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Nonlinearity-induced Chiral Solitonlike Edge States in Chern Systems

Motohiko Ezawa
Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan

We study the nonlinear effect on the topological edge states by including a nonlinear term to a Chern insulator
which has two chiral edge states with opposite chiralities. We explore a quench dynamics by giving a pulse to
one site on an edge and by analyzing its time evolution. Without the nonlinearity, an initial pulse spreads
symmetrically and diffuses. On the other hand, with the nonlinearity present, unexpectedly a solitonlike edge
state is formed, undergoes a unidirectional propagation along the edge, and turns at a corner without back-
scattering or diffraction. Furthermore, its wave function is well fitted by ∝ sech[kx(x − vxt)]. A further
increase of the nonlinearity induces a self-trapping transition, where the pulse is trapped to the initial site.

I. INTRODUCTION

Both topology and nonlinearity continue to be the main top-
ics in history of physics, which have been mainly studied in-
dependently. An interplay between topology and nonlinear-
ity creates a frontier of physics. Indeed, nonlinear topolog-
ical physics is an emerging field, which is now studied in
photonic[1–10], mechanical[11–14], electric circuit[15–17]
and resonator[18] systems. The simplest model is the non-
linear Su-Schrieffer-Heeger model[2, 6, 15, 19, 20].

A characteristic feature of topological systems is the emer-
gence of topological edge states, which are immune to dis-
orders and randomness in a sample. A nonzero topological
number indicates a nontrivial topological structure of the hop-
ping matrix.

A prominent feature of a continuous nonlinear system is a
soliton, which is an exact solution describing a wave packet
stabilized by the nonlinear interaction. However, a lattice
system cannot support solitons due to the Peierls-Nabarro
potential[21–24] caused by the discreteness of the system.
Solitonlike edge states propagating along a topological edge
of a sample are fascinating objects in lattice systems[1, 25–
27]. An interplay or a competition between topology and non-
linearity is a main issue of nonlinear topological systems.

In this paper, we propose a nonlinearity-induced chiral soli-
tonlike edge state propagating along an edge, by analyzing
a Chern insulator together with a nonlinear term based on
quench dynamics. Quench dynamics provides us with a pow-
erful method to reveal the essence of nonlinear topological
systems[8], where a pulse is given to one site on an edge as
the initial condition. The time evolution reveals both an inter-
play and a competition between topology and nonlinearity in
the present system.

First, without the nonlinear term, the initial pulse spreads
symmetrically around the initial site even in the topological
phase. This is because two chiral edge modes with opposite
chiralities are present and because the pulse excites bulk sites
symmetrically as well. Second, with the nonlinear term, the
wave packet moves unidirectionally, because one of the two
chiral edge modes is dominantly excited. Finally, when the
nonlinearity is strong enough, a self-trapping transition is in-
duced, where the edge modes are trapped to the initial site
and make no motion. However, a much more intriguing phe-
nomenon occurs in the presence of appropriate nonlinearity
before the self-trapping transition occurs. Indeed, unexpect-
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FIG. 1. (a) Band structure of the matrix Mnm in nanoribbon ge-
ometry. Curves in red (cyan) indicate the localized down (up) edge
states, while those in green indicate the bulk states. The edge state
colored in red and pointed by an arrow is right (left) going along
the down edge when it has positive (negative) eigenvalue. The band
Chern number Cn for the n-th band is indicated in green, while the
gap Chern number Cgap

r for the r-th gap is indicated in red. The hor-
izontal axis is the momentum k ranging from −π to π. The vertical
axis is the eigenvalue. The LDOS |ψn|2 is shown at (b) k = 0.25π
and (c) k = 0.75π. It is localized at the down edge at n = 1 and
up edge at n = 20. The horizontal axis is the lattice site n. The
nanoribbon width is L = 20.

edly, a solitary wave is formed and propagates unidirection-
ally along the edge. The propagation direction is determined
by the direction of the gauge flux implicit in the Chern insu-
lator. We call it a nonlinearity-induced chiral solitonlike edge
state. The solitonlike state turns at a corner without back-
scattering or diffraction.

