for the deviation from quantized Thouless/Archimedes trans-
port, see Appendix C for details.

III. RESULTS

In this section, we calculate the spin polarization s, the
charge current je, and the spin current js induced by a ro-
tational/sliding motion of the spin spiral. Starting from our
model without spin-orbit coupling, Sec. II A, we derive semi-
analytical perturbative results in Sec. III A which we compare
to results of our numerical non-perturbative analysis based on
the time-dependent Schrödinger equation in Sec. III B. Based
on the latter technique, we reveal the effect of magnetic con-
tacts and disorder, respectively, in Sec. III B 2 and III C.

A. Perturbation theory with periodic boundary conditions

As discussed in Sec. II B, due to the U(1) gauge symmetry,
the observables can only depend on time-derivatives of φ(t).
Therefore, the nonequilibrium physical observables 〈O(t)〉 can
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be expressed in powers of the time-derivative of φ(t):

〈O〉 (t) = χ
(1)
O

(
dφ(t)

dt

)
+ χ

(2)
O

(
dφ(t)

dt

)2
+ · · · . (7)

Here, χ(1)
O

and χ(2)
O

are the first- and second-order susceptibil-
ities with respect to φ(t), respectively. Moreover, the various
symmetries, summarized in Tab. I, impose further constraints
which determine the leading order contributions in ω to the
individual observables. In particular, the signs of the spin po-
larization s and charge current je switch with the sign of ω,
allowing for only terms with odd powers. In turn, the spin cur-
rent js is even in ω, thus its leading order contribution stems
from the second order susceptibility χ(2)js .
Similarly, we can expand the Hamiltonian from Eq. (2) with

respect to the phason φ(t) = ωt and obtain

H(t) ≈ H0 − Jφ(t)
∑
i

c†i Σ̂
(1)
φ ci −

J
2
φ2(t)

∑
i

c†i Σ̂
(2)
φ ci , (8)

where H0 = H(t = 0) is the initial Hamiltonian. The opera-
tors Σ̂(1)φ and Σ̂(2)φ coupled to the phason are straightforwardly
obtained as first and second order derives ofσ ·M with respect
to φ, respectively.
In the following, we discuss the resulting perturbative ex-

pressions for the observables based on a Feynman diagram pic-
ture. Details on the calculations are provided in Appendix A.

1. Linear order response

An approximation to linear order in ω captures the spin
accumulation sx and the charge current je, with the Feynman
diagrams shown in Fig. 6(a). To this level, the particle-hole
bubble (solid lines) only couples the observable’s operator
Ô = ŝx or ĵe (wiggled line) to the linear-order phason-related
operator Σ̂(1)φ (dashed line). Thus, the first-order susceptibility
shown in Figs. 2(a,b) reads

χ
(1)
je
= 2J

∫
BZ

dk
2π

∑
i,j

f
(
εk,i − EF

)(
εk,i − εk, j

)2 Im
[
〈ψk,i

0 | ĵe |ψ
k, j
0 〉 〈ψ

k, j
0 |Σ̂

(1)
φ |ψ

k,i
0 〉

]
. (9)

In our notation, the states ψk,i
0 are eigenstates of the unper-

turbed Hamiltonian H0 with momentum k, band index i, and
eigenenergy εk,i . The k-integral is over the entire Brillouin
zone (BZ) and f (E) = (eE/T + 1)−1 denotes the Fermi-Dirac
distribution taking kB = 1.
The linear order susceptibilities given in Eq. (9) are shown in

Fig. 2 for the spin accumulation, panel (a), and the charge cur-
rent, panel (b), explicitly calculated for a right-handed spiral
with tH = 1 and J = 0.5. The graphs show the susceptibilities
as function of both the Fermi energy EF and the wavelength
λ, simultaneously. In agreement with the discussion of sym-
metries Sec. II B, the spin accumulation sx is symmetric in EF
whereas the charge current je is antisymmetric around EF = 0,
i.e., it depends whether the charge carriers are particle-like or
hole-like.

More precisely, bound by the lower edge of the lower SDW
gap and the upper edge of the upper SDWgap, the spin accumu-
lation sx induced by the rotation of the magnetic background
follows a left-hand rule and, hence, is always negative. For
larger wavelength λ, the susceptibility of the spin accumula-
tion sx plateaus quickly at the value for the ferromagnetic limit,
λ → ∞. Exactly in the centers of the SDW gaps, EF = ±2tH,
χ
(1)
sx agrees well with the result of our effective continuum

model, which is discussed in Appendix B, namely

χ
(1)
sx = −

1
2πa
√

JtH
+
πa
2λ2

√
tH
J3 for λ � πa

√
2tH/J . (10)

However, note that larger values of χ(1)sx are obtained closer to
the inner edges of the SDW gaps, EF → ±(2tH − J). In the
opposite limit, λ/a→ 2, the SDWgaps come closer and there-

fore the interval of Fermi energies EF with a finite response be-
comes considerably smaller. Meanwhile, the maximum value
decreases but it remains finite down to the antiferromagnetic
limit λ/a = 2 as there is no symmetry which forbids spin
accumulation in the collinear antiferromagnet (AFM). While
the currents discussed in this study are neatly pictured by a
classical Archimedean screw, this picture does not work for
the spin accumulation. This becomes eminent also as the spin
accumulation remains finite even in the collinear limit where
the picture of an Archimedean screw breaks down. Instead of
being transported, the spin is rather produced locally by the ro-
tating magnetization, see Ref. [19], which is more reminiscent
of an inverse Einstein-de-Haas effect. [26, 27]

The charge current je starts off positive for EF < 0 as the
drift velocity v of a right-handed spiral (η = 1) is negative,
see Fig. 1(a), and also the charge of the electronic carriers is
negative, q = −e < 0. Moreover, the susceptibility is finite
mostly within the SDW gaps but quickly decays outside as
well as for increasing wavelength λ → ∞. Similar to the spin
accumulation sx , our effective continuum model describes the
limit of large wavelength and additionally predicts a plateau,
i.e., quantized transport, in the limit of small wavelength, see
Appendix B. However, the latter has to break down in the
AFM limit λ/a = 2: Cases λ < 2a are equivalent to λ > 2a
with inverted handedness η. Accordingly, the charge current
is antisymmetric with respect to both EF = 0 and λ = 2a,
where it must vanish, respectively. These limiting cases can
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FIG. 2. First- and second-order susceptibilities corresponding to (a) the spin polarization sx ∝ ω, (b) the charge current je ∝ ω, see Eq. (9),
and (c) the non-dissipative (Eq. (17)) and (d) dissipative contribution (Eq. (18)) to the spin current js,x ∝ ω2. The susceptibility as function
of the Fermi energy EF and wavelength λ/a is encoded by color, indicated in each panel. The horizonal dashed line indicates λ = 2a,
i.e., the collinear antiferromagnetic order, below which we don’t show data. Solid black lines indicate the edges of the SDW gap, given by
λ(EF) = πa/arccos (±(EF ± J)/(2tH)). Parameters are tH = 1, J = 0.5, and τ = 2.5.

be summarized as

χ
(1)
je
=


ea

√
tH/J/λ for λ � πa

√
2tH/J

e/2π for 2a . λ � πa
√

2tH/J
0 for λ = 2a

. (11)

The maximal charge current je is therefore expected in the
plateau region with λ just a few lattice sites a.
The linear response results for the charge current je are in

stark contrast to the behavior that would be expected from a
classical Archimedean screw, i.e., where the current would
be linear in the velocity v = −λω/(2π) and, thus, also in
λ [21]. In contrast, the narrow plateau region close to the
AFM limit with almost quantized transport is an example of
almost quantized Thouless pumping, see Appendix C where
we discuss in detail the connection to a truely topological
Thouless pump. However, unlike charge density waves or
collinear spin density waves, the spin spiral has gapless helical
channels which spoil the quantization. Our result is therefore
in agreement with the naive expectation that charge pumping is
absent in a fully polarized ferromagnet (λ → ∞). We discuss
the role of the momentum-phason Berry curvature Bk,φ in the
following section.

