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ABSTRACT 

 Near-field radiative heat transfer (NFRHT) between irregularly shaped dielectric particles 

made of SiO2 and morphology characterized by Gaussian random spheres is studied. Particles are 

modeled using the discrete system Green’s function (DSGF) approach, which is a volume integral 

numerical method based on fluctuational electrodynamics. This method is applicable to finite, 

three-dimensional objects, and all system interactions are defined independent of thermal 

excitation by a generalized system Green’s function. The DSGF method is deemed suitable to 

model NFRHT between irregularly shaped particles after verification against the analytical 

solution for chains of two and three SiO2 spheres. The NFRHT results reveal that geometric 

irregularity in particles leads to a reduction of the total conductance from that of comparable 

perfect spheres at vacuum separation distances smaller than the particle size, a regime in which 

NFRHT is a surface phenomenon. At vacuum separation distances larger than the particle size, 
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NFRHT becomes a volumetric process, and the total conductance between irregularly shaped 

particles converges to that of comparable perfect spheres. Spectral analysis reveals, however, that 

particle irregularity leads to damping and broadening of resonances at all separation distances, 

thereby highlighting the importance of the DSGF method for spectral engineering in the near field. 

The reduced spectral coherence when particle size is larger than the vacuum separation distance is 

attributed to coupling of surface phonon-polaritons within the randomly generated, distorted 

particle features. For particle size smaller than the vacuum separation distance, resonance 

broadening and damping is linked with the multiple localized surface phonon modes supported by 

the composite spherical harmonic morphologies of the Gaussian random spheres. This work has 

direct implications for thermal management of packed particle systems, with applications in 

radiative property control, electronics, energy conversion, and nanomanufacturing. 

I. INTRODUCTION 

When objects are small or closely separated as compared to the characteristic thermal 

wavelength, Planck’s classic theory of thermal radiation is no longer valid. This regime of small 

length scales is considered the thermal near field and is distinguished from the far-field regime by 

wave interference and the tunneling of evanescent electromagnetic modes [1–3] that can lead to 

radiation transport exceeding Planck’s blackbody limit [4–14]. Surface phonon-polaritons 

(SPhPs), which are coupled transverse optical phonons and electromagnetic waves, provide 

additional pathways and tuning capability for near-field radiative heat transfer (NFRHT) [15]. The 

use of SPhPs to control NFRHT has received growing attention in recent years. Researchers have 

focused on harnessing SPhPs to increase the thermal conductivity of nanowires [16] and thin 

films [17–20]; on coupling SPhPs with other resonances, such as surface plasmon-

polaritons [14,21–24], magnetoplasmon polaritons [25], and zone-folded longitudinal optical 
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phonons [26], to control dispersion relations and manipulate heat flux; and on exploiting SPhPs 

for design of thermal circuit elements, such as switches [27] and diodes [28–30]. In each of these 

cases, the geometries and materials of micro/nanostructures are crucial in determining SPhP 

behavior and the resulting NFRHT.  

 Notably, it has been shown that NFRHT between micro/nanoscale particles is affected by 

geometric variation, especially around resonances [31]. While current NFRHT experimental 

techniques are limited to measurements of spheres with microscale radii and probe tips with radii 

of curvature greater than about 30 nm [6,32,33], models of heat exchange between particles below 

these cutoffs are important for developing a more complete understanding of particle near-field 

thermal interactions that can be applied to design superstructures with measurable heat exchanges. 

The need to understand NFRHT between particles arises in diverse fields, from energy conversion 

to biomedical applications to meteorology. Micro/nanoparticles are being investigated, for 

instance, to control radiative properties via metamaterials [34,35], to build biomimetic 

photovoltaic devices [36], and to treat cancer in photothermal ablation therapies [37–39]. 

Naturally occurring particles, such as dust and ash, are also gaining importance in meteorological 

models [40,41]. In these and related applications, the particles under consideration are usually 

irregularly shaped and contain geometric defects. To accurately account for NFRHT effects in 

such a diverse range of particle systems, it is therefore necessary that models support the complex 

three-dimensional structures emblematic of real-world particles. 

Within the field of NFRHT, a few different particle-like structures have been studied that 

consider variations in particle arrangement and geometry. Researchers have modeled the effects 

of stretching and flattening of perfect spheroids [31,42], rotating one perfect cylinder [43,44] or 

spheroid [42,45] with respect to another, and varying dipole array structure [46–51]. In the above-
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mentioned studies, however, individual particles are modeled as geometrically regular and highly 

symmetric, with random geometric deviations relegated to the system level. As such, the effect of 

particle-level geometric irregularity on NFRHT has not been addressed and remains unknown.  

A large part of why NFRHT between irregularly shaped particles remains underexplored 

is due to the difficulty in modeling three-dimensional objects of arbitrary shape. While analytical 

solutions exist for spheres [52–54] and point particles within the dipole limit [46,47,49,55,56], 

full-scale numerical models that can account for arbitrary geometries, such as finite difference time 

domain methods [57–62], boundary element methods [63–65], and volume integral 

approaches [66–72], are often computationally expensive. Of these methods, the boundary element 

method in the fluctuating-surface-current approach [43,44] is one of the most efficient techniques 

for modeling NFRHT between complex shaped objects. In this approach, computational efficiency 

is achieved through restriction of the solution space to the surface of thermal objects. If resolving 

the internal heat transfer physics of the thermal objects is desired, or if the thermal objects are 

characterized by nonuniform temperature and/or material, approaches other than the boundary 

element method are necessary, such as volume integral methods. However, thermal objects 

characterized by large dielectric functions, such as metals, are generally difficult to model with 

volume integral methods [67].  

In this paper, we address the knowledge gap of NFRHT between irregularly shaped 

particles by developing a numerical model based on fluctuational electrodynamics [73], called the 

discrete system Green’s function (DSGF) approach. The DSGF approach is a volume integral 

equation method that can be applied to arbitrary three-dimensional geometries and differs from 

previous volume integral approaches, such as the thermal discrete dipole approximation 

(TDDA) [66,67,69], by defining all system interactions generally and independent of the physics 
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distinct to thermal excitation. The DSGF method is similar to the many-body method of 

NFRHT [55,56] in that interactions are defined by a generalized system Green’s function. 

However, the DSGF approach is derived for and applicable to discretized objects, whereas the 

many-body method is limited to collections of particles modeled as independent dipoles. The 

DSGF method is an improvement over the other volume integral approach, the TDDA, because 

the system Green’s function found in the DSGF method can be post-processed to calculate many 

quantities of interest to NFRHT, such as power dissipation and the local density of states. In 

contrast, the TDDA is limited to solving for the autocorrelation of total dipole moments, a more 

specialized parameter with less post-processing range. Additionally, the main matrix equation in 

the DSGF method is amenable to solution by a wider variety of computational algorithms than the 

main matrix equation in the TDDA.  

In this paper, we apply the DSGF method to irregularly shaped dielectric particles made of 

SiO2 and morphology characterized by Gaussian random spheres. We find that geometric 

irregularity significantly affects the spectrally integrated conductance for closely spaced particles 

with size approximately equal to or smaller than the vacuum separation distance, whereas 

resonance damping and broadening arise for all modeled separation distances. Since resonance 

broadening and damping appear for all the tested separation distances, this work is of particular 

interest for the design of thermal metamaterials composed of complex-shaped, particle-like 

substructures or to systems that deal with real-world particles containing defects.  

The rest of the paper is organized as follows. First, we introduce the DSGF method for 

predicting NFRHT between three-dimensional objects of arbitrary shape (Sec. II). Next, we verify 

the DSGF method against the analytical solution for chains of two and three spheres (Sec. III). 

After verification, we apply the DSGF approach to model NFRHT between irregularly shaped 
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dielectric particles with morphology defined by Gaussian random spheres (Sec. IV). Concluding 

remarks are presented in Sec. V. 

II. DESCRIPTION OF THE DISCRETE SYSTEM GREEN’S FUNCTION (DSGF) 

FORMALISM 

The DSGF method is based on fluctuational electrodynamics [73,74] and is defined for a 

system of three-dimensional, thermally emitting objects of arbitrary number, geometry, size, and 

material embedded within a lossless background reference medium (FIG 1). The objects, 

occupying a total combined volume 𝑉𝑡ℎ𝑒𝑟𝑚 , are assumed to be in local thermodynamic 

equilibrium, lossy, nonmagnetic, and may have nonuniform dielectric function  𝜀(𝐫,𝜔)  and 

nonuniform temperature 𝑇(𝐫). Here, 𝐫 is the position coordinate and 𝜔 is the angular frequency. 

The lossless background reference medium encompassing volume 𝑉𝑟𝑒𝑓 may be vacuum or any 

other material for which the dielectric function 𝜀𝑟𝑒𝑓(𝜔) is strictly real-valued. The dielectric 

functions of both the background reference medium and the thermal objects are assumed to be 

isotropic and linear; however, the DSGF method may also be generalized to anisotropic materials 

with tensor dielectric functions. 
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FIG 1. System of thermal objects of arbitrary number, geometry, size, and material occupying a total volume 𝑉𝑡ℎ𝑒𝑟𝑚. 