II. MODEL

We investigate a nonlinear Schrödinger equation on a
lattice[28–34],

i
dψn
dt

+ κ
∑
m

Mnmψm + ξ |ψn|2 ψn = 0. (1)

This is the Hamilton equation, idψn/dt = ∂H/∂ψ∗n, with the
Hamiltonian,

H = −κ
∑
n,m

Mnmψ
∗
nψm −

∑
n

ξ

2
|ψn|4 ≡ K + U. (2)

The first term is the kinetic energy K, while the second term
is the potential energy U . The Hamiltonian is a conserved
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FIG. 2. Eigenspectrum of the matrix Mnm in square geometry in
(a1) the linear model (ξ = 0) and (a2) the nonlinear model (ξ = 4κ).
The mean-field approximation is used for the nonlinear case, and the
matrix Mnm is evaluated at the initial time with the initial condition
(11). The red parts of a curve indicate the edge states, while the green
parts indicate the bulk states. The horizontal axis is the eigen index β
of the state ψ̄(β)

n , while the vertical axis is the eigenvalue. (b1), (b2)
and (b3) The component |cβ |2 corresponding to the eigenenergy in
(a1) and (a2), where (b2) is an enlarged figure of (b3). The red points
in (a2) and (b3) represent the isolated eigenmode emerging only in
the nonlinear model whose origin is the initial condition imposed in
the quench dynamics. Eigen index β is sorted in the increasing order
of Eβ . (c1) and (c2) The LDOS |ψn|2 designated by the strength of
red. It is localized along the edges, representing the topological edge
modes. In the presence of the nonlinearity, the topological edge state
detours the initial point (nx, ny) = (10, 1) as in (c2). We have used
a square with size 20× 20.

quantity. There is one more conserved quantity,

Nexc =

N∑
n=1

|ψn|2 , (3)

which is the excitation number.

III. CHERN INSULATOR

We first study the kinetic term, which involves the hopping
matrix Mnm and the coupling strength κ. We consider the
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FIG. 3. Time evolution of the LDOS |ψn|2 (b) in the linear model
(ξ = 0), (a), (c) representing a solitary wave in the nonlinear model
(ξ = ±4κ), and (d) representing a trapped wave in a strong nonlinear
model (ξ = ±10κ). We have used a square sample with size 20×20.
The horizontal axes are the lattice site n (1 ≤ n ≤ 20) and time
t (0 ≤ t ≤ 0.5) in unit of 1/κ. (e) A solitonlike edge state in
a rectangular sample with size 500 × 10, whose data are extracted
from Figs.6(b5)∼(b8). The solid curve represents the solitary wave
function in Eq.(18). Fitting parameters are A = 0.0455, kx = 0.55
and vx = 0.16. We have used the initial condition (11) for all.

hopping matrix in the form of

Mnm = eiαny |nx + 1, ny〉 〈nx, ny|
+ e−iαny |nx, ny〉 〈nx + 1, ny| ,
+ |nx, ny + 1〉 〈nx, ny|+ |nx, ny〉 〈nx, ny + 1| , (4)

where n = (nx, ny). The system is topological because the
hopping matrix (4) describes the Chern insulator for α 6= 0, π,
or the quantum Hall effect with α representing the penetrated
gauge flux into a plaquette of the square lattice. This model
is also realized in photonic systems by making coupled res-
onator optical waveguides[33, 35–37], where ψ represents the
electric field and α represents a gauge flux in the Landau
gauge.

We take α = ±π/2 explicitly in what follows. When α =
π/2, we have a four-band model given by

M (kx, ky) =


2 cos kx 1 0 e−iky

1 −2 sin kx 1 0
0 1 −2 cos kx 1
eiky 0 1 2 sin kx


(5)

in the momentum space. When α = −π/2, we have Eq.(5)
with the replacement of kx by −kx. It means that the sign of
α determines the hopping direction.