2. Mixed-space Berry curvature as a short-cut to understand
charge current pumping

As mentioned already in the previous sections, the mixed
momentum-phason Berry curvature Bk,φ determines the
charge current je induced by a rotation of the spin spiral.
Using the relations

ĵe = −(−e)
dĤ
dk

and Σ̂
(1)
φ = −

1
J

dĤ
dφ

, (12)

and after some algebra, we can derive an additional expression
for the momentary charge current je which reads

je(t) = −e
∫
BZ

dk
2π

∑
i

f
(
εk,i − EF

)
Bi
k,φ

dφ
dt

. (13)

Here, we have introduced the mixed momentum-phason space
Berry curvature

Bi
k,φ = i

(
〈∂kψ

k,i |∂φψ
k,i〉 − 〈∂φψ

k,i |∂kψ
k,i〉

)
, (14)

defined in the space spanned by the momentum k and the
phason φ. As for Eq. (9), ψk,i denotes an eigenstate of the
Hamiltonian H with given φ, i is a band index, and f (E) is
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the Fermi-Dirac distribution. After averaging over a period of
the spiral motion we obtain the average charge current

〈 je〉 =
−e
4π2

∫
BZ

dq
∫ 2π

0
dφ

∑
i

f
(
εk,i − EF

)
Bi
k,φ . (15)

Consequently, the pumped charge is given by the sum over the
Berry curvature Bi

k,φ
of all occupied states. However, since

most of the Berry curvature is concentrated at the edges of
the SDW gaps, the total current pumped by a single cycle of
rotation is almost quantized to e when the Fermi energy is
located in the SDW gap. Moreover, since the Berry curvature
on both edges of the SDW gap cancels, there is almost no
charge transport outside of the SDW gaps.

The perfect quantization is hindered due to the existence of
the gapless helical states. This apparent difference to collinear
spin density waves which, in turn, do feature quantized trans-
port, is discussed in Appendix C. Most importantly, as the
spectrum is not fully gapped, the Berry curvature is not con-
fined to an increasing number of isolated bands when increas-
ing the wavelength λ but, instead, it smears out across the
SDW gap via the gapless bands and finally cancels with the

curvature from the other bands.

3. Second order response

Because of the symmetry constraints, c.f. Tab. I, the pumped
spin current js is even in the driving frequency ω. Therefore,
the linear order perturbation theory in the previous Sec. III A 1
does not yield any contributions to js . Instead, finite contri-
butions only enter on the second order level, js ∝ ω2 +O(ω4).
The corresponding Feynman diagrams for the non-dissipative
and dissipative contributions to the spin current are shown
in Figs. 6(b) and (c), respectively. To second order in ω,
similar to the linear order case, the particle-hole bubble (solid
lines) couples the observable’s operator ĵs (wiggled line) to the
second-order phason-related operator Σ̂(2)φ (two joined dashed
lines, panel (c)). However, an additional contribution arises
since the operator ĵs may also couple twice to the linear-order
phason-related operator Σ̂(1)φ (two separate dashed lines, panel
(d)). In analogy to diamagnetic and paramagnetic contribu-
tions of electric conductivity, these two contributions cancel
the terms explicitly depending on φ(t) to preserve the U(1)
symmetry. See Appendix A for the detailed discussion. The
second-order susceptibility with its non-dissipative (ND) and
dissipative (D) constituents reads

χ
(2)
js
= χ

(2)
js,ND + χ

(2)
js,D, (16)

χ
(2)
js,ND = 3J2

∫
BZ

dk
2π

∑
i,j

〈ψk,i
0 | ĵs |ψ

k,i
0 〉 |〈ψ

k,i
0 |Σ̂

(1)
φ |ψ

k, j
0 〉|

2 f
(
εk,i − EF

)
− f

(
εk, j − EF

)(
εk,i − εk, j

)4 , (17)

χ
(2)
js,D =

iJ2

8

∫
BZ

dk
2π

∑
i,j

〈ψk,i
0 | ĵs |ψ

k,i
0 〉 |〈ψ

k,i
0 |Σ̂

(1)
φ |ψ

k, j
0 〉|

2
{(
grq,i

)2
−

(
gaq,i

)2
} (

grq, j + g
a
q, j

)2
, (18)

where we again used the notation as in Eq. (9). Additionally,
ĵs is the spin current operator, gr(a)q,i = (EF − εq,i ±

i
2τ )
−1 is

the retarded (advanced) Green’s function of the unperturbed
HamiltonianH0, and τ is a scattering lifetime. Equation (17)
emerges from contributions of all the states below the Fermi
energy, known as the Fermi sea contribution, and describes a
non-dissipative spin current which is almost independent of
impurity scattering. On the other hand, Eq. (18) contains con-
tributions from excitations near the Fermi surface, therefore,
gives dissipative spin current. In the following, we refer the
susceptibility given in Eqs. (17) and (18) as non-dissipative
and dissipative contributions, respectively. Note that χ(2)js,D is
proportional to 1/τ for large τ, i.e., induced by the relaxation.
Accordingly, the dissipative spin current χ(2)js,D plays an impor-
tant role when disorder is introduced, Sec. III C, whereas it
does not contribute in the clean limit, Sec. III B, where only
the non-dissipative component χ(2)js,ND is present.

The non-dissipative and dissipative second order suscepti-

bilities are shown in Fig. 2(c) and (d), respectively, both as
function of the Fermi energy EF and the wavelength λ/a. The
other parameters are chosen as tH = 1, J = 0.5, and τ = 2.5.
The plots reflect the symmetries that were already discussed in
Sec. II B and are summarized in Tab. I. Moreover, as discussed
in Sec. III A 1, the antisymmetric behavior in the handedness
η implies that the spin current js has to vanish in the AFM
limit, λ/a→ 2.
As shown in Fig. 2(c), the non-dissipative second order

susceptibility χ
(2)
js,ND is always positive for all Fermi energies

EF and wavelengths λ. In contrast to the spin accumulation sx
and charge current je, its range is not clearly bound by the edges
of the SDWgaps and looks more complex with a maximum for
Fermi energies EF located between the SDWgaps and λ ∼ 10a.
In the large wavelength limit, our continuum approximation
gives the asymptotic behavior in the center of the SDW gaps

χ
(2)
js,ND =

{
ea
2λ

√
tH
J3 for λ � πa

√
2tH/J

0 for λ = 2a
, (19)
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see Appendix B for details.
The dissipative second order susceptibility χ

(2)
js,D, see

Fig. 2(d), displays a quite different behavior. Here, finite
contributions are mostly located at the edges of the SDW gaps
where the mixed momentum-phason Berry curvature Bk,φ is
concentrated. Similar to the Berry curvature Bk,φ , the sign of
the spin current js is also opposite on the two opposite edges
of each SDW gap. Therefore, our analytical continuum ap-
proximation for the centers of the SDW gaps is meaningless
for the dissipative susceptibility. Still, we observe that in the
ferromagnetic limit λ → ∞ the expected result js → 0 is
obtained.