The thermal objects may be of nonuniform temperature 𝑇(𝐫) and nonuniform dielectric function 𝜀(𝐫, 𝜔). The thermal 

objects are embedded in a lossless background reference medium of volume 𝑉𝑟𝑒𝑓  that is characterized by a real-valued 

dielectric function 𝜀𝑟𝑒𝑓(𝜔).  

A. Definition of the system Green’s function 

The DSGF method is derived from the stochastic Maxwell equations of fluctuational 

electrodynamics [73]. Separate wave equations are constructed for the thermal object domain and 

the background reference medium: 

∇ × ∇ × 𝐄(𝐫,𝜔) − 𝑘0
2𝜀𝑟𝑒𝑓(𝜔)𝐄(𝐫, 𝜔) = 𝟎,   𝐫 ∈ 𝑉𝑟𝑒𝑓 ,  (1) 

∇ × ∇ × 𝐄(𝐫,𝜔) − 𝑘0
2𝜀(𝐫,𝜔)𝐄(𝐫,𝜔) = 𝑖𝜔𝜇0𝐉

(fl)(𝐫,𝜔), 𝐫 ∈ 𝑉𝑡ℎ𝑒𝑟𝑚, (2) 

where 𝐄 is the total electric field, 𝐉(fl) is the fluctuating thermal source current density, 𝜇0 is the 

vacuum permeability, and 𝑘0 is the vacuum wavevector magnitude defined as 𝑘0 = 𝜔√𝜇0𝜀0 with 

𝜀0 being the vacuum permittivity. In Eqs. (1) and (2), the fields are assumed to be time-harmonic 
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and vary as e−𝑖𝜔𝑡. Combining Eqs. (1) and (2), a wave equation that is valid over all real space ℜ3 

is derived, 

∇ × ∇ × 𝐄(𝐫,𝜔) − 𝑘0
2[𝜀𝑟𝑒𝑓(𝜔) + 𝜀𝑟(𝐫,𝜔)]𝐄(𝐫,𝜔) = 𝑖𝜔𝜇0𝐉

(eq)(𝐫, 𝜔), 𝐫 ∈ ℜ3,  (3) 

with an equivalent current density 𝐉(eq) defined as 

𝐉(eq)(𝐫,𝜔) = {
𝟎,   𝐫 ∈ 𝑉𝑟𝑒𝑓

𝐉(fl)(𝐫, 𝜔),   𝐫 ∈ 𝑉𝑡ℎ𝑒𝑟𝑚

,  (4) 

where 𝜀𝑟(𝐫,𝜔) is the relative dielectric function with respect to the background reference medium, 

𝜀𝑟(𝐫,𝜔) = {
0,   𝐫 ∈ 𝑉𝑟𝑒𝑓

𝜀(𝐫,𝜔) − 𝜀𝑟𝑒𝑓(𝜔),   𝐫 ∈ 𝑉𝑡ℎ𝑒𝑟𝑚
.  (5) 

The electric field solution to the wave equation (3) is determined using the volume integral 

technique. The total electric field is the sum of the homogeneous and particular solutions 

𝐄(𝐫, 𝜔) = 𝐄0(𝐫, 𝜔) + 𝑖𝜔𝜇0 ∫ 𝐆(𝐫, 𝐫′, 𝜔)
𝑉

 𝐉(eq)(𝐫′, 𝜔)𝑑3𝐫′,   𝐫 ∈ ℜ3,  (6) 

where 𝐄0(𝐫,𝜔) is the homogeneous solution, the integral term is the particular solution, and 

𝐆(𝐫, 𝐫′, 𝜔) is the system Green’s function, also sometimes called the dyadic Green’s function. The 

homogeneous solution 𝐄0(𝐫,𝜔) is the field that exists due to the objects and reference medium 

when fluctuating thermal sources are not present and satisfies the wave equation 

∇ × ∇ × 𝐄0(𝐫, 𝜔) − 𝑘0
2[𝜀𝑟𝑒𝑓(𝜔) + 𝜀𝑟(𝐫,𝜔)]𝐄0(𝐫,𝜔) = 𝟎,   𝐫 ∈ ℜ3.  (7) 

Specifically, Eq. (7) describes electromagnetic scattering by imposed external fields, such 

as laser excitation or irradiation by the surroundings, rather than imposed source current densities. 

In this work, we focus on the case where there are no imposed fields, such that 𝐄0(𝐫,𝜔) = 𝟎. For 

application of the DSGF method to systems with external field excitation, the full solution to Eq. 

(7) is provided in Appendix A. In the absence of imposed fields, Eq. (6) simplifies as 

𝐄(𝐫, 𝜔) = 𝑖𝜔𝜇0 ∫ 𝐆(𝐫, 𝐫′, 𝜔)𝐉(fl)(𝐫′, 𝜔)
𝑉𝑡ℎ𝑒𝑟𝑚

𝑑3𝐫′,   𝐫 ∈ ℜ3,  (8) 
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where the condition that 𝐉(eq)(𝐫′, 𝜔) = 𝟎 for 𝐫′ ∈ 𝑉𝑟𝑒𝑓 has been used to restrict the integral to the 

thermal object domain. The system Green’s function 𝐆(𝐫, 𝐫′, 𝜔) , relating the electric field 

observed at point 𝐫  due to a point source excitation at location 𝐫′  for a given frequency 𝜔 , 

completely and deterministically defines the electromagnetic response of the system to any 

imposed sources. Specifically, the system Green’s function satisfies the original wave equation 

(Eq. (3)) for a point excitation, 𝐈̿𝛿(𝐫 − 𝐫′) 

∇ × ∇ × 𝐆(𝐫, 𝐫′, 𝜔) − 𝑘0
2[𝜀𝑟𝑒𝑓(𝜔) + 𝜀𝑟(𝐫, 𝜔)]𝐆̿(𝐫, 𝐫′, 𝜔) = 𝐈̿𝛿(𝐫 − 𝐫′),   𝐫 ∈ ℜ3,  (9) 

where 𝐈̿ is the unit dyadic and 𝛿 is the Dirac function.  

Eq. (8) is the typical starting point for analytical derivations of NFRHT where closed-form 

expressions of the system Green’s function may be attained through implementation of appropriate 

boundary conditions. Due to prohibitive mathematical complexity, analytical solutions have been 

restricted to simple geometries, such as layered media [75] and spheres [52–54]. In the DSGF 

method, the system Green’s function for arbitrarily shaped three-dimensional objects is calculated 

numerically. 

B. Derivation of self-consistent system Green’s function equation 

 The system Green’s function can be expressed in terms of the free-space Green’s function 

𝐆0(𝐫, 𝐫′, 𝜔) , which has known analytical solution [76,77]. The free-space Green’s function 

describes the response to excitation of an infinite, lossless, homogeneous medium, such as the 

background reference medium presented here, and satisfies the wave equation 

∇ × ∇ × 𝐆0(𝐫, 𝐫′, 𝜔) − 𝑘0
2𝜀𝑟𝑒𝑓(𝜔)𝐆̿0(𝐫, 𝐫′, 𝜔) = 𝐈̿𝛿(𝐫 − 𝐫′), 𝐫 ∈ ℜ3.  (10) 

 To facilitate clarity of mathematical procedures, the free-space Green’s function wave 

equation (Eq. (10)) and the system Green’s function wave equation (Eq. (9)) are transformed from 

standard 𝐫 representation into operator notation 
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(𝕃 + 𝕖𝑟𝑒𝑓)𝔾
0 = 𝕀,  (11) 

(𝕃 + 𝕖𝑟𝑒𝑓 + 𝕖𝑟)𝔾 = 𝕀,  (12) 

where operators are defined as 𝕃 ≜ ∇ × ∇ × , 𝕖𝑟𝑒𝑓 ≜ −𝑘0
2𝜀𝑟𝑒𝑓(𝜔) , 𝕖𝑟 ≜ −𝑘0

2𝜀𝑟(𝐫, 𝜔) , 𝔾 ≜

𝐆(𝐫, 𝐫′, 𝜔), 𝔾0 ≜ 𝐆0(𝐫, 𝐫′, 𝜔), and 𝕀 ≜ 𝐈̿𝛿(𝐫 − 𝐫′). This is similar to the method used in Ref. [78]. 

Combining Eqs. (11) and (12), and recognizing that Eq. (11) can be rearranged as (𝕃 + 𝕖𝑟𝑒𝑓) =

(𝔾0)−1, the system Green’s function can be described as 

𝔾 = 𝔾0 − 𝔾0𝕖𝑟𝔾.  (13) 

This is a self-consistent equation for the system Green’s function, analogous to the Dyson 

equation of quantum field theory [77–80]. After slightly rearranging Eq. (13) and converting back 

to standard 𝐫 representation [81,82], we obtain  

𝐆0(𝐫, 𝐫′, 𝜔) = 𝐆(𝐫, 𝐫′, 𝜔) − 𝑘0
2 ∫ 𝐆0(𝐫, 𝐫′′, 𝜔)𝜀𝑟(𝐫

′′, 𝜔)𝐆̿(𝐫′′, 𝐫′, 𝜔)
𝑉𝑡ℎ𝑒𝑟𝑚

𝑑3𝐫′′.  (14) 

In this formulation, the response of the system is defined independently of the physics of the 

imposed source, and the parameters in Eq. (14) are all deterministic. 