As a characteristic feature of a Chern insulator, chiral edge
states emerge in nanoribbon geometry. The band structure of
the matrix κM is shown in Fig.1(a), where we clearly ob-
serve four topological edge states designated by two sets of
crossed red and cyan curves. They are two chiral edge modes
with positive energy connecting two separate bulk bands at
k = 0.25π and negative energy at k = −0.75π, where the
direction of the chirality is opposite. In addition, there are
two nonchiral edge modes at k = 0.75π and k = −0.25π,
which are the slightly detached ones from the bulk bands. We
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FIG. 4. Time evolution of the spatial profile of the LDOS in a whole
square sample with size 20 × 20. (a1)∼(a5) The LDOS in the lin-
ear model with ξ = 0, where it diffuses as time passes. (b1)∼(b5)
The LDOS in a strong nonlinear model with ξ = 10κ, where it is
unchanged as time passes: The time step is τ = 2 in units of 1/κ.

show the local density of states (LDOS) at k = 0.25π and
k = 0.75π in Fig.1(b) and (c), where there are two edge states
localized at the up and down edges.

Next, we calculate the eigenspectrum of the matrix M in
square geometry, which is shown in Fig.2(a1). We also show
the LDOS for an edge state in Fig.2(c1), where the eigenfunc-
tion is well localized at the edge of the square and represents
a topological edge state.

In the Chern insulator, the Chern number is assigned to each
bulk band, and the number of the chiral edge states corre-
sponds to the difference of the Chern numbers between two
adjacent bands. We call this difference as the gap Chern num-
ber, and the ordinary Chern number as the band Chern num-
ber, for clarity, in the following.

The gap Chern number Cgap
r = tr for the r-th gap is deter-

mined by the Diophantine equation[38–40],

r = qsr + ptr, (6)

with the flux α = 2πp/q, where sr and tr are integers and
|tr| ≤ q/2. Here α = π/2 with p = 1 and q = 4. Hence, it is
explicitly solved as

1 = 4sr + tr, (sr, tr) = (0, 1) (7)
2 = 4sr + tr, (sr, tr) = (0, 2) , (1,−2) (8)
3 = 4sr + tr, (sr, tr) = (1,−1) . (9)

The Chern number Cgap
1 for the first gap is 1 as in Eq.(7) and

the Cgap
3 for the last gap is -1 as in Eq.(9), which corresponds

to the chiral edge states[41]. On the other hand, when the sec-
ond and third bands are not separated, the gap and band Chern
numbers are not uniquely fixed[40] as in Eq.(8). Indeed, there
are two edge states (colored in red and blue) between the sec-
ond and the third bands in Fig.1(a).

On the other hand, the band Chern number Cn for the n-th
band is assigned from the relation[38, 39, 42]

Cn+1 − Cn = Cgap
r , (10)

where the r-th band gap exists between the n-th and (n + 1)-
th bands. They are shown in Fig.1(a). The Chern numbers
for the second and third bands have ambiguity because they
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FIG. 5. (a) Velocity vx as a function of ξ, which is linear for ξ . 4κ.
The vertical axis is velocity in the unit κ, while the horizontal axis
is ξ. (b) Amplitude |ψLx/2,1|

2 at the initial point as a function of ξ.
Color indicates the value of ξ. The horizontal axis is ξ. We have used
a sample with the size 40× 10.

are touched at the zero energy[40]. We note that the sum of
the Chern number for all bands is zero for the tight-binding
model.

IV. QUENCH DYNAMICS

We solve the nonlinear Schrödinger equation (1) under the
initial condition,

ψini
n = δnx,Lx/2δny,1, (11)

where Lx is the length of the edge along the x axis with
Lx an even number. This is the quench dynamics, which
has been employed to reveal topological edge states in one
dimension[8, 10, 13, 17, 43] and topological corner states in
two dimensions[8, 10].