B. Numerical results

In the following, we switch from the perturbative analysis in
Sec. III A to non-perturbative numerics evaluation which also
allows for treating other boundary conditions than periodic.
However, for simplicity, we fix the wavelength of the magnetic
spiral to λ/a = 3 which does not qualitatively alter the results.
We numerically solve the time-dependent Schrödinger equa-

tion to simulate the dynamics of the electronic subsystem in
real-space where we can easily evaluate the time- and space-
dependent spin accumulation sx , charge current je, and spin
current js , see Eqs. (3)-(5). At the initial time t = 0, the
wavefunction of the electronic state ψ0 = ψ(t = 0) is obtained
by diagonalizing the Hamiltonian H0 = H(t = 0), see Eq. 2,
and filling all states up to the Fermi energy EF. We manually
switch on the spiral motion ω , 0 at t = 0 which evolves
the system to a non-equilibrium state ψ(t) = Û(t, 0)ψ0. Here,
Û(t ′, t) is a time-evolution operator from time t to t ′ expressed
by

Û(t + δt, t) = T̂ exp
[
−i

∫ t+δt

t

dt ′H(t ′)
]

(20)

where T̂ is the time-ordering operator. Employing the Suzuki-
Trotter decomposition [28–30] for short time periods δt, we nu-
merically compute the time-evolution operator Û and, finally,
the nonequilibrium observables 〈O(t)〉 = 〈ψ†(t)|Ô |ψ(t)〉.
Within the real-space scheme, we can apply different bound-

ary conditions. We use two different numerical codes for
the simulations; (i) our self-written code and (ii) the open-
source program TKWANT [31]. Our self-written code uses
periodic boundary conditions (PBCs) or open boundary con-
ditions (OBCs) but we can define different parameter regions,
e.g., a spiral magnet region with polarized magnetic leads at-
tached on both sides. In this case, we minimize the effects
of the boundary by choosing a sufficiently large system size.
For the case of simple non-magnetic leads attached to a spiral
region, however, we use TKWANT which is more advanced.

1. Leads attached and the limits of perturbation theory

Using the non-perturbative numerical evaluations of the
time-dependent Schrödinger equation, we can test the limits

of our perturbation theory, Sec. III A. Fig. 3 shows a com-
parison between the perturbative results (solid black lines),
Eqs. (9) and (17), and non-perturbative numerical results for
PBCs (red dots) or OBCs (blue dots). Here, we refer to OBCs
as attached half-infinite non-magnetic leads. With OBCs, we
evaluate the charge and spin currents je and js both in the
bulk, i.e., as the average over the entire spiral region, and in
the leads, i.e., as the average over both attached metallic leads.
The definition of the latter is of significant importance as the
spin currents on both ends, in general, have opposite sign, see
Fig. 4 in the following section.
More precisely, Figs. 3 (a-c) show the DC component of

the spin polarization sx , charge current je, and spin current
js(= jsx ), respectively, as function of the driving frequency ω.
For driving frequencies ω below the SDW gap, |ω | < 2|J |, the
perturbative results and numerical results are in quantitatively
good agreement. Also, the spin polarization sx and the charge
current je, results for PBC and OBC do not differ significantly.
The average spin current js , on the other hand, depends on the
type of boundary condition. It also depends strongly on the
measurement position, i.e., inside the spiral region or outside
in the attached lead, as the rotating spiral is a source of spin
and continuously supplies angular momentum. Note that a
spin current is not conserved quantity in the spiral region due
to broken spin rotational symmetry, while it is conserved in
the leads. Moreover, once the frequency ω is larger than the
SDW gap, |ω | > 2|J |, the results obtained for PBC and OBC
start to deviate. The results with PBCs are still close to the
perturbative results, namely sx, je ∝ ω and js ∝ ω2. In turn,
with OBCs, the pumped spin accumulation sx and charge and
spin currents je and js saturate.
In Figs. 3(d-f), we show the numerically computed suscep-

tibilities related to the spin accumulation sx , charge current
je, and spin current js as function of the Fermi energy EF.
The driving frequency is fixed to ω = 0.5, 1.0, 2.0 and we only
consider PBCs. Again, we obtain good agreement between
the perturbative and numerical results for low driving frequen-
cies below the SDW gap, |ω | < 2|J |. For |ω | > 2|J | we
enter the non-adiabatic regime where the perturbation theory
breaks down and the non-perturbative numerical results start
to deviate. However, this deviation appears as a rather con-
stant scaling factor, such that the main features of the pumped
observables are conserved.

2. Magnetic leads attached

In the previous section, we have shown that the boundary
condition can have a large impact on the pumped quantities
since the rotating spiral is a source of angular momentum
(spin). In this section, we investigate how the transport prop-
erties can be tuned if the attached leads are magnetic or non-
magnetic.
Qualitatively, the impact of attached leads can be under-

stood as follows. The induced spin polarization sx inside the
spiral region is fixed by the direction of rotation, i.e., the sign
of ω. The rotating spiral generates spin, thus, at the inter-
faces sx may be transferred into the attached leads, leading
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FIG. 3. Averaged spin polarization 〈sx〉, charge current 〈 je〉, and spin current 〈 js〉 as function of (a-c) the rotation frequency ω and (d-f)
the Fermi energy EF, respectively. In panels (a-c), the Fermi energy is fixed to EF/tH = −1. Dots are numerical data for periodic boundary
conditions (PBC, red) and for finite size systems with non-magnetic leads attached (OBC, blue). For the latter, the observables are computed
both in the bulk (darker blue) and the attached leads, far away from the magnetic system (lighter blue). Note that they mostly overlap in panel
(b). The solid black line is the perturbative result, Eq. (7). The vertical line at ω = 1 indicates the driving frequency which corresponds to the
SDW gap ∆SDW = 2J. In panels (d-f), the driving frequency ω is fixed to ω = 0.5, 1.0, and 2.0, see legends. Dots are numerical data for PBCs.
The solid black line is the perturbative result, Eq. (7). The gray shaded areas indicate the SDW gap. The gray dashed line in panel (e) indicates
the value of quantized Thouless pumping 〈 je〉 = ω/2π ≈ 0.159ω, see Eq. (11). Parameters for all panels are λ/a = 3, tH = 1, and J/tH = 0.5.
Details on the numerical calculations are provided in the main text.

to a spin current js away from the spiral region. So far, the
phenomenology is similar to the spin pumping mechanism by
precessing ferromagnets [19]. However, simultaneously, the
rotating spiral pumps charge ne,i = −e 〈c†i ci〉. With non-
magnetic leads attached, the pumped spin-polarized electrons
can easily be transferred through the leads. In contrast, if
the attached lead on the left/right side is ferromagnetic with
magnetization Mx

L/R, then states at the Fermi surface might
be spin-polarized with sxL/R = Mx

L/R, depending on the Fermi
level EF. In this case, only electrons with a spin-polarization
sxL/R can be pumped into the lead or extract from it. However,
in order to transfer the spin accumulation sx from inside the
spiral, electrons that are extracted from a lead must satisfy
sxL/R | | − sx , are then flipped to sxL/R | |sx by the rotating spiral,
and can leave again on the other end only if sxL/R | |M

x
L/R. Oth-

erwise, if one magnetic lead does not match these conditions it
imposes a barrier for charge transport. Then, the overall charge
transport is suppressed as the total charge etot = −e

∑
i ne,i is

a conserved quantity.
For more quantitative results, we use our self-written code

and simulate a composite structure which consists of two leads
attached to either side of a magnetic spiral of length L =
30λ = 90a, which can each be magnetic or non-magnetic.
The lead regions are chosen sufficiently large that boundary
effects on the time scale of the simulations can be neglected.
The magnetic exchange part of the Hamiltonian in Eq. (2) is

then modified to

Hex(t) = −
∑

i<−L/2
J ′ c†i (σxMx

L ) ci

−
∑

−L/2≤i<L/2
J c†i (σ ·M(t)) ci

−
∑
i≥L/2

J ′ c†i (σxMx
R) ci

(21)

where M(t) is the magnetic spiral given in Eq. (1) and de-
picted in Fig. 1(b), Mx