C. Discretization 

To solve the self-consistent system Green’s function equation (Eq. (14)), the volume of the 

thermal objects 𝑉𝑡ℎ𝑒𝑟𝑚  is discretized into a total of 𝑁 cubic subvolumes along a cubic lattice, 

where 𝐫𝑖 is the center point of each discretized subvolume Δ𝑉𝑖 and 𝑖 = 1,2, … , 𝑁. Each subvolume 

is assumed to have uniform dielectric function, electric field, Green’s functions, and temperature. 

Determining the appropriate subvolume size for a given system is discussed in detail in Ref. [67]. 

Two general rules for proper discretization are that subvolume size should be smaller than the 

inverse magnitude of the wavevector in the thermal objects, (Δ𝑉)1 3⁄ ≪ 1 𝑘⁄ , where 𝑘 =
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𝜔√𝜀(𝐫,𝜔)𝜀0𝜇0, and the size of the subvolumes must be small compared to the vacuum separation 

distance between the thermal objects, (Δ𝑉)1 3⁄ ≪ 𝑑.  

Following the general procedure described in Ref. [67], Eq. (14) is discretized as  

∫ ∫ 𝐆0(𝐫, 𝐫′, 𝜔)

Δ𝑉𝑗Δ𝑉𝑖

𝑑3𝐫′𝑑3𝐫

= ∫ ∫ 𝐆(𝐫, 𝐫′, 𝜔)

Δ𝑉𝑗Δ𝑉𝑖

𝑑3𝐫′𝑑3𝐫

− 𝑘0
2 ∫ ∫ ∫ 𝐆0(𝐫, 𝐫′′, 𝜔)𝜀𝑟(𝐫

′′, 𝜔)𝐆̿(𝐫′′, 𝐫′, 𝜔)

𝑉𝑡ℎ𝑒𝑟𝑚

𝑑3𝐫′′

Δ𝑉𝑗Δ𝑉𝑖

𝑑3𝐫′𝑑3𝐫. 

 (15) 

Assuming that 𝐆  is well-behaved over the entire domain and applying the principal value 

approximation for the singularity in 𝐆0 at 𝐫 = 𝐫′ [83,84], Eq. (15) is simplified as 

𝐆0(𝐫𝑖, 𝐫𝑗 , 𝜔) = 𝐆(𝐫𝑖, 𝐫𝑗 , 𝜔) − 𝑘0
2 ∑ 𝐆0(𝐫𝑖, 𝐫𝑘, 𝜔)Δ𝑉𝑘𝜀𝑟(𝐫𝑘, 𝜔)𝐆(𝐫𝑘, 𝐫𝑗 , 𝜔)𝑁

𝑘=1 .  (16) 

The discretized version of the known free-space Green’s function 𝐆0(𝐫𝑖, 𝐫𝑗 , 𝜔) is presented in 

Appendix B. The full system of equations describing all interactions between subvolumes may be 

expanded in matrix form as 

{[
𝐈̅̅ 0 0
0 ⋱ 0

0 0 𝐈̅̅

] − 𝑘0
2 [

𝐆11
0 ⋯ 𝐆1𝑁

0

⋮ ⋱ ⋮

𝐆𝑁1
0 ⋯ 𝐆𝑁𝑁

0

] [
𝛼1

(0)
0 0

0 ⋱ 0

0 0 𝛼𝑁
(0)

]} [
𝐆11 ⋯ 𝐆1𝑁

⋮ ⋱ ⋮

𝐆𝑁1 ⋯ 𝐆𝑁𝑁

]  

= [
𝐆11

0 ⋯ 𝐆1𝑁
0

⋮ ⋱ ⋮

𝐆𝑁1
0 ⋯ 𝐆𝑁𝑁

0

], (17) 

where lattice locations 𝐫𝑖 and 𝐫𝑗 are represented by subscripts 𝑖 and 𝑗, and the bare polarizability is 

defined as 𝛼𝑘
(0)

= Δ𝑉𝑘𝜀𝑟(𝐫𝑘, 𝜔). Eq. (17) is a system of linear equations of the form 𝐀̅̅𝐆 = 𝐆0, 

where 𝐆 represents the DSGF and 𝐀̅̅ is the interaction matrix defined by the term in curly brackets. 
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The full matrices, 𝐀̅̅ , 𝐆 , and 𝐆0  each contain a total of 3𝑁 × 3𝑁  terms, accounting for 𝑁 

subvolumes and three Cartesian vector components. Each submatrix, 𝐀̅̅𝑖𝑗, 𝐆𝑖𝑗
0 , and 𝐆𝑖𝑗, is a 3 × 3 

matrix that describes the interaction between the 𝑖th and 𝑗th subvolumes. The many-body approach 

for NFRHT presented in Refs. [55,56] defines a similar self-consistent Green’s function equation. 

However, the many-body approach assumes that particles are within the dipole regime. Here, the 

DSGF formulation is general and can be applied to thermal objects of any size and shape, without 

restriction to their separation distance, as long as proper discretization is heeded.  

The advantage of the DSGF method over other volume integral methods, such as the 

TDDA, is that the matrix equation presented in Eq. (17) is of the well-known form 𝐀̿𝐗̿ = 𝐁̿ for 

which there are a variety of solution algorithms and open-source solvers available. The DSGF 

matrix equation defined in Eq. (17) can be solved directly using LU decomposition to invert 𝐀̅̅, or 

it can be solved with iterative techniques, such as the biconjugate gradient stabilized method, the 

conjugate gradient squared method, or the perturbative-like technique presented in Ref. [78]. 

Iterative techniques have the advantage of reducing computational memory requirements, which 

can become prohibitive for large numbers of subvolumes [67]. Conversely, the main matrix 

equation of the TDDA is of the form 𝐀̿𝐗̿𝐀̿† = 𝐁̿ and has fewer documented solution methods. 

More details on the comparison of the matrix equations solved in the DSGF and TDDA methods 

can be found in Appendix C. Another advantage of the DSGF method over the TDDA is that the 

variable of interest in the DSGF method is the system Green’s function, a general parameter that 

is independent of the physics of thermal excitation and that can be post-processed to solve for a 

variety of other thermal parameters. The variable of interest 𝐗̿  in the TDDA method is the 

autocorrelation of the total dipole moment, a more restrictive parameter that combines information 

of thermal excitation and scattering.  
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D. Radiative heat transfer 

Once the system Green’s function is known via the solution of the system of equations 

(17), the net radiative heat transfer can be calculated. Using Poynting’s theorem, the net power 

dissipated in the thermal objects is defined as [73,85] 

〈𝑄𝑉𝑡ℎ𝑒𝑟𝑚
(𝑡)〉 = ∫ ⟨𝓔(𝐫, 𝑡) ∙ (𝓙(fl)(𝐫, 𝑡) + [𝜎̃ ∗ 𝓔(𝐫, 𝑡)])⟩𝑑3𝐫

𝑉𝑡ℎ𝑒𝑟𝑚
, (18) 

where 𝑡  is the time offset, 𝜎̃  is the instantaneous material conductivity, 𝓔(𝐫, 𝑡)  is the time-

dependent instantaneous electric field, 𝓙(fl)(𝐫, 𝑡) is the time-dependent fluctuating thermal current 

density, the ∗  symbol represents the convolution operation, the ∙  symbol represents the dot 

product, and 〈 〉 brackets represent the ensemble average. The fluctuating thermal current density 

𝓙(fl)(𝐫, 𝑡) is defined as a wide-sense stationary random process and embodies the statistical nature 

of thermal excitation of charged microparticles [73,74]. For such processes, the first moment (i.e., 

mean) of the stochastic signal is zero, 〈𝓙(fl)(𝐫, 𝜏)〉 = 𝟎 , and the second moment (i.e., 

autocorrelation) is nonzero, ⟨𝓙(fl)(𝐫, 𝜏)𝓙(fl)†(𝐫, 𝜏 − 𝑡)⟩ ≠ 𝟎 [86]. The autocorrelation function of 

the fluctuating thermal current density is defined by the fluctuation-dissipation theorem, which 

relates equilibrium fluctuations in current density to macroscale electromagnetic dissipation inside 

a thermal object. In its spectral representation, the fluctuation-dissipation theorem is expressed 

as [73,87] 

〈𝐉(fl)(𝐫,𝜔)𝐉(fl)
†
(𝐫′, 𝜔′)〉 = 4𝜋𝜔𝜀0Im[𝜀(𝐫, 𝜔)]Θ(𝜔, 𝑇)𝛿(𝐫 − 𝐫′)𝛿(𝜔 − 𝜔′)𝐈̿,  (19) 

where the mean energy of an electromagnetic state is defined as Θ(𝜔, 𝑇) = ℏ𝜔 (e
ℏ𝜔

