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We propose a method to compute spectral functions of generic Hamiltonians using the density
matrix renormalization group (DMRG) algorithm directly in the frequency domain, based on a
modified Krylov space decomposition to compute the correction-vectors. Our approach entails
the calculation of the root-N (N = 2 is the standard square root) of the Hamiltonian propagator
using Krylov space decomposition, and repeating this procedure N times to obtain the actual
correction-vector. We show that our method greatly alleviates the burden of keeping a large bond
dimension at large target frequencies, a problem found with conventional correction-vector DMRG,
while achieving better computational performance at large N . We apply our method to spin and
charge spectral functions of t-J and Hubbard models in the challenging two-leg ladder geometry, and
provide evidence that the root-N approach reaches a much improved spectral resolution compared
to conventional correction-vector.

PACS numbers:

I. INTRODUCTION

In condensed matter physics, several unusual proper-
ties of strongly correlated quantum materials are unveiled
using spectroscopic techniques, such as angle resolved
photoemission spectroscopy (ARPES)1, inelastic neutron
scattering (INS), and resonant inelastic x-ray scattering
(RIXS)2. These experimental probes do not provide a
direct access to the ground state, but rather explore the
low energy excitations of the system. Excitations spectra
are esperimentally measured looking at the energy and
momentum exchanged by the probe of each technique
with the material: photo-emitted electron for ARPES,
neutron for INS, photon for RIXS, and are theoretically
encoded in spectral functions. The progressive improve-
ment in momentum and energy resolution in experimental
spectroscopic apparatus calls on the theory side for an
equally significant improvement of the spectral functions
calculations accuracy.

For a one-dimensional (1D) lattice Hamiltonian of size
L, a generic spectral function can be defined as

O(q, ω) =
1

L

∑

i,j

eiq(i−j)
∫ ∞

0

dtei(ω+Eg)t〈ψ|Ôie−iĤtÔj |ψ〉,

(1)

where |ψ〉 is the ground state of the system Hamiltonian Ĥ,
Eg is the ground state energy, q and ω are the momentum
and frequency (or energy) of the electron in the material,

and Ôj is the relevant operator involved in the scattering
process of the specific technique acting locally on site “j”
(Ôj = ĉjσ for ARPES, Ôj = Ŝzj for INS, while special

care is needed for RIXS, as written in Ref.3).
In 1D, the most powerful method to compute spectral

functions of arbitrary strongly correlated Hamiltonians is
the density matrix renormalization group (DMRG)4,5; the

DMRG is a variational but systematically exact algorithm
to find a matrix product state (MPS) representation for
the ground state of the system6. Spectral functions can
be computed in the time-space domain using time depen-
dent matrix product state methods7–10. (For a recent
review of the different variants, see Ref.11) When using
time evolution, the problem is to find an efficient MPS
representation of the time-evolved vector

|xj(t)〉 = e−iĤtÔj |ψ〉, (2)

where the ground state of the Hamiltonian Ĥ is locally
modified by the Ôj , and the resulting state is evolved
up to a very large (in principle “infinite”) time. This
evolution always grows the entanglement of the state, and
thus spoils the compression of the MPS representation.
Simulations are therefore typically stopped at some large
or maximum time, and linear prediction9 or recursion
methods12 are needed to obtain a well behaved Fourier
transform in frequency.

In this paper, we are concerned with the complementary
approach of computing the spectral functions directly in
the frequency domain. To discuss this case, it helps to
rewrite the spectral function as

O(q, ω) = lim
η→0

1

L

∑

i,j

eiq(i−j)×

×− 1

π
Im

[
〈ψ|Ôi

1

ω − Ĥ + Eg + iη
Ôj |ψ〉

]
, (3)

where one writes down the Hamiltonian propagator ex-
plicitly, and η > 0 is an arbitrary small extrinsic spectral
broadening. Three are the approaches that are typically
used by DMRG practitioners. Historically, the hybrid
DMRG-Lanczos-vector methods were first introduced13
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(refined using MPS more recently14,15), then afterwards
the correction-vector (CV) method16–21 and Chebyshev
polynomial methods22–25 were proposed. In the CV
method, one computes the real and imaginary part of
the correction-vector

|xj(ω + iη)〉 =
1

ω − Ĥ + Eg + iη
Ôj |ψ〉 (4)

at fixed frequency ω, finite broadening η, and then com-
putes the spectral function in real-frequency space as a
stardard overlap 〈ψ|Ôi|xj(ω + iη)〉. The real and imagi-
nary part of the correction-vector are typically obtained
by solving for coupled matrix equations using conjugate-
gradient methods16, or by minimizing a properly defined
functional18,19. Ref.20 formulated the algorithm in MPS
language.