L/R = −1, 0, 1 is the magnetization in the
left/right lead, and J ′ is the exchange constant in the leads.
We achieve half-metallic spin-polarized leads by setting the
exchange constant to J ′ = 2tH, assuring that the lower band is
half-filled.
In Fig. 4, we show the spatial profile of the charge and

spin ne and sx (light blue and light red) as well as the charge
and spin currents je and js (blue and red) obtained from our
numerical simulations. A constant offset corresponding to
the profiles at ω = 0 is subtracted. We show the profiles for
both a transient state at time t = 60 (left column) and near
the steady state (t = 250, right column). The spiral region is
indicated by rainbows, similar to the spiral in Fig. 1, and the
magnetization ML/R in the leads is indicated by solid black
arrows or the absence of an arrow in the non-magnetic case
(ML/R = 0). We discuss the resulting transient and steady
states in the following.
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FIG. 4. Real-space profiles of the charge density ne (light blue), spin
accumulation sx (light red), charge current je (blue) and spin current
js (red). Panels show numerical data at times t = 60 (left column)
and t = 250 (right column) after spontaneously switching fromω = 0
to ω = 0.5 at t = 0. As schematically indicated, the system consists
of three regions: The central area of length 30λ = 90a is the rotating
helix from Fig. 1. Leads attached on either side are (a) both non-
magnetic, (b-e) both magnetic, or (f,g) mixed with one side non-
magnetic and the other magnetic. The polarization of the magnetic
leads is indicated by black arrows. For non-magnetic leads, the arrow
is absent. Parameters for all panels are tH = 1, J = 0.5, J ′ = 2, and
EF = −1. Offsets from t < 0 have been subtracted. In some panels,
data points for ne or je are hidden behind the respective points for
sx or js . For the full time-dependence, see also the Supplementary
Movies 1-7.

Non-magnetic leads — To begin with, let us reconsider the
case of non-magnetic leads on both sides, Fig.4(a) or Supple-
mentary Movie 1, which is in nice agreement with the qualita-
tive discussion above. The spiral simultaneously pumps both
charge ne and spin sx . The latter is equal on both sides of
the spiral, while the charge ne is depleted on the left side and
accumulated on the right side, reflected also in the spatially
homogeneous current je. This result is in agreement with the
simple picture that the rotating right-handed spiral with ω > 0
is anArchimedean screwwhich transports spin-polarized elec-
trons to the left. The spin current js reflects the fact that the
spiral is a source of spin, leading to a dominant antisymmetric
contribution to the spin current. In addition, there is a small
symmetric component. Note that the latter is absent in mag-
netic leads, Fig. 4(b-g), where spin transport by spin flips is
suppressed and only transport by drifting spin-polarized elec-
trons contributes, thus ne = ±sx and je = ± js .
Magnetic leads (antiparallel) — Next, let us consider half-

filled spin-polarized magnetic leads with opposite polariza-
tions, ML = −MR, attached to both ends of the spiral. Fig. 4(b)
or Supplementary Movie 2 shows the result for lead polariza-
tions which both match the spiral pumping of the case under
consideration, i.e., ML = −1 and MR = 1 for η = 1, ω > 0,
and EF < 0. Electrons with sx > 0 are pumped from the right
lead into the spiral, resulting in ne > 0 and sx < 0. At the
interface to the spiral region, their spin is flipped to sx < 0
such that, on the left end, they can be pumped into the lead
with ML < 0. In Fig. 4(c) or Supplementary Movie 3, the lead
polarizations have been switched such that both leads are now
blocking. Accordingly, neither charge nor spin can initially
leave the spiral region on either end, see panel for t = 60.
However, as electrons/holes accumulate on the left/right side
within the spiral region, they eventually fill enough states to
activate charge transport in the inverse direction, c.f. Fig. 2(b).
Once the direction of charge transport is reversed, the blockade
breaks down as the system corresponds to the space-inversion
symmetric partner of Fig. 4(b).

Magnetic leads (parallel) — If both half-filled spin-
polarized magnetic leads have the same polarization, ML =
MR, see Fig. 4(d,e) or Supplementary Movies 4 and 5, then
only one end of the spiral region has matching conditions.
On short time scales, a shock wave of charge ne > 0 and
spin sx < 0 can leave the spiral region on the right side for
MR/L = 1 (left side with ne < 0 for MR/L = −1). However,
transport is not possible in the steady state as the other end
of the spiral is blocking charge transfer, leaving the spiral re-
gion discharged (or charged) in the steady state, without any
continued transport.

One magnetic and one non-magnetic lead — In case that
one attached lead is non-magnetic, here ML = 0, only the other
lead imposes boundary conditions on the transport. Fig. 4(f)
or Supplementary Movie 6 show the result if the lead on the
right side is magnetic and matches the transport conditions,
MR = 1. Just as for matching lead conditions, c.f. Fig. 4(b), as
steady charge and spin current persists. On the magnetic side,
again, the transport is due to the drift motion of spin-polarized
electrons, thus ne = −sx and je = − js . In contrast, on the
non-magnetic side, similar to the completely non-magnetic
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case in Fig. 4(a), the spin polarization is larger due to spin
flips. Finally, in Fig. 4(g) or Supplementary Movie 7 the
magnetic lead does not match the transport conditions of the
rotating spiral, MR = −1, i.e., is blocking charge transport.
Similar to Fig. 4(e) with one matching and one blocking lead
polarization, an initial shock wave of electrons is emitted from
the spiral region into the matching condition (non-magnetic)
lead. As the other end of the spiral is blocking charge transport,
however, this initial process soon ends and in the steady state,
the charge current stops, je = 0. For the spin current, the
situation is different as spin is not conserved. Here, on the one
side, the spin transport into the magnetic lead is blocked as
both, pumping polarized electrons and propagating spin flips,
are gapped out. On the other side, conduction electrons are
not available on in the steady state, as explained before, but
spin transport by spin flips is still an option. Thus, in our
simulations, we observe a remarkably high spin current (and
polarization) into the non-magnetic lead.

In summary, attaching magnetic and non-magnetic leads
can drastically alter the spin and charge transport properties of
the spinning spiral magnet and, besides symmetric transport
of both quantities, realize charge and spin diodes and switches
or spin sources.

C. Effects of disorder

While the above results and discussions considered clean
samples and ideal model systems, disorder is expected to
tremendously impact the pumping phenomena. In the fol-
lowing, we present our numerically obtained results for the
spin accumulation sx , charge current je, and spin current js
in the presence of non-magnetic impurities and link these re-
sults to the localization length ξ and second order dissipative
susceptibility χ(2)js,D of the spin current.
To study the effects of disorder represented by non-magnetic

impurities, we consider a model system of size L = 50λ =
150a with periodic boundary conditions. The Hamiltonian
H ′ of this dirty model system consists of two parts,

H ′ = H +W = H +
∑
i

Wic
†

i ci , (22)

where H is the Hamiltonian of the clean system, see Eq. (2),
and W is a non-magnetic random potential. We de-
fine W by the uniformly distributed random onsite energy
Wi ∈ [−W/2,W/2] with the spatial averages 〈Wi〉 = 0 and
〈WiWj〉 = δijW2/12. For all following results, we average
over 200 different disorder configurations.
First, we briefly analyze the impact of non-magnetic disor-

der on the static properties of the electronic system. We define
the localization length ξn of the n-th eigenstate ψ ′n of H ′ via
the inverse of the inverse participation ratio In, i.e.,