𝑘𝐵𝑇 − 1)
−1

, ℏ is 

the reduced Planck constant, and 𝑘𝐵 is the Boltzmann constant. 
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 Using Eq. (8) to describe the electric field in terms of the system Green’s function and 

incorporating the fluctuation-dissipation theorem, the net power dissipated given by Eq. (18) 

becomes 

〈𝑄𝑉𝑡ℎ𝑒𝑟𝑚
(𝑡)〉 = ∫

2

𝜋
∫ 𝑘0

2 {Im[𝜀(𝐫,𝜔)]Θ(𝜔, 𝑇)Im(Tr[𝐆†(𝐫, 𝐫, 𝜔)]) +
∞

0𝑉𝑡ℎ𝑒𝑟𝑚

𝑘0
2Im[𝜀(𝐫,𝜔)] ∫ Im[𝜀(𝐫′, 𝜔)]Θ(𝜔, 𝑇′)Tr[𝐆(𝐫, 𝐫′, 𝜔)𝐆†(𝐫, 𝐫′, 𝜔)]

𝑉𝑡ℎ𝑒𝑟𝑚
𝑑3𝐫′} 𝑑𝜔𝑑3𝐫, (20) 

where Tr  represents the trace. In Eq. (20), the inverse Fourier transform convention  

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)e−𝑖𝜔𝑡𝑑𝜔

+∞

−∞
 is followed. Discretizing Eq. (20) along a cubic lattice, the net 

power dissipated in a subvolume Δ𝑉𝑖 is defined as 

〈𝑄Δ𝑉𝑖
(𝑡)〉 =

2

𝜋
∫ 𝑘0

4Δ𝑉𝑖Im[𝜀(𝐫𝑖, 𝜔)] {∑ Δ𝑉𝑗Im[𝜀(𝐫𝑗 , 𝜔)][Θ(𝜔, 𝑇𝑗) −𝑁
𝑗=1
𝑗≠𝑖

∞

0

Θ(𝜔, 𝑇𝑖)]Tr[𝐆(𝐫𝑖, 𝐫𝑗 , 𝜔)𝐆†(𝐫𝑖, 𝐫𝑗 , 𝜔)]} 𝑑𝜔. (21) 

In deriving Eq. (21), the condition of zero power dissipation at thermal equilibrium is implemented 

such that 〈𝑄Δ𝑉𝑖
(𝑡)〉 = 0 when Θ(𝜔, 𝑇𝑖) = Θ(𝜔, 𝑇𝑗).  

 Rearranging into a Landauer-like form, the net power dissipated in a subvolume is 

simplified as 

〈𝑄Δ𝑉𝑖
(𝑡)〉 =

1

2𝜋
∫ {∑ [Θ(𝜔, 𝑇𝑗) − Θ(𝜔, 𝑇𝑖)]𝒯𝑖𝑗(𝜔)𝑁

𝑗=1
𝑗≠𝑖

}
∞

0
𝑑𝜔,  (22) 

where the transmission coefficient between subvolumes 𝑖 and 𝑗 is defined as 

𝒯𝑖𝑗(𝜔) = 4𝑘0
4Δ𝑉𝑖Δ𝑉𝑗Im[𝜀(𝐫𝑖, 𝜔)]Im[𝜀(𝐫𝑗 , 𝜔)]Tr[𝐆(𝐫𝑖, 𝐫𝑗 , 𝜔)𝐆†(𝐫𝑖, 𝐫𝑗 , 𝜔)].  (23) 

The net power dissipated in a bulk thermal object occupying the closed volume 𝑉𝐴 is given by 

〈𝑄𝐴(𝑡)〉 =
1

2𝜋
∫ ∑ {∑ [Θ(𝜔, 𝑇𝑗) − Θ(𝜔, 𝑇𝑖)]𝒯𝑖𝑗𝑗 ∉ 𝑉𝐴

(𝜔)}𝑖∈𝑉𝐴

∞

0
𝑑𝜔.  (24) 
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From Eq. (23), it can be seen that the transmission coefficient between two subvolumes is 

dependent on the trace of the product of the DSGF and its conjugate transpose (i.e., the squared 

Frobenius norm of the DSGF). In this framework, solving a NFRHT problem reduces to solving 

for the appropriate system Green’s function, from which the net heat rate can be easily calculated.  

Another quantity used in characterizing NFRHT is the conductance. The spectral 

conductance is defined as the power transfer between two objects for a given frequency in the limit 

that their temperature difference 𝛿𝑇  goes to zero. Mathematically, this is expressed for bulk 

objects 𝐴 and 𝐵 as [54] 

𝐺𝐴𝐵(𝜔, 𝑇) = lim
𝛿𝑇→0

〈𝑄𝐴𝐵(𝜔)〉

𝛿𝑇
= [

𝜕Θ(𝜔,𝑇′)

𝜕𝑇
]
𝑇′=𝑇

𝒯𝐴𝐵(𝜔),  (25) 

where the spectral transmission coefficient between the two bulk objects enclosing volumes 𝑉𝐴 

and 𝑉𝐵 is calculated as 

𝒯𝐴𝐵(𝜔) = ∑ ∑ 𝒯𝑖𝑗𝑗 ∈𝑉𝐵
(𝜔).𝑖∈𝑉𝐴

 (26) 

Reciprocity holds such that 𝒯𝐴𝐵(𝜔) = 𝒯𝐵𝐴(𝜔). The total conductance at a given temperature 𝑇 

between two bulk objects is then determined by integration over all frequencies, 𝐺𝑡,𝐴𝐵(𝑇) =

1

2𝜋
∫ 𝐺𝐴𝐵(𝜔, 𝑇)

∞

0
𝑑𝜔. The spectral and total conductance are used to characterize NFRHT between 

dielectric particles in the following sections. 

III. VERIFICATION OF THE DISCRETE SYSTEM GREEN’S FUNCTION (DSGF) 

METHOD AGAINST THE ANALYTICAL SOLUTION FOR SPHERES  

 To determine the accuracy of the DSGF method in modeling NFRHT between particles, 

we compare DSGF calculations of conductance at room temperature (𝑇 = 300 K) against the 

analytical solution for chains of two and three dielectric spheres made of SiO2 embedded in 

vacuum. The analytical solution is calculated using the technique from Ref. [54]. The dielectric 

function of SiO2, taken from Ref. [54], is provided in Sec. S1 of the Supplemental Material [88]. 
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The discretized spheres used in the DSGF method are modeled to have the same volume and 

center-of-mass separation distance as the corresponding perfect spheres of the analytical solution. 

The accuracy of the DSGF method is evaluated for vacuum separation distances 𝑑 ranging from 

10 nm to 10 μm and for two different sphere radii, 𝑅 = 50 nm and 𝑅 = 500 nm (FIG 2). 

    

FIG 2. Schematics of (a) two SiO2 spheres and (b) a linear chain of three SiO2 spheres embedded in vacuum. Two 

different sphere sizes are considered: 𝑅 = 50 nm and 𝑅 = 500 nm. The vacuum separation distance varies from 

10 nm ≤ 𝑑 ≤ 10 μm. The symbol 𝑑𝑐 represents the center-of-mass separation distance.   

 

A. Two spheres 

 The total conductance calculated by the DSGF method shows good agreement with the 

analytical solution for two spheres (FIG 3). For vacuum separation distances in the range 𝑅 ≲ 𝑑 ≲

20𝑅, the absolute value of the error between the DSGF method and analytical solution is below 

3% for 50-nm-radius spheres and below 5% for 500-nm-radius spheres. The slight increase in error 

at the closest and farthest vacuum separation distances was expected from the TDDA 

literature [67], since the DSGF method and TDDA have equivalent convergence behavior and 

generate equivalent values of conductance when the same discretization is used (see Sec. S2 of the 

Supplemental Material [88]).  
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FIG 3. Comparison of the total conductance at 𝑇 = 300 K between two SiO2 spheres calculated analytically [54] and 

by the DSGF method. Spheres of radii (a) 𝑅 = 50 nm  and (b) 𝑅 = 500 nm  are modeled for variable vacuum 

separation distance, 10 nm ≤ 𝑑 ≤ 10 μm. 50-nm-radius spheres are discretized into 𝑁𝑠𝑝ℎ𝑒𝑟𝑒 = 2176 subvolumes per 

sphere for all vacuum separation distances. 500-nm-radius spheres are discretized into 𝑁𝑠𝑝ℎ𝑒𝑟𝑒 = 5616 subvolumes 

per sphere for 𝑑 ≤ 100 nm and into 𝑁𝑠𝑝ℎ𝑒𝑟𝑒 = 2176 subvolumes per sphere for 𝑑 > 100 nm. The relative error 

between the DSGF and analytical solution is calculated as 
𝐺𝑡,12

𝐷𝑆𝐺𝐹−𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 .  