In 2016, we proposed21 an alternative method to com-
pute directly the correction-vectors using a Krylov space
expansion of the Hamiltonian operator constructed start-
ing from the locally modified MPS |φ〉 = Ôj |ψ〉. In all
these cases, the entanglement content of the correction-
vectors is large, and it can be very large for large frequen-
cies. This makes standard CV DMRG simulations very
expensive for Hamiltonians beyond spin systems or for
large lattices.

In 2011, Holzner et al.22 proposed a MPS method to
compute a Chebyshev polynomial expansion (truncated
at some order N) of the spectral function (CheMPS). In
this approach, the Chebyshev momenta can be obtained
from overlaps of a properly defined series of Chebyshev
vectors. The main advantage of CheMPS lies in the small
entanglement that each Chebyshev vector has, because
the method redistributes the large entanglement of the
correction-vectors |xj(ω + iη)〉 for different frequencies
(or alternatively the time-evolved state |xj(t)〉) over the
entire series of Chebyshev vectors.

Inspired by this idea, we here propose a method to
compute a generalized correction-vector with smaller en-
tanglement content, the root-N correction vector, defined
as

|x1/N
j (ω + iη)〉 =

(
1

ω − Ĥ + Eg + iη

)1/N

Ôj |ψ〉. (5)

The idea is to construct the actual correction-vector as
the final vector of the series {|xp/Nj (ω + iη)〉}p∈[1,N ] after
N applications of the root-N propagator. At first sight,
it seems that, if N is sufficiently large, constructing the
entire series of vectors just adds a computational overhead
compared to the standard DMRG CV algorithm, because
only the final vector of the series is actually needed for
the spectral function calculation. Yet we will show that
the entanglement content of the series slowly builds up
with p, and therefore, going through many intermediate
steps is more efficient than the conventional DMRG CV
algorithm, which tries to compute the last element of the
series in one step only.

The paper is organized as follows. Section II.A in-
troduces the main steps of the algorithm; section II.B
analyzes the algorithm’s computational performance, and
the entanglement content of the root-N correction-vectors
in the test case of a Heisenberg model in the two-leg lad-
der geometry. Section II.C applies our root-N method to
compute spin and charge spectral functions of doped t-J
and Hubbard models in the challenging two-leg ladder
geometry, showing how our method improves the spec-
tral resolution and increases the signal-to-noise ratio at
large frequencies. Finally, we present our conclusions and
outlook.

II. METHOD AND RESULTS

A. root-N CV method algorithm

The algorithm follows five steps. We assume a stan-
dard DMRG approach but provide the main step of the
algorithm in MPS language in Appendix A.

1. Compute the ground state wave function with the
DMRG.

For each frequency ω, repeat the steps 2–4 to cover the
desired interval [ωmin, ωmax] with some step ∆ω > 0:

2. Apply the operator Oj at the center of the chain
and build the p = 1 root-N correction vector

|xp/Nj (ω+ iη)〉 as in Eq. (5). This can be done using

conventional DMRG as described in Ref.21. Ap-
pendix A describes in detail the algorithm in MPS
language. In this stage, as in the conventional CV
method, the sources of error are two: the Lanczos
error in the tridiagonal decomposition of the Hamil-
tonian (or effective Hamiltonian in MPS language)
indicated below by εTridiag; the SVD error of the
multi-targeting DMRG procedure (state-averaging
in MPS language).

Repeat step 3 until the Nth root-N correction vector is
constructed and optimized, then go to step 4.

3. Build the p+1 root-N correction vector

|x(p+1)/N
j (ω + iη)〉 from the previous one as-

suming it as a starting point for the Krylov space
decomposition of the Hamiltonian. A few DMRG
sweeps are performed until a desired convergence is
reached.

4. Measure the spectral function in real-frequency
space as the overlap 〈ψ|Ôi|xj(ω + iη)〉; this part
is the same as in conventional DMRG CV.