ξn = I−1
n = a

(∑
i

|ψn,i |
4

)−1

, (23)

where the sum is over all lattice sites i. By numerically di-
agonalizing the Hamiltonian H ′, the localization length ξn is

evaluated for several different disorder strengths up to W = 2,
see Fig. 5(a). With disorder absent, W = 0, all states are
fully extended over the system. Once disorder is introduced,
W > 0, the localization length ξn monotonically decreases
as the disorder strength W increases. The helical channels
within the SDW gap are more robust against disorder due to
the spin-momentum locking, however, following the discus-
sion in Sec. III A, they do not contribute to the charge current
je.
Next, we numerically evaluate the spin accumulation sx ,

charge current je, and spin current js , using our self-written
code fromSec. III Bwith disorderedHamiltonianH ′, Eq. (22),
and by taking again the disorder average over 200 disorder con-
figurations and time average after an initial relaxation time.
The response of the spin accumulation sx and charge current
je to disorder are just opposite: The absolute value of the spin
accumulation sx increases with increasing disorder W until it
saturates, see Fig. 5(b), captured by renormalization of the first
order susceptibility χ(1)je . In a strongly disordered regime, the
response is described by single-site (2-level) problem as most
of states are localized and given by 〈sx〉 = −Cω/(4J) where
C ≈ 0.351 is a statistical factor of 1/3-filling and L = 150a.
The charge current je decays monotonically with increasing
disorder W , see Fig. 5(c), due to the increased localization of
states, ξn → 0. Notably, in contrast to these monotonic be-
haviors, the spin current js can behave non-monotonically as
function of both driving frequency ω, Fig. 5(d), and Fermi en-
ergy EF, Fig. 5(e), including possible sign changes as function
of both these control parameters. For small disorder W � 1
and driving frequency ω � 1 the spin current starts off posi-
tively, js > 0, as described by our second order non-dissipative
perturbation theory, Eq. (17), see solid line in Fig. 5(e). How-
ever, at stronger disorder W and frequency ω, additional con-
tributions become relevant and soon also dominant. These
additional contributions are strongest at the edges of the SDW
gaps and induce a sign change across the SDW gap, in agree-
ment with our second order dissipative perturbation theory,
Eq. (18), see dashed line in Fig. 5(e). Note also that the dissi-
pative contribution, which stems from the long-ranged helical
channels, survives even in the strong disorder case W = 2
where the charge current je is already suppressed. Vice versa,
the dissipative contribution is suppressed in the clean limit
W → 0 where the scattering lifetime diverges, τ →∞.

In summary, adding non-magnetic disorder to our model
may enhance spin-related pumping phenomena whereas the
pumped charge current is suppressed. However, here, we did
not consider magnetic impurities or spatial/temporal defects
in the phason φ(x, t) and our analysis was restricted to a purely
one-dimensional model.

IV. SUMMARY AND DISCUSSION

We have investigated the charge and spin pumping phenom-
ena in a rotating/translating one-dimensional spiral magnet
without spin-orbit coupling (SOC). We studied all regimes of
spiral periods λ, in particular focussing on the case of atomi-
cally short pitches, λ ∼ a, but discussed also the two limiting
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FIG. 5. (a) Band structure for λ/a = 3, c.f. Fig. 1, and localization length ξn for disorder strengths W = 0, 0.4, 2.0. Panels (b-e) show the
effect of disorder W = 0, 0.4, 0.8, 1.2, 1.6, 2.0 on (b) the spin polarization, (c) the charge current, and (d-e) the spin current as function of (d)
the driving frequency ω or (e) the Fermi energy EF. For the color of data points, see the inset of panel (c). Solid lines are results from our
perturbation theory, see Eqs. (9) and (17) and c.f. Fig. 3(a-c) and (f). The dashed line in (e) is the contribution of the dissipative susceptibility,
Eq. (18). For all panels, the system size is L = 50λ = 150a with periodic boundary conditions. Parameters are tH = 1, J = 0.5, EF = −1,
ω = 1, and τ = 2.5, if not stated otherwise.

cases, namely the collinear antiferromagnet, λ = 2a, and the
long wavelength (ferromagnetic) limit, λ � a. Our analytical
and numerical results predict in detail the non-trivial charge
and spin transport properties of these systems.

Periodic boundaries —We first discuss the results obtained
with periodic boundary conditions. The rotation of a magnetic
spiral at angular frequency ω – equivalent to a translation at
velocity v – was predicted to pump an electrical current je in
the direction of the Q-vector, recently interpreted by del Ser
et al. [21] as an electromagnetic Archimedean screw. This
picture agrees with simple symmetry arguments which predict
| je | ∝ ω. However, we find a non-trivial dependence on the
spiral wavelength λ, showing a maximum at around λ ∼ 3.5a
and vanishing in both the antiferromagnetic and ferromag-
netic limit. This behavior is explained by the Berry curvature
Bk,φ in mixed momentum-phason space which determines the
current je. Concentration of the Berry curvature in the SDW
channels leads to constant plateaus inside the SDW gaps, since
the gapless helical channels do not mediate the charge trans-
port. Nevertheless, the gapless channels provide a route for the
cancellation of Berry curvature once λ increases: In the limit
of large wavelengths λ � a we obtain je ∝ ω/λ ∝ −v/λ2,
spoiling the oversimplified picture of a classical Archimedean
screw [21, 25] or topological Thouless pumping [1, 2]. How-
ever, to this point, we did not yet include SOC in our theory
which could open additional gaps and possibly prevent the
cancellation of Berry curvature.

In addition to the electrical current je, the rotation generates
a spin accumulation s and spin current js . The spin s points
perpendicular to the rotation plane of the spin spiral, which
is determined by the magnetic properties of the system. The
pumping direction of the spin current js , however, is again
set by the direction of the Q-vector of the magnetic spiral. In

contrast to the electric current je, the spin accumulation and
current are even function of the Fermi energy EF. The spin ac-
cumulation s ∝ ω is approximately constant over all ranges of
λ, whereas js ∝ ω

2 is composed of a (non-dissipative) Fermi
sea component and a (dissipative) Fermi surface component
with distinct properties. However, similar to je, also js van-
ishes in both the antiferromagnetic and ferromagnetic limit but
peaks around λ ∼ 10a.
Leads attached — With non-periodic boundary conditions,

the resultsmay significantly differ. We have also studied the ef-
fects of attached non-magnetic or spin-polarized half-metallic
magnetic leads as well as the impact of non-magnetic disor-
der. We find that the locking between the charge current je
and spin current js inside the rotating spiral imposes boundary
conditions on the global transport if leads are attached. As a
result, charge and spin transport might be simultaneously en-
abled. In addition, we can realize scenarios where only the
charge current is blocked or inverted, or where both currents
are blocked. Control over the properties of attached leads
therefore could be used to construct charge and spin diodes
and rectifiers. However, we also show that the imperfectly
quantized charge pumping is suppressed by the non-magnetic
disorder, in contrast to the spin accumulation which is en-
hanced. The effects of disorder on the spin current are less
trivial as the finite excitation lifetimes mix the dissipative and
non-dissipative contributions, leading enhanced spin currents
and eventually sign changes at the edges of the SDW gaps.
Noteworthy, this modified spin current of mostly dissipative
origin persists at much larger disorder strengths than the elec-
trical current. Therefore, future investigations should also
consider effects of magnetic disorder and fluctuations in the
spin spiral, as well as the crossover between our theory and the
SOC-driven transport in the dirty limit which was discussed by
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del Ser et al. [21]. Also all thermal effects have been neglected
in our study which might be the topic of future studies.

Experimental prospects — Finally, let us comment on pos-
sible experimental realizations. The pumped charge and spin
currents change their sign depending on the helicity η of the
spiral, suggesting that the transport phenomena are suppressed
for multichiral systems. Chiral magnets come with a well-
defined helicity which is fixed by the underlying crystal struc-
ture. The atomic lattice lacks inversion symmetry which in
combination with spin-orbit coupling (SOC) constitutes the
ingredients for the an antisymmetric exchange interaction, i.e.,
Dzyaloshinskii-Moriya interaction (DMI). As SOC is typi-
cally weak, the DMI is usually about two orders of magnitude
smaller than the isotropic exchange. The ratio between these
interactions determines the wavelength of long range spiral
or helical order, which results in typical wavelengths with
λ & 20nm, i.e., hundreds of lattice constants a. [32, 33] More-
over, the spiral phase naturally comes in domains of different
orientations [34] which first need to be properly combed [35].
The SOC might have additional effects on the driving mecha-
nisms, see in particular Ref.[21], which is a subject for future
investigations.