The hopping term favors the pulse to expand all over the
sample, while the nonlinear term favors the pulse to be self-
trapped to the initial state. We expect an intriguing phe-
nomenon to occur in the presence of the topological edge
state, when these two terms compete among themselves.

First, we study the linear model by setting ξ = 0 in Eq.(1).
We expand the initial state (11) by the eigenfunctions

ψini
n =

∑
β

cβψ̄
(β)
n , (12)

where ψ̄(β)
n is the eigenfunction of the matrix κMnm and β is

the index of the eigenenergy,

κMnmψ̄
(β)
m = Eβψ̄

(β)
n . (13)

The square of the component |cβ |2 is shown in Fig.2(b1). It
has peaks at the edge states colored in red, but it has also val-
ues in bulk states colored in green.

We show the time evolution of the amplitude |ψn|2 along
the edge in Fig.3, when a pulse is given to the site (Lx/2, 1)
as an initial condition. It exhibits distinct behaviors depending
on ξ. Typical behaviors are as follows. When ξ = 0, the lo-
calized state rapidly spreads as in Fig.3(b). On the other hand,
when ξ = ±4κ, we observe a solitary wave propagation as in
Fig.3(a) and (c). The velocity of the wave packet is opposite
for positive and negative nonlinearity ξ. When ξ = ±10κ,
the state remains localized as in Fig.3(d). We explore these
characteristic phenomena more in detail.
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FIG. 6. Time evolution of the LDOS |ψn|2 in the nonlinear model (ξ = 4κ). (a1)∼(a8) Spatial profile of the LDOS along the edge of a
rectangular sample with size 80× 10. Each inset shows an enlarged figure of a soliton. (b1)∼(b8) The LDOS along the edge of a rectangular
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A. Linear model

The time evolution of the LDOS |ψn|2 for the linear model
(ξ = 0) is shown in Fig.4(a1)∼(a5). The amplitude spreads
not only along the edge but also into the bulk in a symmetric
way between the right and left sides. This is because there
are two pairs of chiral edge states with opposite chiralities as
shown in Fig.1(a). In fact, the occupation of these two op-
posite chiral edge states is identical as shown in Fig.2(b1).
Another feature is that considerable amounts of the amplitude
|ψn|2 penetrate into the bulk although we start with the state
localized at the edge as in Eq.(11). This is because a pulse
excites bulk states as well.

B. Mean-field theory

It is an intriguing phenomenon that a unidirectional solitary
wave emerges in the nonlinear model ( ξ 6= 0). To understand
it, we analyze the nonlinear effect in the mean-field approxi-
mation. We approximate the nonlinear term as

ξ |ψn|2 ψn ' ξ〈|ψn|2〉ψn, (14)

where 〈|ψn|2〉 is the expectation value of |ψn|2. The
Schrödinger equation (1) is linearized with the hopping ma-
trix Mnm replaced by

M̃nm = Mnm + (ξ/κ)〈|ψn|2〉δnm. (15)

The nonlinearity term acts as an on-site potential. Let us di-
agonalize Eq.(15) at the initial time, where

〈|ψn|2〉 = δnx,Lx/2δny,1 (16)

with the use of the initial condition (11). We study the case
ξ = 4κ. We show the eigenspectrum in Fig.2(a2) and |cβ |2 in

Fig.2(b3). Fig.2(b2) is an enlarge figure of Fig.2(b3), where
the distribution is clearly asymmetric between the two chiral
edge states having the positive and negative eigenvalues. The
asymmetry corresponds to the asymmetry between the right-
going and the left-going edge states, leading to a unidirec-
tional motion of the wave packet. Recall that the edge mode is
right (left) going when it has a positive (negative) eigenvalue,
as explained in the caption of Fig.1(a). Hence, the right(left)-
going wave-packet motion occurs for ξ > 0 (ξ < 0).