5. Fourier Transform the overlap 〈ψ|Ôi|xj(ω + iη)〉 to
get the dynamical structure factor in momentum
space, O(q, ω) = 1

L

∑
i,j e

iq(i−j)〈ψ|Ôi|xj(ω + iη)〉.
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FIG. 1: Convergence analysis of the root-N Krylov space Correction-Vector (CV) DMRG method: the Heisen-
berg ladder. Panels (a)-(b) report the qy = 0, π components of the S(qx, qy, ω) using the standard Krylov space CV approach.
A ladder with Jy = 2Jx is simulated. Length is L = 50× 2, broadening η = 0.1, and resolution step δω = 0.1 (units are set by
Jx = 1). Panels (c)-(d) report the qy = 0, π components of the S(qx, qy, ω) using the root-N Krylov space CV method using
N = 20. Panels (e)-(f) show specific momentum-energy line cuts of the dynamical spin structure computed in panels (a)-(d)
for different values of the root-exponent N . Numerical fluctuations and instabilities are removed, and quality of the spectra
is clearly improved as N is increased. Panels (g)-(h) show the same line cuts as in Panels (e)-(f) but with at fixed N , and
increasing the number of DMRG states. When using the root-N CV method with N = 4, a substantially smaller number of
states m = 200− 650 < 1000 suffices to get better quality results than with the standard Krylov space DMRG CV approach.

To clarify the main steps of the algorithm, we draw an
analogy with the adaptive time-step targeting approach
introduced for time-dependent DMRG in the seminal
paper by Feiguin and White26. In this case, one constructs
the time-evolved vector |xj(δt)〉 = U(δt)Ôj |ψ〉 only for
small time step intervals of length δt = t/N , and where

U(δt) = e−iĤδt is the time evolution propagator. To get
the final time-evolved vector at time t, one repeatedly
applies U(δt) to the MPS. In practice one does not build
the evolution operator U(δt) in the local basis but rather

directly construct the vector |xj(δt)〉 = U(δt)Ôj |ψ〉 using
a Krylov space decomposition of the Hamiltonian (or
effective Hamiltonian in MPS language).

In our proposed root-N Krylov space approach, we
introduce a propagator in a fictitious time space s as
|xj(δs)〉 = W (δs)Ôj |ψ〉, where δs = 1/N , and where

W (δs) = e−K̂δs, with K̂ = ln [ω + Eg + iη − Ĥ]. Clearly,

if we apply W (δs) N times to the initial vector Ôj |ψ〉
we obtain the desired standard correction vector. In
other words, we formally define and solve an auxiliary
differential equation

d

ds
|xsj(ω+iη)〉 = − ln [ω + Eg + iη − Ĥ]|xsj(ω+iη)〉, (6)

such that at time s we have the solution

|xsj(ω + iη)〉 =

(
1

ω − Ĥ + Eg + iη

)s
|x0
j (ω + iη)〉, (7)

with the initial condition being |x0
j (ω + iη)〉 = Ôj |ψ〉.

In this construction, 1/N plays the role of a small pa-
rameter to compute the resolvent in the standard CV
approach. We will show that this method is especially
useful at large target frequencies, where large bond di-
mensions (or DMRG states) are typically needed.

B. Convergence analysis and Computational
performance: the Heisenberg model on a two-leg

ladder as a case study

We begin by testing our root-N CV method by ap-
plying it to an isotropic Heisenberg model on a two-leg
ladder geometry. (The supplemental material27 provides
computational details for all the models considered in this
work.) The Heisenberg Hamiltonian on a two leg ladder
with open boundary conditions and size L = Lx × 2 is
defined as

HHeis = Jx

Lx−1∑

i=1;γ=1,2

Si,γ · Si+1,γ + Jy

Lx∑

i=1

Si,1 · Si,2, (8)

where Si,γ ≡ {Sxi,γ , Syi,γ , Szi,γ} describe the spin 1/2 oper-
ators on site i and ladder leg γ. In this work, antiferro-
magnetic exchange interactions along both the leg and
rung directions are assumed, with Jy = 2Jx. The spin
structure factor S(q, ω) with q ≡ (qx, qy) can be defined
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FIG. 2: Entanglement Entropy of the root-N Krylov correction vectors and computational performance of the
method. Panel (a): Entanglement Entropy computed with conventional CV (dark green) compared to the same quantity
computed with the root-N CV; N = 20 and different p values (indicated by orange lines, and thickness increasing with p), as a
function of ω. We have used a Heisenberg two-leg ladder with Jy = 2Jx, length L = 50× 2, as in Fig. 1. (b) Accumulated CPU
time in hours (obtained summing all the CPU times of the CV simulations in the frequency interval ω ∈ [2.5, 6]) for different
values of the DMRG truncation error εTrunc and (c) for different values of the Krylov space threshold accuracy parameter
εTridiag. as a function of the root-exponent N . The simulations were run on a single Intel Xeon CPU E5-1620 CPU node. When
compared with the standard Krylov space Correction-Vector method, the performance of the root-N approach is superior for
sufficiently large N .

as

S(q, ω) =
1

2Lx

Lx∑

j=1;γ

ei[qx(j−i)+qy(γ−γ′)]×

〈ψ|Sj,γ
1

ω −H + iη
Si,γ′ |ψ〉, (9)

where the center point is chosen in the middle of the leg
1, (i, γ′) = (Lx/2, 1).