Alternatively, magnets with frustrated interactions, e.g.
RKKY interaction, can be considered as they offer atomically
small wavelengths, λ . 5nm down to the atomic limit [36].
Such systems are multichiral but they can be poled using the
electrical magnetochiral effect [17].

For rotating/driving the spin spiral, the authors of Ref. [21]
suggested to use an oscillating external magnetic field perpen-
dicular to the Q-vector which is, however, only a 2nd order
effect in the driving field. We suggest to also reconsider that
a magnetic field is already the generator of a spin rotation,
thus an oscillating magnetic field parallel to the spiral plane,
Bac | | n̂, can be used to detect the AC equivalent of our theory.
The rotation induced by a constant magnetic field would be
damped out after some time. However, we can counteract by
replacing the magnetic field with a continuous source of spin,
e.g., by exploiting the spin Hall effect in an adjacent heavy
metal layer for spin-charge conversion, as frequently exploited
in spin orbit-torque setups in thin films. Note that, in contrast
to the activation by an oscillating field, the applied current and
resulting spin current might be invasive for effects that we pre-
dict and have to be considered when interpreting experimental
results. In either case, we predict that the resulting pumped
charge current density 〈 je,3D〉 (ω) = 〈 j1D〉 /a2 = eω/(2πla)
can be of the order of je = 2 × 105 A/m2, assuming the spiral
magnet is the frustrated Kagomé magnet Gd3Ru4Al12 which
has λ ∼ 2.8 nm and a ∼ 5 [37], and the spiral moves at a
reasonably slow velocity of v = 1 cm/s, i.e., ω = 2.3 MHz.
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Appendix A: Details on perturbation theory

The nonequilibrium physical observable is evaluated as

〈O〉 (t) = −i
∫

dq
2π

Tr
[
ÔĜ<

q (t, t
′)
] ����
t′→t

, (A1)

where Ĝ<
q (t, t

′) = i 〈c†q(t ′)cq(t)〉 is the lesser Green’s func-
tion on the Keldysh contour [38]. By expanding the contour-
ordered Green’s function up to the second-order with respect
to the phason variable, one can obtain that

Ĝq(τ, τ
′) = ĝq(τ − τ

′)

−J
∫
C

dτ1ĝq(τ − τ1)φ(τ1)Σ̂
(1)
φ ĝq(τ1 − τ

′)

−
J
2

∫
C

dτ1ĝq(τ − τ1)φ(τ1)
2
Σ̂
(2)
φ ĝq(τ1 − τ

′)

+J2
∫
C

dτ1

∫
C

dτ2ĝq(τ − τ1)φ(τ1)Σ̂
(1)
φ

×ĝq(τ1 − τ2)φ(τ2)Σ̂
(1)
φ ĝq(τ2 − τ

′), (A2)

where ĝq(τ) is the Green’s function of the bare Hamiltonian,
H0. The nonequilibrium physical observables are obtained by
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substituting Eq. (A2) into Eq. (A1) as

〈O〉 (t) =

iJ
∫

dq
2π

∫
dt1Tr

[
Ôĝq(t − t1)Σ̂

(1)
φ ĝq(t1 − t ′)

]<����
t′→t

φ(t1)

+
iJ
2

∫
dq
2π

∫
dt1 Tr

[
Ôĝq(t − t1)Σ̂

(2)
φ ĝq(t1 − t ′)

]<���
t′→t

φ(t1)2

−iJ2
∫

dq
2π

∫
dt1

∫
dt2Tr

[
Ôĝq(t − t1)Σ̂

(1)
φ

×ĝq(t1 − t2)Σ̂
(1)
φ ĝq(t2 − t ′)

]<���
t′→t

φ(t1)φ(t2), (A3)

where we have dropped a term independent of the phason vari-
able. The first term of Eq. (A3) yields the linear-order response
to the phason variable contributing to the spin polarization and
the charge current, whereas the second and third terms give
the second-order response responsible for the spin current.

1. Linear-order Response

The first-order response to the phason degrees of free-
dom described by the Feynman diagram in FIG. 6 (a)
contributes to the spin polarization and the charge cur-
rent. In the linear-order response is evaluated as 〈O〉 (t) =∫

dω
2π e−iΩtK (1)

O
(Ω)φ(Ω), where K (1)

O
(Ω) is the first-order re-

sponse function. With the analytical continuation per-
formed as

∫
dt1[A(t, t1)B(t1, t ′)]< =

∫
dt1 [Ar (t, t1)B<(t1, t ′)

+A<(t, t1)Br (t1, t ′)] [38], the response function is evaluated as

K (1)
O
(Ω) = iJ

∫
dq
2π

∫
dω′

2π

(
Ô

)
i j

(
Σ̂
(1)
φ

)
ji

×

[
grq, j(ω

′)g<q,i(ω
′ +Ω) + g<q, j(ω

′)gaq,i(ω
′ +Ω)

]
≈ −ΩJ

∫
dq
2π

(
Ô

)
i j

(
Σ̂
(1)
φ

)
ji(

εq,i − εq, j
)2

[
f (εq,i − EF) − f (εq, j − EF)

]
≡ −iΩχ(1)

O

χ
(1)
O
= 2J

∫
dq
2π

∑
i,j

f (εq,i − EF)(
εq,i − εq, j

)2 Im
[(

Ô
)
i j

(
Σ̂
(1)
φ

)
ji

]
(A4)

where ψ
q,i
0 and εq,i denote an eigenstate and eigenvalue

of the unperturbed Hamiltonian H0, i is a band index,(
Ô

)
i j
= 〈ψ

q,i
0 |Ô |ψ

q, j
0 〉 is a matrix element of the operator

Ô, gr(a)q,i (ω) =
(
ω + EF − εq,i ±

i
2τ

)−1 is the bare retarded (ad-
vanced) Green’s function, g<q,i(ω) = i f (ω)Aq,i(ω) is the bare

lesser Green’s function, and Aq,i = i
[
grq,i(ω) − g

a
q,i(ω)

]
is

the spectral function. Note that the zeroth order terms in the
frequency ω vanishes due to the gauge invariance.

2. Second-order response

The spin current is yielded as the second-order response
to the phason variable. In the second-order, there are two

distinct contributions arising from the second and third term of
Eq. (A3). In analogy to electronic conductivity, we refer them
the diamagnetic and paramagnetic contributions, respectively.
Each contribution of the spin current is represented as FIG. 6
(b, c) and evaluated by

〈 js〉 (Ω) =
∫

dω
[
Kd(Ω) + Kp(Ω, ω)

]
φ(ω)φ(Ω − ω),

(A5)

where 〈 js〉 (Ω) is the Fourier component of the spin current
defined by 〈 js〉 (t) =

∫
dΩ
2π e−iΩt 〈 js〉 (Ω), and Kd(p) is the dia-

magnetic (paramagnetic) response function defined by

Kd(Ω) =
iJ
2

∫
dq
2π

∫
dω′

2π
Tr

[
ĵs ĝq(ω′)Σ̂

(2)
φ ĝq(ω

′ +Ω)
]<
,

(A6)

Kp(Ω, ω) = −iJ2
∫

dq
2π

∫
dω′

2π
Tr

[
ĵs ĝq(ω′)Σ̂

(1)
φ

×ĝq(ω
′ + ω′)Σ̂

(1)
φ ĝq(ω

′ +Ω)
]<
. (A7)

a. Cancellation of gauge-dependent terms

Since our focus on this paper is the DC transport (Ω→ 0),
the response functions can be expanded with respect to the ω
and Ω, which yields

Kd(Ω) ≈ χ
(0)
d
− iΩχ(1)

d
−
Ω2

2
χ
(2)
d
, (A8)