For the 50-nm-radius sphere case (FIG 3(a)), increased error at small vacuum separation 

distances 𝑑 < 𝑅 can be attributed to shape error (i.e., error due to approximating curved surfaces 

by cubic subvolumes). For the 500-nm-radius sphere case at small vacuum separation distances 

𝑑 < 𝑅 (FIG 3(b)), there is error due to approximating fields as uniform within a subvolume in 

addition to the aforementioned shape error. Shape error dominates for 𝑅/10 ≲ 𝑑 < 𝑅 (50 nm ≲

𝑑 < 500 nm for 𝑅 = 500 nm), and nonuniform field error dominates cases for 𝑑 ≲ 𝑅/10 (𝑑 ≲

50 nm for 𝑅 = 500 nm). As the vacuum separation distance is reduced below the length scale of 

the subvolumes (𝑑 < 𝐿𝑠𝑢𝑏 , where 𝐿𝑠𝑢𝑏 = (Δ𝑉)1 3⁄ ), the fields within subvolumes at adjacent 

surfaces of the spheres display nonnegligible variation and can no longer be approximated as 

uniform. Since NFRHT between SiO2 surfaces is dominated by SPhPs with penetration depth 

approximately equal to the vacuum separation distance 𝑑  [89], accurate description of the 
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exponentially decaying field within the sphere requires that 𝑑 < 𝐿𝑠𝑢𝑏 [67]. The subvolume size 

for the 500-nm-radius spheres is 𝐿𝑠𝑢𝑏 = 45.3 nm for cases in which 𝑑 ≤ 100 nm, so the error 

trend changes when the vacuum separation distance is reduced below 45.3 nm. This can be seen 

in FIG 3(b) from the change in the error curve at the local maximum around a 𝑑 value of 42 nm. 

Note that for 50-nm-radius spheres, the vacuum separation distance never falls below the 

subvolume size (𝐿𝑠𝑢𝑏 = 6.2 nm for all 𝑑 values), so this type of error does not arise in FIG 3(a). 

The error in the DSGF-calculated total conductance is still relatively low at small vacuum 

separation distances 𝑑 < 𝑅 (less than 8% and 13% for 𝑅 = 50 nm and 500 nm, respectively). If 

increased accuracy is desired, both shape error and the error due to nonuniform fields within a 

subvolume can be reduced by refining the discretization with smaller subvolumes. Alternatively, 

when 𝑑 ≪ 𝑅 , the proximity approximation [90], in which NFRHT is approximated as a 

summation of local conductance between two parallel surfaces with varying vacuum separation 

distances, is applicable provided that the spheres are optically thick [67]. When these conditions 

are satisfied, it may be simpler to calculate NFRHT between spheres via the proximity 

approximation than the DSGF method with refined discretization.  

 In FIG 3(a), the increase in error at large vacuum separation distances 𝑑 > 20𝑅  (𝑑 >

1000 nm) is due to additive numerical error stemming from over-discretization of the thermal 

objects [67]. This error may be reduced to < 1%  by changing the discretization from many 

subvolumes to one subvolume per sphere (FIG 4). The DSGF method with one subvolume per 

object is equivalent to the many-body approach developed by Ben-Abdallah et al. [55,56] 

discussed in Sec. II. The many-body approach is similar to analytical dipole approximations of 

NFRHT [91] except that multiple scattering effects are included. Both the many-body 

approximation and the DSGF method with one subvolume per object are appropriate when the 
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vacuum separation distance between objects is sufficiently large compared to the size of the objects 

and when the object size is much smaller than the thermal wavelength. For the 50-nm-radius 

spheres presented here, appropriate vacuum separation distances for application of the many-body 

approximation are 𝑑 > 20𝑅 (𝑑 > 1000 nm) (FIG 4).  

 

 

FIG 4. Comparison of the total conductance at 𝑇 = 300  K between two 50-nm-radius SiO2 spheres calculated 

analytically [54] and by the DSGF method when one subvolume per sphere is used in the discretization. Vacuum 

separation distance is varied as 10 nm ≤ 𝑑 ≤ 10 μm. The relative error between the DSGF and analytical solution is 

calculated as 
𝐺𝑡,12

𝐷𝑆𝐺𝐹−𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 .  

In addition to the total conductance, we verified that the DSGF method accurately captures 

the spectral behavior of NFRHT. Plots of spectral conductance for spheres of radii R = 50 nm and 

500 nm and vacuum separation distances 𝑑 ≈ 𝑅  and 𝑑 ≈ 20𝑅  are provided in Sec. S3 of the 

Supplemental Material [88].  
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B. Linear chain of three spheres 

 In order to verify that the DSGF method may be extended to systems which include more 

than two objects, we model a linear chain of three dielectric spheres made of SiO2. The same values 

of radius, vacuum separation distance, and subvolume size are used as those in the two-sphere 

analysis. Similar to the two-sphere cases, the DSGF method shows good agreement with the 

analytical solution for three spheres when proper discretization is applied (FIG 5). The total 

conductance between neighboring spheres (𝐺𝑡,12) follows error trends similar to the two-sphere 

cases at close vacuum separation distances when over-discretization error is negligible. For the 

two outer spheres, the error in the total conductance (𝐺𝑡,13) displays less variation than that for the 

neighboring spheres. The three-sphere error trends deviate from the two-sphere cases only at large 

vacuum separation distances (𝑑 > 1000 nm). At large vacuum separation distances, the over-

discretization error in the three-sphere systems is greater than that for two spheres. This is expected 

from the addition of the third discretized sphere and increase in the total number of subvolumes. 

As before, this error at large vacuum separation distances can easily be reduced to less than 1% 

for both 𝐺𝑡,12 and 𝐺𝑡,13 when spheres are discretized into one subvolume per sphere (see Sec. S4 

of the Supplemental Material [88]). From these results, we conclude that the DSGF method can 

accurately model NFRHT between multiple three-dimensional objects.  
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FIG 5. Comparison of the total conductance at 𝑇 = 300 K between three SiO2 spheres calculated analytically [54] 

and by the DSGF method. Linear chain of spheres of radii (a) 𝑅 = 50 nm and (b) 𝑅 = 500 nm are modeled for 

variable vacuum separation distance, 10 nm ≤ 𝑑 ≤ 10 μm . 50-nm-radius spheres are discretized into 𝑁𝑠𝑝ℎ𝑒𝑟𝑒 =

2176  subvolumes per sphere for all vacuum separation distances. 500-nm-radius spheres are discretized into 

𝑁𝑠𝑝ℎ𝑒𝑟𝑒 = 5616 subvolumes per sphere for 𝑑 ≤ 100 nm and into 𝑁𝑠𝑝ℎ𝑒𝑟𝑒 = 2176 subvolumes per sphere for 𝑑 >

100 nm . The relative error between the DSGF and analytical solution is calculated as 
𝐺𝑡,12

𝐷𝑆𝐺𝐹−𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝐺𝑡,12
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙  and 

𝐺𝑡,13
𝐷𝑆𝐺𝐹−𝐺𝑡,13

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝐺𝑡,13
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 .  

From all the verification checks for two and three spheres presented in Sec. III, the DSGF 

method is deemed suitable for the study of NFRHT between irregularly shaped particles for which 

no analytical solutions exist. NFRHT between irregularly shaped dielectric particles is discussed 

next.  

IV. NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN IRREGULARLY 

SHAPED DIELECTRIC PARTICLES 

 We apply the DSGF method to model NFRHT between two irregularly shaped SiO2 

particles embedded in vacuum. Particle dimensions, discretizations, and separation distances are 

chosen to minimize numerical error in the DSGF model. Based on verification results for 50-nm-

radius spheres, minimal numerical error is expected for subvolume lengths 𝐿𝑠𝑢𝑏 ≲ 6 nm, and 
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vacuum separation distances in the range 4𝐿𝑠𝑢𝑏 ≲ 𝑑 ≲ 20𝑅 . As such, all irregularly shaped 

particles are modeled with subvolume lengths 𝐿𝑠𝑢𝑏 = 3.8 nm and equivalent radii in the range 

35 nm < 𝑅𝑒𝑞 < 50 nm. Equivalent radii are defined as the radii of perfect spheres of equivalent 

volume as the irregularly shaped particles. Since the vacuum separation distance 𝑑 of irregularly 

shaped particles varies with particle orientation, we use the center-of-mass separation distance 𝑑𝑐 

to describe particle systems in this section. The center-of-mass separation distance is independent 

of particle orientation and is therefore a more general parameter for calculating NFRHT trends. 

We compare the conductance calculated between spheres and irregularly shaped particles of 

equivalent center-of-mass separation distance 𝑑𝑐 . The corresponding range of center-of-mass 

separation distances that ensures minimal error is (4𝐿𝑠𝑢𝑏 + 𝑅𝑒𝑞,1 + 𝑅𝑒𝑞,2) ≲ 𝑑𝑐 ≲ (20 ×

min[𝑅𝑒𝑞,1, 𝑅𝑒𝑞,2] + 𝑅𝑒𝑞,1 + 𝑅𝑒𝑞,2).  