Figure 1a-b reports spectral maps of the two compo-
nents qy = 0, π of the dynamical spin structure factor
S(q, ω) as a function of the momentum transfer qx along
the leg direction, and of the frequency. These are obtained
with conventional CV as in Ref.21,28 on a system size of
length L = 50×2 and with an extrinsic broadening param-
eter η = 0.1Jx. By comparison, Fig. 1c-d reports results
obtained using the root-N CV method with N = 8. In
both cases, we have used a maximum m = mmax = 1000
DMRG states and a minimum mmin = 200, keeping the
truncation error below 10−7. Our DMRG calculations
were carried out with the DMRG++ code29. (Please see
the description around Eq. (A4) in Appendix A for the
definition of the extended MPS which is optimized by
SVD in the root-N CV algorithm.) We clearly notice an
overall improved spectrum in this case with respect to the
conventional CV method. We analyze below the spectral
features in more detail.

Figure 1e-f shows momentum qx = 0.52π line cuts of
the spin spectra for the qy = 0, π components in the root-
N CV method. The data shows that by increasing the
root-exponent N numerical fluctuations and instabilities
are removed with respect to the conventional CV results.
The red curve in Fig. 1e-f shows that the conventional CV
approach can yield negative values for certain frequencies.
As finite size effects are small for a L = 50 × 2 ladder,

these are clearly artifacts of the CV method which might
spoil important properties of the spectral functions such
as sum rules. On the contrary, the root-N CV approach
shows always positive values which progressively improve
upon increasing the root-exponent N . Figure 1g-h shows
how well the root-N method converges with respect to
the number of DMRG states. Contrary to panels (a)-
(d), in these panels the data for m < 1000 was obtained
by imposing zero truncation error in the DMRG SVDs,
therefore setting m = mmax = mmin. Our data shows
that at fixed root-exponent N = 4, a substantially smaller
number of DMRG statesm = 200−650 < 1000 is sufficient
to get better quality results than with the conventional
CV approach. As we will show next, this improvement can
be understood by the much lower entanglement content
of the root-N correction-vectors.

Figure 2a shows indeed that the entanglement content
of the root-N correction vectors is smaller than the actual
(conventional) correction-vector. In this calculation, to
compute the entanglement entropy of the expanded MPS
for root-N correction vectors (Appendix Eq. (A4) has
the definition), we have used a maximum m = 2000
DMRG states (and a minimum mmin = 200), keeping
the truncation error below 10−8 in both methods. It is
nice to see that the entanglement entropy of the extended
MPS in the root-N CV method is very close to that of the
conventional CV in the lower frequency range investigated
ω ∈ [0, ω∗], with ω∗ ' 4.5. For larger frequencies, the root-
N CV approach truncates the entanglement contained in
the conventional CV vector, showing that a larger root-
exponent N or a larger number of DMRG states should be
considered. Yet we highlight that this truncation does not
show instablibilities or fluctuations as in the conventional
CV approach.

In the same range of frequencies (ω ∈ [2.5, 6]), we have
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monitored the accumulated CPU times taken for the sim-
ulations to complete in the two methods (Fig. 2b). We
observe that, for moderately small root-exponent N , the
root-N CV method can be actually slower than the conven-
tional CV method, assuming the same truncation error
εTrunc and truncation threshold εTridiag for the Hamil-
tonian matrix decomposition in the Krylov space (see
Appendix B for a more detailed definition of εTridiag). If
the root-exponent N is sufficiently large, the root-N CV
method is seen to be computationally more efficient than
the conventional CV method. Indeed, when the entangle-
ment is decomposed in smaller chunks by considering a
larger N , the root-N method becomes faster even though
many more optimizations and Lanczos decompositions
are actually performed. Eventually, however, if the root-
exponent N is very big, the increased number of DMRG
sweeps and iterations required to compute the larger num-
ber of root-N vectors becomes naturally detrimental for
computational performance, as the accumulated CPU
times are seen to increase linearly with N .

Figure 2b further shows that, at fixed the root-exponent
N , as one decreases the requested DMRG truncation error
εTrunc the accumulated CPU times are bigger. This is
because of the larger computational load of the SVD
decomposition of the MPS tensors in the multitargeting
or state averaging approach.