Kp(Ω, ω) ≈ χ
(0,0)
p − iΩχ(1,0)p − iωχ(0,1)p

−
1
2

[
Ω

2 χ
(2,0)
p + 2Ωωχ(1,1)p + ω2 χ

(0,2)
p

]
, (A9)

where the expansion coefficients are defined as χ
(n)
d
≡

∂n
Ω

Kd(Ω)|Ω→0 and χ(n,m)p ≡ ∂n
Ω
∂mω Kp(Ω, ω)|Ω,ω→0. By substi-

tuting Eq. (A8, A9) into Eq. (A5), one can obtain that

〈 js〉 (t) =
(
χ
(0)
d
+ χ

(0,0)
p

)
φ2(t)

+
(
2χ(1)

d
+ 2χ(1,0)p + χ

(0,1)
p

)
φ(t)

dφ(t)
dt

+
1
2

(
2χ(2)

d
+ 2χ(2,0)p + χ

(1,1)
p + χ

(0,2)
p

)
φ(t)

d2φ(t)
dt2

+
1
2

(
2χ(2)

d
+ 2χ(2,0)p + χ

(1,1)
p

) (
dφ(t)

dt

)2
, (A10)

where the first three terms explicitly depend on the phason
variables, φ(t), therefore, forbidden by the U(1) symmetry. In
the following, we will show that the gauge-dependent terms
exactly vanish.
Recalling that Σ̂(1)φ = − 1

J

(
∂Ĥ
∂φ0

)
and Σ̂(2)φ = − 1

2J

(
∂2Ĥ
∂φ2

0

)
,

one can show the relationship between the diamagnetic and
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paramagnetic contributions as

Kd(Ω) = −
i
4

∫
dq
2π

∫
dω′

2π
Tr

[
ĵs ĝq(ω′)

(
∂2Ĥ
∂φ2

0

)
ĝq(ω

′ +Ω)

]<
=−

iJ
4

∫
dq
2π

∫
dω′

2π
Tr

[
ĵs∂φ ĝq(ω′)Σ̂

(1)
φ ĝq(ω

′ +Ω)

+ ĵs ĝq(ω′)Σ̂
(1)
φ ∂φ ĝq(ω

′ +Ω)
]<

=
iJ2

4

∫
dq
2π

∫
dω′

2π
Tr

[
ĵs ĝq(ω′)Σ̂

(1)
φ ĝq(ω

′)Σ̂
(1)
φ ĝq(ω

′ +Ω)

+ ĵs ĝq(ω′)Σ̂
(1)
φ ĝq(ω

′ +Ω)Σ̂
(1)
φ ĝq(ω

′ +Ω)
]<

=−
Kp(Ω, 0) + Kp(Ω,Ω)

2
, (A11)

where we have used the relationship, ∂φ ĝq(ω) =

−Jĝq(ω)Σ̂
(1)
φ ĝq(ω). Note that the surface term vanishes as

the first-order susceptibility of the spin current is zero. With
the relationship, Eq. (A11), the expansion coefficients of the
diamagnetic contributions are described by those of the para-
magnetic contributions by

χ
(0)
d
= −χ

(0,0)
p , (A12)

χ
(1)
d
= −χ

(1,0)
p −

χ
(0,1)
p

2
, (A13)

χ
(2)
d
= −χ

(2,0)
p − χ

(1,1)
p −

χ
(0,2)
p

2
. (A14)

By substituting the relations into Eq. (A10), the pumped spin
current is finally obtained as

〈 js〉 (t) = −
χ
(0,2)
p

2

(
dφ(t)

dt

)2
(A15)

where the all gauge-dependent terms of the diamagnetic and
paramagnetic contributions are cancelled each other.

b. The second-order susceptibility

Finally, let us derive the second-order response function
responsible for the spin current. The pumped spin current is
given by the response function χ(0,2)p , which is evaluated as

χ
(0,2)
p = i2J2

∫
dq
2π

∫
dω′

2π

(
ĵs
)
ii

(
Σ̂
(1)
φ

)
i j

(
Σ̂
(1)
φ

)
ji

× f (ω′)
[{(

gri (ω
′)
)3
gai (ω

′) +
(
gri (ω

′)
)2 (

gai (ω
′)
)2
+ gri (ω

′)
(
gai (ω

′)
)3

} {
grj (ω

′) − gaj (ω
′)

}
+

{
grq,i(ω

′) − gaq,i(ω
′)

} {
grq,i(ω

′)

(
grq, j(ω

′)

)3
+ gaq,i(ω

′)

(
gaq, j(ω

′)

)3
}]

= −6J2
∫

dq
2π

∑
i,j

f (εi − EF)(
εi − εj

)4

[(
ĵs
)
ii
−

(
ĵs
)
j j

] ����(Σ̂(1)φ )
ji

����2
−

iJ2

4

∫
dq
2π

∑
i,j

(
ĵs
)
ii

����(Σ̂(1)φ )
ji

����2 {(
grq,i

)2
−

(
gaq,i

)2
} (

grq, j + g
a
q, j

)2
, (A16)

where g
r(a)
q,i ≡ g

r(a)
q,i (0) and we have assumed 1 << EFτ cor-

responding to a weak impurity scattering regime and retained
terms in the leading order of 1/τ. Note that terms containing
off-diagonal components of the spin current operator vanishes.
The first term of Eq. (A16) emerges from contributions of all
the states below the Fermi energy, known as the Fermi sea con-
tribution, and describes a non-dissipative spin current which
is independent of impurity scattering. On the other hand, the
second term of Eq. (A16) contains contributions from exci-
tations around the Fermi surface, therefore, gives dissipative
spin current. Finally, the pumped spin current is obtained

as js(t) =
(
χ
(2)
ND + χ

(2)
D

) (
dφ(t)
dt

)2
, where χ(2)

ND(D)
is the non-

dissipative (dissipative) part of the second-order susceptibility
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defined by

χ
(2)
js,ND = 3J2

∫
dq
2π

∑
i,j

f (εi − Ei)(
εi − εj

)4

[(
ĵs
)
ii
−

(
ĵs
)
j j

] ����(Σ̂(1)φ )
ji

����2 ,
(A17)

χ
(2)
js,D =

iJ2

8

∫
dq
2π

∑
i,j

(
ĵs
)
ii

����(Σ̂(1)φ )
ji

����2
×

{(
grq,i

)2
−

(
gaq,i

)2
} (

grq, j + g
a
q, j

)2
. (A18)

Appendix B: Analytical calculations in 2-band continuum model

In this appendix, we analytically derive the susceptibilities
in a two-band continuummodel. As a continuum Hamiltonian
describing one-dimensional electrons coupled to a spiral spin
order, we have considered

H =
∫

dk
2π

[
c†
k

(
k2

2me
− EF

)
ck − JmQ(t)c

†

k+Q
2
σc

k−Q
2
+ h.c.

]
(B1)

where ck is the Fermionic annihilation operator with momen-
tum k, EF =

Q2

8me
is the Fermi energy,me is an effective electron

mass, andmQ(t) =
ŷ+iẑ

2 e−iφ(t) ≈ ŷ+iẑ
2

[
1 − iφ(t) − 1

2φ
2(t)

]
de-

scribes the spiral magnetic order with wave vector Q. Here
we have assumed that the Fermi energy is located in the
SDW gap. By introducing the spinor, Ψk =

[
c
k+Q

2 ,↑
, c

k−Q
2 ,↓

]
whose spin quantization axis is taken along the propa-
gation vector Q, the Hamiltonian is rewritten as H =∫

dk
2πΨ

†

k

[
ĥ0(k) + Jφ(t)Σ̂(1)φ +

J
2 φ

2(t)Σ̂(2)φ
]
Ψ
k
, where the bare

Hamiltonian is ĥ0(k) = k2

2me
τ0 +

Qk
2me

τz − Jτx, the spin op-
erators coupled to the phason are Σ̂(1)φ = τy and Σ̂(2)φ = τx ,
and τ is a vector of the Pauli matrix. The charge and spin
current operators are defined by ĵe = −e

(
k
me
τ0 +

Q
2me

τz

)
and ĵs = −e

(
k
me
τz +

Q
2me

τ0

)
, respectively. The eigenval-

ues of ĥ0(k) are given by εk,± = k2

2me
±

√(
kQ
2me

)2
+ J2. From

Eqs. (9), (17), and (18), the susceptibilities with the continuum
model are obtained as

χ
(1)
sx = −

√
me

π

(
ζ +

Q2

2me

)− 1
2

, (B2)

χ
(1)
je
=

eQ
2π√me

(
ζ +

Q2

2me

)− 1
2

, (B3)

χ
(2)
js,ND =

eQ
2π√me

(
ζ +

Q2

2me

)− 3
2

, (B4)

where ζ =
√(

Q2

2me

)2
+ 4J2.