C. Wave packet

We investigate it numerically without using the mean-field
theory. The mean position 〈x〉 of the wave packet is given by

〈x〉 ≡
∑
nx,ny

(nx − Lx/2)
∣∣ψnx,ny

∣∣2 . (17)

We calculate the time evolution of 〈x〉 for various ξ, fit the
position by a linear function 〈x〉 = vxt, and estimate the ve-
locity vx as a function of ξ, whose result is summarized in
Fig.5(a). The velocity is zero for ξ = 0. It linearly increases
for |ξ| . 4κ, suddenly decreases for |ξ| & 4κ, and makes a
jump at |ξ| ≈ 5.6κ.

D. Chiral solitonlike edge state

In the nonlinear model with ξ = 4κ, the quench dynamics
is shown in Fig.6(a1)∼(a8) for a rectangle with size 80× 10,
and in Fig.6(b1)∼(b8) for a rectangle with size 500× 10, and
in Fig.6(c1)∼(c8) for a square with size 20×20. A remarkable
feature is that the shape of the wave packet remains unchanged
beyond 250 sites, as shown in Fig.6(b5)∼(b8). It is well fitted
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by the function

|ψfit(t, x)| = A sech[kx(x− vxt)] (18)

as in Fig.3(e), where parameters A, kx, and vx are given in its
caption. This is the well-known soliton solution of the one-
dimensional Schrödinger equation, although it is not a solu-
tion of the present two-dimensional model. See Appendix A.

Furthermore, the wave packet turns at a corner without back
scattering or diffraction, as shown in Fig.6(c1)∼(c8). We in-
terpret these phenomena to mean that a chiral solitonlike edge
state is formed from the topological edge modes by the nonlin-
ear interaction. We have found that it is realized only around
ξ = 4κ in the present system.

E. Self-trapped state

We study the jump around ξ ' 5.6κ in Fig.5(a). We show
the time evolution of the spatial distribution in a strong non-
linear model (ξ = 10κ) in Fig.4(b1)∼(b5), where the state
remains trapped to the initial site. In order to show the self-
trapping transition, we calculate the amplitude at the initial
site after enough time,∣∣ψ

Lx/2,1

∣∣2 ≡ lim
t→∞

∣∣ψLx/2,1 (t)
∣∣2 . (19)

We show it as a function of ξ in Fig.5(b). There is a sharp tran-
sition around ξ ' 5.6κ. The nonlinear-induced self-trapping
transition has been discussed also in other contexts[8, 43, 44].

In the strong nonlinear regime (ξ � 1), we may approxi-
mate Eq.(1) as

i
dψn
dt

= −ξ |ψn|2 ψn, (20)

where all equations are separated one another. The solution is

ψn (t) = rne
iθn(t), (21)

with a constant rn and θn = ξr2nt + c. Hence, the amplitude
does not decrease. By imposing the initial condition (11), we
have rn = 1 for t = 0. Namely, the state is strictly localized
at the initial site as in Fig.3(d).

V. DISCUSSION

We studied nonlinear effects on the chiral edge state in
the nonlinear Schrödinger equation. Our results would be
experimentally observed in nonlinear topological photonic
systems[1–3, 5–9], where the topological edge states must be
directly observed by photoluminescence. It is also possible to
observe the time evolution of the edge states[33, 36].

Comments are in order. First, the nonlinearity parameter ξ
is introduced by the Kerr effect in the case of photonics[31,
32], and fixed in each sample. Nevertheless, it is enough to
prepare a sample with one fixed ξ, about which we explain in
Appendix B. Second, it is necessary to tune α = π/2 in or-
der to realize the present model because the number of bands

is given by 2π/α. The system turns into a quasicrystal when
2π/α is irrational. However, it is possible to make a fine tun-
ing of α in optical experiments[35, 36].