Figure 2c ends this subsection by showing further how
the accumulated CPU times vary as a function of the
truncation thresold εTridiag for the Hamiltonian matrix
decomposition in the Krylov space, at fixed DMRG trun-
cation error εTrunc. A smaller threshold requires a larger
number of steps and thus a bigger Krylov space, requir-
ing a larger CPU time to converge and complete the
simulations.

C. Correlation functions of t-J and Hubbard
models

In this section, we apply the root-N CV method to the
more challenging t-J and Hubbard models on a two leg
ladder geometry.

The t-J Hamiltonian is defined as

Ht−J = −tx
Lx−1∑

i=1;γ=1,2;σ

(
c†i,γ,σci+1,γ,σ + h.c.

)

− ty
Lx∑

i=1;σ

(
c†i,1,σci,2,σ + h.c.

)

+ Jx

Lx−1∑

i=1;γ=1,2

(
Si,γ · Si+1,γ −

ni,γni+1,γ

4

)

+ Jy

Lx∑

i=1

(
Si,1 · Si,2 −

ni,1ni,2
4

)
, (10)

where c†i,γ,σ (ci,γ,σ) is the electron creation (annihilation)
operator on site i, ladder leg γ with spin polarization

σ, while ni,γ =
∑
σ c
†
i,γ,σci,γ,σ is the electron number

operator. The Hubbard Hamiltonian is

HHub = −tx
Lx−1∑

i=1;γ=1,2;σ

(
c†i,γ,σci+1,γ,σ + h.c.

)

− ty
Lx∑

i=1;σ

(
c†i,1,σci,2,σ + h.c.

)
+ U

Lx∑

i=1;γ=1,2

ni,γ,↑ni,γ,↓.

(11)

For both models defined above, the spin structure fac-
tor S(q, ω) is defined as in the Heisenberg model case
(Eq. (9)). Analogously, the charge structure factor is

N(q, ω) =
1

2Lx

Lx∑

j=1;γ

ei[qx(j−i)+qy(γ−γ′)]×

〈ψ|δnj,γ
1

ω −H + iη
δni,γ′ |ψ〉, (12)

where δnj,γ ≡ nj,γ − 〈ψ|nj,γ |ψ〉, where |ψ〉 is the ground
state of the system.

We start discussing the t-J model results, comparing
the root-N method against the results obtained to the
conventional CV approach. We calculate both spin and
charge dynamical structure factors for a doped ladder
with Nel = 0.88L, corresponding to 12% hole doping,
and with lattice size L = 50 × 2. In this case, we use a
maximum m = 1200 DMRG states for both methods (and
a minimum mmin = 200), in order to keep the truncation
error below 10−8.

Figure 3a-d shows the comparison for the dynamical
spin structure factor S(q, ω). We note that for N = 8
the root-N CV method yields results that are practically
identical to those obtained with the CV method. Yet
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dynamical spin structure factor S(qx, qy, ω) using, in (a)-(b) the conventional Krylov space DMRG CV approach, against in
(c)-(d) the root-N Krylov space CV method with N = 4 (a maximum of m = 3000 DMRG states were used.) The qy = 0 and
qy = π components of the dynamical charge correlation N(qx, qy, ω), using, in (e)-(f) the conventional Krylov space DMRG CV,
against in (g)-(h) the root-N Krylov space CV with N = 4 (a maximum of m = 2000 DMRG states were used.). A ladder
L = 50× 2 ladder with ty = tx = t = 1, U = 8t is simulated with Nel = 0.88L electrons, broadening η = 0.1, and resolution step
δω = 0.025 for S(qx, qy, ω), and δω = 0.1 for N(qx, qy, ω). Units are set by t = 1.
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the root-N method provides a much better frequency
resolution or larger signal-to-noise ratio for the more
challenging dynamical charge structure factor N(q, ω),
where we also obtain quantitative agreement.

In summary, the dynamical spin structure factor S(q, ω)
is practically identical in the two methods, while when
considering the dynamical charge structure factor N(q, ω)
besides obtaining qualitative agreement, the root-N pro-
vides a much better frequency resolution (or a larger
signal-to-noise ratio, as we recall here that in both meth-
ods the same broadening η was used).

We now focus on the Hubbard model where minor
differences in the results between the two methods can
be observed when a moderately small root-exponent N is
used in the root-N CV method.