For the short-pitch spiral, λ < π/(2
√

meJ), each suscep-
tibility is given by χ

(1)
sz = −meλ/(2π2), χ(1)je = e/(2π), and

χ
(2)
js,ND = emeλ

2/(8π3). In this regime corresponding the adi-
abatic regime, the Thouless pumping is realized as the charge
current susceptibility is quantized. On the other hand, for the
long-pitch spiral where λ < π/(2

√
meJ), the susceptibilities

are given by χ
(1)
sz = −

√
me/(2π2J), χ(1)je = e/(λ

√
2Jme), and

χ
(2)
js,ND = e/(2

√
2λ

√
meJ3). This regime corresponds to the the

nonadiabatic regime, and the charge and spin current decay as
λ−1 due to the presence of metallic Fermi surfaces. Note that,
in ferromagnetic limit, λ → ∞, both charge and spin current
asymptotically becomes zero. The pitch-length dependence of
the susceptibilities are depicted in Fig. 7 with the results of the
lattice model. In the long-pitch regime, results obtained for
the continuum and lattice models agree well. In contrast, as
the pitch length reaches λ/a = 2, two results show deviations
as the effect of discretization becomes important.

Appendix C: Comparison between true topological Thouless
pumping in a collinear SDW and quasi-Thouless pumping in a

spiral

In the adiabatic Thouless pumping regime, electrons co-
herently move with the collective coordinate; namely, charge
current is expected to be given as 〈 je〉 = −enev, where ne
is charge density and v is the drift velocity of the collective
coordinate. One can notice that the charge density is inversely
proportional to the pitch length λ when the nesting condition
is satisfied, while the drift velocity is proportional to λ as it
is given by v = −ηλω/(2π). Therefore, the pumped charge
current as a function of rotation frequency ω should be in-
dependent of λ. Contrary, in the ferromagnetic states which
corresponds to the long-pitch limit of spiral, λ → ∞, the
charge and spin current should vanish. These two regimes are
connected by the crossover between the adiabatic and nona-
diabatic regime, as discussed in Sec. B. In this section, we
will discuss the crossover in terms of the Berry curvature by
including a comparison to the collinear SDW state, see Fig. 8.

Magnetization in the collinear SDW state is described by

M(x, t) = e1 cos θ(x, t) (C1)

where θ(x, t) = Qx + φ(t), and we take polarization along
x-axis. In sharp contrast to that of spiral SDW states, an
electronic band dispersion of collinear SDW is fully gapped,
see Fig. 9 (a) for a band structure with λ/a = 3. Note that each
band has 2-fold degeneracy, and the degenerate bands have
exactly the same Berry curvature. As shown in Figs. 9 (a)
and (b), the Berry curvature is mostly concentrated around the
SDW gaps, which resembles to that of the spiral SDW state.

The Berry curvature distribution is extended in the mo-
mentum space, and its width is proportional to the exchange
constant and the pitch length, as the half width of the Berry
curvature qw is given by qw ≈ Jλ

√
23/2 − 1/(2πa2tH), while

the maximum value of the Berry curvature is obtained as
±πa2tH/(Jλ). When the width qw is smaller than a size of
the first Brillouin zone, the Berry curvature is well localized
in the momentum space as shown in Figs. 9 (a) and (b). In this
case, the momentum integral of the Berry curvature for the
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FIG. 7. Pitch length dependence of the susceptibilities corresponding to (a) spin polarization, (b) charge current, and (c) non-dissipative
contribution of spin current. The solid lines indicate the results obtained by the continuum model, see Eqs. (B2), (B3), and (B4). Dots
are numerical data obtained by the time-dependent Shrödinger equation (TDSE) and perturbation theory (PT), respectively. Parameters are
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result for the collinear SDW is quantized, irrespective of the precise
value of J. The Fermi energy EF/tH = −2 cos(πa/λ) is chosen in the
center of the SDW gap.

lower two bands is quantized for both the collinear and spiral
SDW states, corresponding to the adiabatic pumping regime.

On the other hand, differences appear when qw becomes
larger than the Brillouin zone. As shown in Fig. 9 (c) and
(d), the Berry curvature density increases as the first Brillouin
zone becomes smaller because of folding for the collinear
SDW state, while it decreases for the spiral SDW state. For the
collinear SDWstate (Fig. 9 (c)), the total Berry curvature of the
lower two bands remains invariant because the band structure
is fully gapped, and the Berry curvature flux cannot escape.
Recalling that the charge current is proportional to the total
Berry curvature of lower two bands, the charge current for the
collinear SDW state is quantized to −e/(2π) and independent
of the pitch-length.

In contrast, for the spiral SDW state (Fig. 9 (d)), the Berry
curvature density spreads into the higher bands through the
gapless helical channels, and the total Berry curvature of lower
two bands decreases. In this regime of the spiral SDW state,
the adiabatic transport picture is no longer applicable as the
gapless states also carry the Berry curvature. Consequently,

the quantized transport is only observed for the short-pitch
spirals whose pitch length λ < πa

√
tH/(2J), and the charge

current decreases as the pitch-length becomes longer because
of the nonadiabaticity.

Appendix D: Extension to the higher dimensions

We have considered the one-dimensional electronic system
for simplicity. In this section, we will show that the exten-
sion to higher-dimension is rather straightforward. As the
spiral order only hybridizes the states along the propagation
vector Q, the Hamiltonian given in Eq.(2) is decoupled to
terms including perpendicular momenta k⊥; thus, the effect
of perpendicular hopping is just to shift the Fermi energy as
EF → EF−2tH

∑
i cos k⊥,i . Similarly, the spin operator, charge

and spin current operators along Q, Σ̂(1)φ , and Σ̂(2)φ are all in-
dependent of k⊥. Therefore, the transport response functions
for the higher dimensions are simply obtained by integrating
the one-dimensional susceptibility over the perpendicular mo-
menta, χÔ(EF) =

∑
k⊥ χ

1D
Ô
(EF − 2tH cos k⊥,i), where χ1D

Ô
is

the one-dimensional susceptibilities given in Eqs. (9), (17),
and (18). This consideration suggests that the pumping ef-
fects in the higher-dimensional systems are qualitatively the
same as those of one-dimensions. Note that the almost uni-
versal quantization of the charge current is only present in the
one-dimension, and the charge current depends on the other
parameters such as the exchange constant J in the higher di-
mensions.
We further conducted the numerical calculations for a two-

dimensional electronic system based on the perturbation the-
ory and the time-dependent Shrödinger equations. As shown
in Fig. 10, spin polarization and charge current show linear de-
pendence of the rotational frequency ω, while spin current is
proportional toω2. When the frequency is larger than the SDW
gap, |ω | < 2|J |, results obtained for the PBC and OBC coin-
cide. In contrast, in the higher frequency regime, |ω | < 2|J |,
the PBC and OBC results show deviation as the PBC results
continue to increase, while the OBC results show saturation.
These behaviors are qualitatively the same with those of the
one-dimensional system presented in Fig. 3 (a-c).
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