In this paper we have studied a Chern insulator with two op-
posite chiral edges. It is an interesting problem what happens
in a Chern insulator with one chiral edge. A typical example
is the Haldane model, about which we discuss in Appendix C.
As far as we have checked, no solitonlike states are formed.

The author is very much grateful to N. Nagaosa for help-
ful discussions on the subject. This work is supported by
the Grants-in-Aid for Scientific Research from MEXT KAK-
ENHI (Grants No. JP17K05490 and No. JP18H03676). This
work is also supported by CREST, JST (JPMJCR16F1 and
JPMJCR20T2).
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Appendix A: Nonlinear Schrödinger equation

The one-dimensional tight-binding nonlinear Schrödinger
equation is given by Eq.(1). The corresponding continuum
theory reads

i
dψ

dt
+ κ

d2ψ

dx2
+ ξ |ψ|2 ψ = 0. (A1)

There is an exact soliton solution given by

ψ (t, x) =
√

Ωsech

[
√

Ω

(√
ξ

2κ
x− ξv0

2
t

)]

× exp

[
i

√
ξ

2κ

v0x

2
− i ξ

2

(
v20
4
− Ω

)
t

]
, (A2)

or

|ψ (t, x)| = A sech [kx (x− vx) t] , (A3)

with

A =
√

Ω, kx =

√
Ωξ

2κ
, vx = v0

√
ξκ

2
. (A4)

This is the fitting function (9) in the main text, although it
is not an exact solution of the present two-dimensional tight-
binding model.

Appendix B: Scale transformation

We point out that the nonlinearity strength is controlled
only by changing the initial condition without changing a sam-
ple. By making a scale transformation ψn = 1/

√
|ξ|ψ̃n, it

follows from Eq.(1) that

i
dψ̃n
dt

+ κ
∑
m

Mnmψ̃n +
∣∣∣ψ̃n∣∣∣2 ψ̃n = 0, (B1)

where the nonlinearity parameter ξ is removed.
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FIG. 7. Time evolution of the spatial profile of the LDOS |ψn|2 in the Haldane model. (a) Linear model with ξ = 0, and (b) the nonlinear
model with ξ = 4κ. The time step is τ = 10 in units of 1/κ. We have set λ = 0.2.

In the dynamics starting from a localized state at (Lx/2, 1)
under the initial condition (6) in the main text, this initial con-
dition is transformed to

ψ̃ini
n =

√
|ξ|δnx,Lx/2δny,1. (B2)

Namely, the quench dynamics subject to Eq.(1) is reproduced
with the use of the nonlinear equation (B1) with the modified
initial condition (B2). Consequently, it is possible to use a
single sample to investigate the quench dynamics at various
nonlinearity strength only by changing the initial condition as
in Eq.(B2).

Appendix C: Haldane model

In the main text, we have studied the Chern insulator which
has two opposite chiral edge modes. It is an interesting prob-
lem what happens if we introduce the nonlinear term in the

model with one chiral edge mode. The typical example is the
Haldane model defined by

MHaldane =
∑
〈i,j〉

|i〉〈j|+ i
λ

3
√

3

∑
〈〈i,j〉〉

νij |i〉〈j|, (C1)

where |i〉〈j| represents a hopping form the site j to the site i
in the honeycomb lattice, and 〈i, j〉 / 〈〈i, j〉〉 run over all the
nearest/next-nearest-neighbor hopping sites. The first term
represents the nearest-neighbor hopping with the transfer en-
ergy, and the second term represents the effective spin-orbit
interaction, where νij = +1 if the next-nearest-neighboring
hopping is anticlockwise and νij = −1 if it is clockwise with
respect to the positive z axis.

We show the time evolution starting with the initial condi-
tion which is localized at one site in Fig.7. The propagation
of the edge modes is found to be almost insensitive to ξ.
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