As in the t-J case, we consider spin as well as charge
dynamical structure factors for a doped ladder (Nel =
0.88L, 12% hole doping) with system size L = 50 × 2.
We consider an isotropic ladder with parameters tx =
ty = t = 1 and U = 8t. Spin and charge structure
factors for Hubbard ladders were already studied and
discussed by us in Refs.30–34, where the conventional
Krylov space CV method was used. Figure 4 uses a
maximum m = 3000 DMRG states in both methods for
S(q, ω) while a maximum of m = 2000 was used for
N(q, ω). In both cases, the minimum number of DMRG
states was mmin = 200, and the truncation error was kept
smaller than 10−7.

Figure 4a-d shows the comparison for the dynamical
spin structure factor S(q, ω). For N = 4 the root-N
CV method gives results practically identical to the CV
method, and only minor quantitative differences can be
observed. For example, in the root-N method, the broad
two-triplon excitation band in the spin structure factor
S(qx, qy = 0, ω) appears to be sharper than in the con-
ventional CV method. In the qy = π compoment, in-
stead, the main spectral features at the incommensurate
wave-vector qx ' 0.88π appear slightly broader in the
conventional CV method as a function of frequency, at
low frequencies. From this analysis, we conclude that
even a moderately small root-exponent N is sufficient to
get a better converged spin spectral function using the
root-N CV method.

These observations are relevant when comparing
DMRG spectral data with RIXS35 and INS36 experiments
in the challenging “telephone number” cuprates, exper-
imental data that recently has became available for the
doped regime34.

Finally, we discuss the dynamical charge structure fac-
tor, which is of interest in RIXS measurements of the
charge-transfer band excitations in ladder cuprates. When
a Hubbard ladder is doped with holes with respect to
half-filling, we observe two branches in the N(q, ω): the
first one at low-energy corresponds to in-band particle-
hole excitations across the Fermi level. The high-energy
band describes charge-transfer electronic exitations above
the Mott gap. Figure 4e-h shows that the root-N CV
method provides high quality spectral data with no appre-

ciable shifts (downwards or upwards) of the main features.
(Please remember that we are using the same η for both
methods.) Yet some spectral weight redistribution can
be noted: spectral intensity on the high-energy charge-
transfer band appears more intense in the root-N CV
method compared to the conventional CV method. We
conclude that in this case, even though very good results
can be obtained with a modest root-exponent N , one
should prefer simulations with the largest possible N in
order to get the best results from our root-N method.

III. DISCUSSIONS AND CONCLUSIONS

In this work, we have proposed a method to compute
generic spectral functions of strongly correlated Halmil-
tonians using generalized correction-vectors with smaller
entanglement content: the root-N CV method. The idea
behind the root-N CV draws inspiration in part from time
dependent MPS methods, and in part from the Chebyshev
MPS approach. The CheMPS method helps in comput-
ing spectral functions but, as was highlighted recently25,
while resolving accurately the low-energy part of the spec-
tral functions, CheMPS cannot resolve the high-energy
spectrum accurately because an energy-truncation of the
Chebyshev vectors is in general required. To avoid this
issue, Xie et al.25 have proposed a reorthogonalization
scheme for the Chebyshev vectors (ReCheMPS). Never-
theless, if the target frequency window for the spectral
function is chosen to be much smaller than the many body
width of the system (this should be in general done to
increase the frequency resolution), an energy truncation
might still be required. There is evidence that the energy-
truncation procedure severely limits the applicability of
the CheMPS or ReCheMPS methods in challenging cases
as in Hubbard or t-J models, as in these cases it likely be-
comes a necessary step of the algorithm, mainly because
the many-body bandwidth is in general much larger than
the spectral support of typical spectral functions. When
the energy truncation is performed, several Krylov space
projections as Chebyshev recurrence steps are required,
rendering the method as computationally demanding as
the conventional CV method.

Going back to the root-N CV, this publication has
showed that when the root-exponent N is sufficiently
large, the root-N CV performance becomes better than
that of the conventional CV, because the former method
handles much less entangled correction-vectors. In par-
ticular, we have shown evidence that in the Heisenberg
and t-J models the root-N CV method improves even the
quality of the spectral functions, and provides a better
frequency spectral resolution (or a larger signal-to-noise
ratio). Larger N values in the root-N CV method require
more sweeping of the lattice, but do not affect much CPU
times, because each sweep is faster than using smaller N
values.

Finally, the challenging Hubbard model requires a care-
ful use of our root-N CV method: while moderately small
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root-exponents N give very good results for the main
spectral features, our data shows only minor differences
with respect to the conventional CV method, which how-
ever should be taken into account when high-precision
experimental results are available.