 We model two types of irregularly shaped particles: particles with mild distortion and 

particles with high distortion from perfect spherical geometry. Particle distortion is quantified 

using the Gaussian random sphere method [92–94]. In this approach, the particle surface is defined 

with a randomly weighted linear combination of spherical harmonics. The radius and real-valued 

logarithmic radius of the Gaussian random sphere are, respectively,  

𝑟(𝜃, 𝜑) =
𝑎 exp[𝑠(𝜃,𝜑)]

√1+𝜎2
 (27) 

and  

𝑠(𝜃, 𝜑) = ∑ ∑ 𝑠ℓ𝑚𝑌ℓ
𝑚(𝜃, 𝜑)ℓ

𝑚=−ℓ
∞
ℓ=0 , (28) 

where 𝜃 is the polar angle, 𝜑 is the azimuthal angle, 𝑎 is the mean radius, 𝜎 is the relative standard 

deviation of the radius, 𝑠ℓ𝑚 are randomly generated spherical harmonic coefficients, and 𝑌ℓ
𝑚 are 

the orthonormal spherical harmonics. Deviation from perfect spherical geometry is characterized 

by the relative standard deviation of the radius 𝜎 and the correlation length of angular change 𝐿𝑐 
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(see Refs. [92–94] for detailed explanation). In this work, the correlation length of angular change 

is held constant at 𝐿𝑐 = 2 sin (
Γ

2
) with correlation angle set at Γ = 30°, and the relative standard 

deviation of the radius is varied as 𝜎 = 0.2 (mild distortion) and 𝜎 = 0.8 (high distortion). The 

spherical harmonic series defining the radius vector of the Gaussian random particles is truncated 

at ℓ = 10, a value deemed sufficient by previous light scattering studies [94,95].  

 Using this approach, we model systems of two SiO2 particles of the same degree of 

distortion but unique morphology. Individual particle morphology is maintained with increasing 

level of distortion by implementing the same Gaussian random variables for a given particle. 

Distortion can then be amplified by increasing the standard deviation of the radius 𝜎 for the given 

set of Gaussian random variables (FIG 6). This approach ensures that particles are of completely 

irregular shape and allows for direct comparison of conductance as a function of the degree of 

particle distortion. 

 

FIG 6. Gaussian random sphere representation of irregularly shaped particles. The relative standard deviation of the 

radius is varied to define mildly (𝜎 = 0.2) and highly (𝜎 = 0.8) distorted particles. Particle morphology is kept 

constant with increasing particle distortion.  

The total conductance between irregularly shaped particles, normalized with respect to the 

conductance of comparable perfect spheres with equivalent volume and center-of-mass separation 
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distance, is calculated at room temperature (𝑇 = 300  K) and is shown in FIG 7. Geometric 

irregularity most strongly affects the total conductance at close separation distances. For center-

of-mass separation distances 𝑑𝑐 < 300 nm, increasing distortion is associated with lower total 

conductance with respect to that of comparable perfect spheres. At the closest center-of-mass 

separation distance (𝑑𝑐 = 110 nm), the total conductance for mildly and highly distorted particles 

is reduced to respectively 78% and 64% of the total conductance of comparable perfect spheres. 

At larger center-of-mass separation distances (𝑑𝑐 ≳ 300  nm), the total conductance for both 

mildly and highly distorted particles reaches a plateau of 95% of the total conductance of 

comparable perfect spheres. Based on the analysis in Sec. III, this 5% difference is close to the 

numerical error in the DSGF model (< 3%, see FIG 3(a)). As such, we conclude that distortion 

most significantly affects the total conductance of 𝑅𝑒𝑞 ≈ 35–50  nm particles when they are 

closely spaced (𝑑𝑐 < 300 nm), and the total conductance of these particles can be approximated 

by that of perfect spheres at larger center-of-mass separation distances (𝑑𝑐 ≳ 300 nm).  
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FIG 7. Normalized total conductance as a function of the center-of-mass separation distance for mildly distorted (𝜎 =

0.2, 𝑅𝑒𝑞,1 = 49.3 nm, 𝑅𝑒𝑞,2 = 44.5 nm, 𝑁 = 16,605 total subvolumes) and highly distorted (𝜎 = 0.8, 𝑅𝑒𝑞,1 = 45.8 

nm, 𝑅𝑒𝑞,2 = 37.9 nm, 𝑁 = 10,948 total subvolumes) particles, where 𝑅𝑒𝑞 is the equivalent radius of a perfect sphere 

with the same volume as the irregularly shaped particle. The total conductance between irregularly shaped particles is 

normalized with respect to the conductance of comparable perfect spheres with equivalent volume and center-of-mass 

separation distance.  

The underlying physics driving NFRHT between irregularly shaped particles can be 

revealed through further analysis of the spatial distribution of power dissipation (FIG 8) and the 

spectral conductance (FIG 9). In the following, we focus on highly distorted particles (𝜎 = 0.8), 

though similar, albeit less exaggerated, trends are observed for the mildly distorted particles (𝜎 =

0.2). We first analyze particles at the closest center-of-mass separation distance 𝑑𝑐 = 110 nm 

where particle size is larger than the vacuum separation distance between the closest surfaces 𝑑 =

31 nm. Next, we consider a larger center-of-mass separation distances (𝑑𝑐 = 337 nm) for which 

the normalized total conductance has converged to 95%. For this second case, particle size is 

smaller than the vacuum separation distance between the closest surfaces 𝑑 = 246 nm.  

The spatial distribution of power dissipation illustrates that heat transfer is confined to the 

nearest surfaces of closely spaced particles (FIG 8(a), 𝑑𝑐 = 110 nm). In this regime, NFRHT is 
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mostly a surface process dominated by SPhPs with penetration depth 𝛿 approximately equal to the 

vacuum separation distance ( 𝛿 ≈ 𝑑 = 31  nm) [89]. From these results, the decreased total 

conductance seen at small center-of-mass separation distances in FIG 7 can be attributed to the 

fact that irregularly shaped particles have a smaller volume contributing to NFRHT than do 

comparable perfect spheres. At a farther center-of-mass separation distance, heat transfer is spread 

more evenly across the entire volume of particles (FIG 8(b), 𝑑𝑐 = 337  nm). In this regime, 

NFRHT is a volumetric process rather than a surface one and is dominated by localized surface 

phonons (LSPhs) arising from the confinement of SPhPs in subwavelength particles. Therefore, 

since the volumes of irregularly shaped particles and comparable perfect spheres are the same, the 

total conductance of irregularly shaped particles at 𝑑𝑐 = 337 nm is effectively the same as that of 

comparable perfect spheres, within the margin of error of the DSGF method.  
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FIG 8. Spatial distribution of power dissipation within each subvolume for two highly distorted particles (𝜎 = 0.8, 

𝑅𝑒𝑞,1 = 45.8 nm, 𝑅𝑒𝑞,2 = 37.9 nm, 𝑁 = 10,948 total subvolumes) at center-of-mass separation distances (a) 𝑑c =

110 nm and (b) 𝑑𝑐 = 337 nm (arrows denote which particles are interacting). Negative values represent heat loss, and 

positive values represent heat gain. The high-temperature particle (blue color scheme since thermal energy is lost) is 

set at 𝑇 = 300 K, and the low-temperature particle (red color scheme since thermal energy is gained) is set at 𝑇 =

0 K. For 𝑑𝑐 = 110 nm, 80% of all power dissipation occurs at adjacent surfaces within 34% of the volume of particle 

1 and 53% of the volume of particle 2. For 𝑑𝑐 = 337 nm, 80% of all power dissipation occurs within 67% of the 

volume of particle 1 and 71% of the volume of particle 2.  

The spectral conductance at both small and large center-of-mass separation distances 

exhibits low- and high-frequency resonances in the Reststrahlen spectral bands of SiO2 (~ 8.691 ×

1013 to 9.656 × 1013 rad/s and ~ 2.038 × 1014 to 2.327 × 1014 rad/s) where the real component 

of the dielectric function is negative (FIG 9). For 𝑑𝑐 = 110 nm, the resonances are due to SPhPs, 
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whereas the resonances for 𝑑𝑐 = 337  nm are dominated by LSPhs. Across both separation 

distances, the spectral conductance of irregularly shaped particles displays damping and 

broadening of resonances (i.e., reduced spectral coherence) as compared with that of comparable 

perfect spheres. From the full width at half maximum values of each resonance, we estimate that 

the low- and high-frequency resonances at 𝑑𝑐 = 110 nm are respectively 57% and 90% broader 

for irregularly shaped particles than resonances of comparable perfect spheres. The corresponding 

broadening values for the 𝑑𝑐 = 337 nm particle system increases to 64% and 174%, respectively. 

The spectral conductance at other frequencies remains unchanged, because NFRHT at these 

frequencies is mediated by propagating and frustrated modes (i.e., bulk modes) rather than 

resonant modes (i.e., SPhPs and LSPhs).  