We believe that root-N correction-vector DMRG will
become a much used method, not only when high precision
spectral data is sought, but also when high performance
is required, performance better than the computationally
expensive conventional CV method.

The root-N method should also facilitate high precision
spectral function calculations in finite width cylinders,
where better computational methods are currently needed.
These cylinders try to approach the two-dimensional mod-
els that are at the frontier of what DMRG can do, and
they need a very large computational effort to simulate.
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Appendix A: MPS algorithm to build the root-N
correction-vector

Let us introduce a Matrix Product State represent-
ing the ground state of the system for L sites and open
boundary conditions (we use a notation similar to Ref.11)

|ψ〉 =
∑

σ1...σL
m0...mL

Mσ1
1;m0,m1

...MσL

L;mL−1,mL
|σ1...σL〉, (A1)

where mj are the bond dimensions or virtual indices
(with m0 and mL 1-dimensional dummy indices), and σj
represent the physical indices of the many-body state
of the system. Formally, let us define the tensors

ψ̄L,j−1 ≡ (M†1 , ...,M
†
j−1) and ψ̄R,j+1 ≡ (M†j+1, ...,M

†
L)

which constitute a left and right map, respectively, from
the joint Hilbert space on sites 1 through j − 1 onto the
bond space mj−1, and from the joint Hilbert space on
sites j + 1 through L onto the bond space mj . If we
apply these maps to the MPS |ψ〉, we can obtain the
effective state at site j, |ψeff

j 〉; see Fig. 5a. When |ψ〉 is

in a MPS mixed-canonical form, |ψeff
j 〉 equals the 3-rank

tensor Mj,mj−1mj
in the MPS at site j, which is often

interpreted as a vector of dimensions (dj ×mj−1 ×mj),
where dj is the local physical Hilbert space dimension.

Similarly, the Hamiltonian Ĥ, in matrix product operator
(MPO) form, acts between the maps defined above (and
their conjugates, ψL,j−1 ψR,j+1; see Fig. 5b) to yield an

effective single site Hamiltonian Ĥeff
j . This procedure can

also be defined in the space of two-sites. A computer
program never needs to explicitly construct Ĥeff

j , but only

evaluates its action on |ψeff
j 〉.

Using |ψeff
j 〉 and Ĥeff

j , we construct three local MPS
tensors. The first one is obtained by applying the operator
Ôj on |ψeff

j 〉, yielding |φ〉 = Ôj |ψ〉. The MPS |φ〉 has all
the tensors equal to those of |ψ〉 except for the one at site
j, M ′j;mj−1,mj

M
′ σj

j;mj−1,mj
=
∑

σ′j

O
σjσ
′
j

j M
σ′j
j;mj−1,mj

(A2)

We then construct the (real and imaginary part of the)
root-N correction-vector by Krylov space decomposition
of the Hamiltonian Ĥeff

j

[X(ω + iη)]
σj

j;mj−1,mj
=

∑

l,l′nn′

σ′j ,m
′
j−1,m

′
j

T †l;σj ,mj−1,mj
P †ln

1

[ω − εeff
j δnn′ + Eg + iη]1/N

Pn′l′Tl′;σ′j ,m′j−1,m
′
j
M
′ σ′j
j;m′j−1,m

′
j

(A3)
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· · · · · ·
· · · · · ·

ψ̄L,j−1 ψ̄R,j+1

|ψ〉
|ψeff
j 〉

(a)

· · · · · ·

· · · · · ·
· · · · · ·

ψ̄L,j−1 ψ̄R,j+1

ψL,j−1 ψ̄R,j+1

Ĥ Ĥeff
j

(b)

Ĥeff
j

T̂

T̂†

P̂

P̂†

Ĥdiag,eff

j

T̂Krylov =

T11 · · ·T1l

...
. . .

...

...
. . .

...

...
. . .

...

Tα1 · · ·Tαl







(c)

FIG. 5: Effective local state vector and Hamiltonian.
Panel (a): Effective state |ψeff

j 〉 obtained by projecting the

MPS by the maps ψ̄L,j−1 ≡ (M†1 , ...,M
†
j−1) and ψ̄R,j+1 ≡

(M†j+1, ...,M
†
L). If |ψ〉 is a mixed-canonical MPS represen-

tation, then simply |ψeff
j 〉 = Mj . Panel (b): Effective (one-

site) Hamiltonian obtained by projecting Ĥ using the maps
{ψ̄L,j−1, ψL,j−1, ψ̄R,j+1, ψR,j+1} defined above. Analogous
definitions can be given in the two-site case. Panel (c): (left)
Graphical representation of the diagonal effective Hamiltonian
projected onto the Kryrol space. Representation of the Krylov
projection operator (triangular yellow tensor) Tlα where
α = {σj ,mj−1,mj} joins three indices so that it can be repre-

sented as a matrix (right). T̂ tridiagonalizes Ĥeff
j of panel (b),

ĤTridiag,eff
j = T †Ĥeff

j T , to the smaller Krylov space spanned
by the index l, dim[l] << dim[α] = dj ×dim[mj−1]×dim[mj ].

Pln (green tensor) diagonalizes ĤTridiag,eff
j .

where Tl′;σj ,mj−1,mj
tridiagonalizes Ĥeff

j , ĤTridiag,eff
j =

T †Ĥeff
j T , to the smaller Krylov space spanned by the

index l, dim[l] << dj × dim[mj−1]× dim[mj ]. Pln diago-

nalizes ĤTridiag,eff
j , Ĥdiag,eff

j = P †ĤTridiag,eff
j P , where εeff

j

are the eigenvalues of Ĥdiag,eff
j . How is the Krylov space

tridiagonalization of Ĥeff
j stopped? In practice, we com-

pare the lowest eigenvalue of Ĥdiag,eff
j , εmin = {εeff

j [k]}min

at iteration k and k+ 1, and exit the loop when the error
breaks below a certain threshold. In this work, we have
set εTridiag to a value not too small, in order to avoid the

proliferation of Krylov vectors (and thus Lanczos iter-
ations), and their reorthogonalizations. In general, the
three states |φ〉, |XRe〉, |XIm〉 will be represented in a
bad basis of the environments ψL and ψR which are opti-
mized to represent the original state |ψ〉. To expand these
bases, we use state-averaging of the four states, which is
equivalent to targeting more than one state in conven-
tional DMRG language. In MPS language, as explained
in Ref.37, the state- averaging is done by creating an ex-
tra index which labels the states involved. One formally
considers an expanded MPS representing a mixed state
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|ψ〉
|φ〉
|XRe〉
|XIm〉


 =

∑

σ1...σL

A′,σ̄1

1 ...C
′,σ̄j

j ...B′,σ̄L

L |σ1...σL〉

=
∑

σ1...σL




Aσ1
1 [ψ] 0 0 0
0 Aσ1

1 [φ] 0 0
0 0 Aσ1

1 [XRe] 0
0 0 0 Aσ1

1 [XIm]


 ...




C
σj

j [ψ]

C
σj

j [φ]

C
σj

j [XRe]

C
σj

j [XIm]


 ...




BσL

L [ψ] 0 0 0
0 BσL

L [φ] 0 0
0 0 BσL

L [XRe] 0
0 0 0 BσL

L [XIm]


 |σ1...σL〉,

where C
′,σ̄j

j;m′j−1,m
′
j

has four components (representing

the four targeted vectors) and it has extended bond

dimensions m′j−1 = m
[ψ]
j−1 + m

[φ]
j−1 + m

[XRe]
j−1 + m

[XIm]
j−1 ,

m′j = m
[ψ]
j +m

[φ]
j +m

[XRe]
j +m

[XIm]
j . Here, the notation

in terms of A and B tensors underlines a mixed-canonical
representation of all the MPSs. By SVD compression, one
has

C
′,σj

j = U
′,σj

j S′jV
′,†
j . (A4)

As in conventional DMRG, one can also introduce dif-
ferent weights in the direct sum and perform a SVD
of the weighted sum of the reduced density matrix
ρ′ =

∑3
k=0 wkρk Once this procedure is performed at

site j, one can proceed updating all the tensors at site
j + 1. In formulas,

C ′j+1 =




C
σj+1

j+1 [ψ]

C
σj+1

j+1 [φ]

C
σj+1

j+1 [XRe]

C
σj+1

j+1 [XIm]


 =




U
[′,†,σj ]
j C

σj

j [ψ]B
σj+1

j+1 [ψ]

U
[′,†,σj ]
j C

σj

j [φ]B
σj+1

j+1 [φ]

U
[′,†,σj ]
j C

σj

j [XRe]B
σj+1

j+1 [XRe]

U
[′,†,σj ]
j C

σj

j [XIm]B
σj+1

j+1 [XIm]



,

(A5)

where the U
[′,†,σj ]
j from Eq. A4 is common to all the

four vectors. After sweeping back and forth through the
lattice, a good representation of the correction-vectors is
obtained.
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