At the closest center-of-mass separation distance of 110 nm where NFRHT is essentially a 

surface process, SPhP resonances for the case of perfect spheres arise at frequencies where the real 

component of the dielectric function of SiO2 is approximately equal to -1 (slight deviation from 

this value occurs due to nonnegligible losses) [15]. For irregularly shaped particles, damping and 

broadening of resonances can be attributed to coupling of SPhPs within the random distorted 

features of the particles at adjacent surfaces. This effect is similar to the well-known phenomenon 

of SPhP coupling in thin films that leads to resonance splitting into symmetric and antisymmetric 

modes. For NFRHT between thin films, resonance splitting is visible in the spectral conductance 

when the film thickness is comparable to or smaller than the vacuum separation distance [96,97]. 

This leads to SPhP resonance broadening and damping compared to the case of thick materials 

since the resonant frequencies of the symmetric and antisymmetric modes can take any values 

within the Reststrahlen bands and depend on the film thickness and vacuum separation distance. 

For the irregularly shaped particles presented here, the distorted features are on the order of or 
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smaller than the vacuum separation distance. As such, SPhPs dominating NFRHT with penetration 

depth approximately equal to or larger than the length scale of the distorted features may couple 

within these features and alter the spectrum of conductance, thus resulting in resonance broadening 

and damping. In addition, owing to the randomness of the irregularly shaped particles, the resonant 

frequencies of particle 1 are unlikely to be the same as those of particle 2. These non-matching 

resonances reduce spectral coherence.  

The increased resonance broadening at larger center-of-mass separation distances stems 

from the transition of NFRHT from a SPhP-mediated surface phenomenon to a LSPh-mediated 

volumetric phenomenon. Since LSPhs arise from the confinement of SPhPs in particles, their 

resonance frequencies depend strongly on the particle geometry [98,99]. The irregularly shaped 

particles presented here are defined as Gaussian random spheres, such that the overall particle 

geometry is the aggregate of many distinct spherical harmonic morphologies (see Sec. S5 of the 

Supplemental Material [88]). Each of the spherical harmonic morphologies support LSPhs with 

resonances that depend on the shape. This claim can be better understood by using the electric 

dipole approximation (in vacuum) to determine LSPh resonance conditions of a few spherical 

harmonic morphologies.  

Power dissipation in an electric dipole is proportional to Im(𝛼𝑖), where 𝛼𝑖 is the dipole 

polarizability tensor (𝑖 = 𝑥, 𝑦, 𝑧) defined as [100]  

𝛼𝑖 =
4𝜋

3
𝜀0𝑎𝑥𝑎𝑦𝑎𝑧

𝜀(𝜔)−1

1+𝐿𝑖[𝜀(𝜔)−1]
. (29) 

The physical dimensions of the dipole are given by 𝑎𝑥 , 𝑎𝑦  and 𝑎𝑧 , whereas 𝐿𝑖  are factors 

determined from the dipole geometry (see Refs. [100,101] for details). Since the spherical 

harmonics are multiplied by randomly generated coefficients 𝑠ℓ𝑚 (see Eq. (28)), the morphologies 

for particles 1 and 2 are generally different. This implies that, in general, LSPh resonances for 
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particles 1 and 2 are different for a given spherical harmonic morphology ℓ . The spherical 

harmonic morphology for ℓ = 0  is a sphere. For this case, 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧  = 1/3, and LSPh 

resonance occurs when |𝜀 + 2| is minimum for both particles 1 and 2. When losses are neglected, 

this corresponds to Re(𝜀) = −2 which is the Fröhlich resonance condition [101]. For ℓ = 1, the 

spherical harmonic morphology is a slightly distorted sphere, such that the aforementioned 

Fröhlich resonance condition can still be used as a reasonable approximation for both particles 1 

and 2. For ℓ = 2, the spherical harmonic morphology can be approximated by an ellipsoid. Here, 

different resonance conditions are obtained for particles 1 and 2 since their dimensions are 

different. For particle 1, we estimate that 𝐿𝑥 = 0.195, 𝐿𝑦 = 0.300, and 𝐿𝑧 = 0.505. This results in 

three distinct LSPh resonances that are satisfied when |𝜀 + 4.13|, |𝜀 + 2.33|, and |𝜀 + 0.98| are 

minimum. For particle 2, we estimate that 𝐿𝑥 =  0.494, 𝐿𝑦 =  0.396, and 𝐿𝑧 =  0.110. LSPh 

resonances for this case arise when |𝜀 + 1.02| , |𝜀 + 1.53| , and |𝜀 + 8.09|  are minimum. We 

expect that a similar process can be applied to higher order spherical harmonic morphologies. 

Therefore, when all spherical harmonic morphologies are summed to form one irregularly shaped 

particle, the final particle should support all the individual LSPhs, thus leading to resonance 

damping and broadening. Similar damping and broadening effects have been reported in 

electromagnetic scattering studies of continuous distributions of ellipsoids that support a range of 

distinct LSPh resonances [100,102]. Finally, in addition to irregularly shaped particles supporting 

a large number of LSPh modes, we expect that resonance mismatch further reduces spectral 

coherence between particles 1 and 2 starting at the ℓ = 2 spherical harmonic morphology.  
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FIG 9. Spectral conductance at 𝑇 = 300 K for two highly distorted particles (𝜎 = 0.8, 𝑅𝑒𝑞,1 = 45.8 nm, 𝑅𝑒𝑞,2 = 37.9 

nm, 𝑁 = 10,948 total subvolumes) at center-of-mass separation distances (a) 𝑑c = 110 nm and (b) 𝑑𝑐 = 337 nm. 

Results are compared against the spectral conductance for two perfect spheres with the same volume and center-of-

mass separation distance as the irregularly shaped particles.  

V. CONCLUSIONS 

 We formulated the DSGF method, which is a volume integral approach based on 

fluctuational electrodynamics, for predicting NFRHT between finite, three-dimensional objects. 

The strengths of the DSGF method are that it defines all system interactions independent of the 

physics of thermal excitation and outputs a general system Green’s function parameter to define 

the system response. We verified the DSGF method against the analytical solution for chains of 

two and three SiO2 spheres embedded in vacuum. Good agreement was found between the DSGF 

calculations and analytical solutions. For discretizations in the range of ~2000-6000 subvolumes 

per sphere, the error in the DSGF-calculated total conductance was below 3% and 5% in cases of 

two 50-nm-radius spheres and two 500-nm-radius spheres, respectively, at vacuum separation 

distances in the range 𝑅 ≲ 𝑑 ≲ 20𝑅. 

After verification, we applied the DSGF method to study NFRHT in the hitherto unstudied 

systems of irregularly shaped SiO2 particles, with geometric distortion modeled using the Gaussian 
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random sphere technique. The DSGF results illustrated that, at vacuum separation distances 

smaller than the particle size (i.e., when NFRHT is essentially a surface phenomenon), irregular 

geometry led to reduction in the total conductance from that of comparable perfect spheres. We 

showed that geometric effects are negligible when calculating total conductance values at vacuum 

separation distances larger than the particle size (i.e., when NFRHT is a volumetric phenomenon). 

In this regime, even highly distorted particles may be approximated by comparable perfect spheres 

when the total conductance is desired. For such cases, computationally inexpensive analytical 

solutions for spheres can be used with little loss of accuracy, and the high computational costs 

inherent to full-scale numerical models can be avoided.  

 Particle irregularity resulted in reduced spectral coherence (i.e., broadening and damping 

of resonances) regardless of the separation distance. When particle size was larger than the vacuum 

separation distance, the reduced spectral coherence was attributed to coupling of SPhPs within the 

distorted features of the particles. We showed that reduction of spatial coherence was exacerbated 

by increasing the separation distance. For the case in which particle size was smaller than the 

vacuum separation distance, we attribute further resonance broadening to the existence of multiple, 

distinct LSPh modes supported by the individual spherical harmonic morphologies that compose 

the Gaussian random spheres. From these spectral analyses, we conclude that it is necessary to use 

a numerical method like the DSGF to capture geometry-dependent effects and accurately model 

the spectrum of NFRHT, especially around SPhP and LSPh resonances.  

The results presented in this work have important implications for thermal management in 

micro/nanoscale devices composed of dielectric particles. In particular, these results highlight that 

geometric defects in real manufactured particles may significantly affect thermal transport and 

should be modeled rigorously in closely spaced particle designs. Additionally, when the goal is to 
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engineer the spectrum of NFRHT via metamaterials made of particles, it is crucial that full-scale 

models such as the DSGF be used to account for the impact of geometric irregularities on 

resonances. As this is the first time in which NFRHT has been studied between irregularly shaped 

particles, open questions remain. Future research should identify effects of other distortion 

parameters (such as the correlation length of angular change in the Gaussian random sphere 

characterization), compare thermal radiation models to real manufactured particle beds [103], and 

determine more general trends of particle irregularity on thermal radiation by incorporating 

orientation averaging, although we expect that orientation averaging will lead to qualitatively 

similar results. 
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APPENDIX A: HOMOGENEOUS SOLUTION OF THE WAVE EQUATION FOR THE 

TOTAL ELECTRIC FIELD 

The homogeneous solution 𝐄0(𝐫,𝜔) of Eq. (3) satisfies the wave equation (7). The wave 

equation (7) may be rearranged into yet another nonhomogeneous wave equation by moving the 

relative dielectric function, 𝜀𝑟(𝐫,𝜔), to the right-hand side 

∇ × ∇ × 𝐄0(𝐫, 𝜔) − 𝑘0
2𝜀𝑟𝑒𝑓(𝜔)𝐄0(𝐫,𝜔) = 𝑖𝜔𝜇0𝐉

(eq,0)(𝐫,𝜔), 𝐫 ∈ ℜ3,  (A1) 

where 𝐉(eq,0) is the equivalent (induced) current density acting as a scattering source due to an 

external exciting field. 𝐉(eq,0) is defined as [104] 

𝐉(eq,0)(𝐫,𝜔) =  −𝑖𝜔𝜀0𝜀𝑟(𝐫,𝜔)𝐄0(𝐫,𝜔), 𝐫 ∈ ℜ3.  (A2) 

Eq. (A1) may be solved as the summation of the homogeneous and particular solutions,  

𝐄0(𝐫, 𝜔) = 𝐄0,0(𝐫,𝜔) + 𝐄0,p(𝐫,𝜔).  (A3) 

The homogeneous solution 𝐄0,0(𝐫,𝜔) of Eq. (A1) satisfies the following wave equation:  

∇ × ∇ × 𝐄0,0(𝐫,𝜔) − 𝑘0
2𝜀𝑟𝑒𝑓(𝜔)𝐄0,0(𝐫,𝜔) = 𝟎,  r ∈ ℜ3. (A4) 

Since this equation describes the electric field that would exist in the lossless background reference 

medium without any objects present, the solution is any externally imposed exciting field (i.e., 

incident field) satisfying Eq. (A4).  

The particular solution 𝐄0,p(𝐫,𝜔) of Eq. (A1) is the scattered electric field from the objects 

illuminated by an external exciting field and may be solved for by using the volume integral 

technique 

𝐄0,p(𝐫, 𝜔) = 𝑖𝜔𝜇0 ∫ 𝐆0(𝐫, 𝐫′, 𝜔) 𝐉(eq,0)(𝐫′, 𝜔)
𝑉

𝑑3𝐫′,   𝐫 ∈ ℜ3,  (A5) 

where 𝐆0(𝐫, 𝐫′, 𝜔) is the free-space Green’s function with known analytical form [76,77] and 

integration is over all real space. Numerical solution of 𝐄0(𝐫, 𝜔) for scattering objects embedded 

in a lossless background reference medium may be obtained by the well-established discrete dipole 
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approximation (DDA) method from the light-scattering literature. Open-source DDA programs 

applicable to three-dimensional arbitrary geometries are widely available (e.g., ADDA [105,106] 

and DDSCAT [107,108]). 

The complete solution to Eq. (3) in expanded form is thus 

𝐄(𝐫, 𝜔)  

= 𝐄0,0(𝐫, 𝜔) + 𝑖𝜔𝜇0 ∫ 𝐆0(𝐫, 𝐫′, 𝜔) 𝐉(eq,0)(𝐫′, 𝜔)
𝑉

𝑑3𝐫′ + 𝑖𝜔𝜇0 ∫ 𝐆(𝐫, 𝐫′, 𝜔)𝐉(eq)(𝐫′, 𝜔)
𝑉

𝑑3𝐫′, 𝐫 ∈ ℜ3.  (A6) 

Here, Eq. (A6) is general, and integration spans all real space. In the case of a lossless background 

reference medium, integration will be restricted to the domain of the thermal objects, 𝑉𝑡ℎ𝑒𝑟𝑚. 

APPENDIX B: DISCRETIZED FREE-SPACE GREEN’S FUNCTION 

The discretized version of the free-space Green’s function is [66,76,77] 

𝐆0(𝐫𝑖, 𝐫𝑗 , 𝜔) =
exp(𝑖𝑘0√𝜀𝑟𝑒𝑓(𝜔)𝑟𝑖𝑗) 

4𝜋𝑟𝑖𝑗

[
 
 
 
 
 
 

(1 −
1

𝜀𝑟𝑒𝑓(𝜔)(𝑘0𝑟𝑖𝑗)
2 +

𝑖

𝑘0√𝜀𝑟𝑒𝑓(𝜔)𝑟𝑖𝑗

) 𝐈̿ 

−(1 −
3

𝜀𝑟𝑒𝑓(𝜔)(𝑘0𝑟𝑖𝑗)
2 +

3𝑖

𝑘0√𝜀𝑟𝑒𝑓(𝜔)𝑟𝑖𝑗

)(𝐫̂𝑖𝑗𝐫̂𝑖𝑗
†)

]
 
 
 
 
 
 

 for 𝑗 ≠ 𝑖, (B1) 

where 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗|, 𝐫̂𝑖𝑗 =
(𝐫𝑖−𝐫𝑗)

|𝐫𝑖−𝐫𝑗|
 and † signifies the conjugate transpose. At the point 𝐫𝑖 = 𝐫𝑗, the 

free-space Green’s function has a singularity. This singularity is circumvented by employing the 

principal value technique as presented by van Bladel [83] and Yaghjian [84]. For a cubic mesh, 

the principal value solution of the singularity point is 

𝐆0(𝐫𝑖, 𝐫𝑗 , 𝜔)  

=
𝐈̿

3∆𝑉𝑗𝜀𝑟𝑒𝑓(𝜔)𝑘0
2 { 2 [𝑒

𝑖𝑎𝑗𝑘0√𝜀𝑟𝑒𝑓(𝜔)
(1 − 𝑖𝑎𝑗𝑘0√𝜀𝑟𝑒𝑓(𝜔)) − 1] − 1 }  for 𝑗 = 𝑖,  (B2) 

where 𝑎𝑗 is the equivalent radius of a subvolume defined as 𝑎𝑗 = (
3∆𝑉𝑗

4𝜋
)

1

3
.  
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APPENDIX C: COMPARISON OF THE DSGF AND TDDA METHODS 

In both the TDDA and DSGF methods, power dissipation is proportional to the unknown 

quantity 𝐗̿ that satisfies a matrix equation of the form 

𝐀̿𝐗̿𝐀̿† = 𝐁̿, (C1) 

where 𝐀̿  and 𝐁̿  are known matrices. In the TDDA, 𝐀̿  is the interaction matrix, 𝐗̿  is the 

autocorrelation of the total dipole moments 〈𝐏̅(total)𝐏̅(total)†〉 , and 𝐁̿  is the diagonal matrix 

representing the autocorrelation of thermally fluctuating dipole moments 〈𝐏̅(fl)𝐏̅(fl)†〉. In this way, 

Eq. (C1) in the TDDA is written as 

𝐀̿ 〈𝐏̅(total)𝐏̅(total)†〉 𝐀̿† = 〈𝐏̅(fl)𝐏̅(fl)†〉. (C2) 

Mathematically, Eq. (C2) is the eigendecomposition of the Hermitian matrix 〈𝐏̅(total)𝐏̅(total)†〉 

into its real eigenvalues 〈𝐏̅(fl)𝐏̅(fl)†〉 and orthogonal eigenvectors 𝐀̿−1. 

In the DSGF method, 𝐀̿ in Eq. (C1) is the same interaction matrix as in the TDDA, the unknown 

𝐗̿ is the outer product of the system Green’s function 𝐆𝐆†, and 𝐁̿ is the outer product of the free-

space Green’s function 𝐆0𝐆0†
. Eq. (C1) in the DSGF method becomes 

𝐀̿𝐆𝐆†𝐀̿† = 𝐆0𝐆0†
. (C3) 

In the TDDA approach, Eq. (C2) must be solved directly for the unknown matrix 

〈𝐏̅(total)𝐏̅(total)†〉. The DSGF approach, on the other hand, allows alternative solution methods for 

the unknown 𝐆𝐆† matrix by first solving the simpler equation 

𝐀̿𝐆 = 𝐆0, (C4) 

where the system Green’s function is the unknown. The TDDA cannot be simplified in this manner 

because of its reliance on autocorrelation functions of stochastic dipole moments in Eq. (C2).  
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Setting up the system of equations as Eq. (C4) provides the DSGF approach with two 

advantages over the TDDA. First, the system Green’s function of the DSGF approach is a more 

general parameter than the autocorrelation of total dipole moments found in the TDDA. By solving 

directly for the system Green’s function in Eq. (C4), the DSGF method outputs the general 

electromagnetic response of the system to any induced source, whether it be generated thermally 

or otherwise. In this way, the solution to the main system of equations in the DSGF approach may 

be post-processed to solve for a variety of quantities of interest. Conversely, the autocorrelation of 

total dipole moments in the TDDA is a decisively thermal quantity. The second advantage of the 

DSGF approach is that the DSGF matrix equation provided in Eq. (C4) is of the familiar 𝐀̿𝐗̿ = 𝐁̿ 

form. This matrix form has more known solution algorithms than the matrix equations (C1)–(C3) 

of form 𝐀̿𝐗̿𝐀̿† = 𝐁̿ . As such, well-known algorithms may be applied directly in the DSGF 

approach to reduce computational loads.  
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