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In graphene, a Kekulé-Y bond texture modifies the electronic band structure generating two
concentric Dirac cones with different Fermi velocities lying in the Γ-point in reciprocal space. The
energy dispersion results in different group velocities for each isospin component at a given energy.
This energy spectrum combined with the negative refraction index in p-n junctions, allows the
emergence of an electronic analog of optical birefringence in graphene. We characterize the valley
birefringence produced by a circularly symmetric Kekulé patterned and gated region using the
scattering approach. We found caustics with two cusps separated in space by a distance dependent on
the Kekulé interaction and that provides a measure of its strength. Then, at low carrier concentration
we find a non-vanishing skew cross section, showing the asymmetry in the scattering of electrons
around the axis of the incoming flux. This effect is associated with the appearance of the valley
Hall effect as electrons with opposite valley polarization are deflected towards opposite directions.

I. INTRODUCTION

The similarities between the Helmholtz and
Schrödinger equations result in photons and electrons
displaying similar wave phenomena1. Furthermore, the
propagation of electrons through the two-dimensional
honeycomb arrangement of carbon atoms, known as
graphene, leads to the dressing of electronic states as
massless Dirac-like electronic excitations residing at
opposite corners of the Brillouin zone2, thus augment-
ing the analogies between the electronic and optical
phenomena. The ability to control the charge carriers
group velocity via graphene gating3 has led to the
prediction and experimental realization of electronic
Veselago lensing, where incoming divergent rays become
convergent after refraction on a flat surface with a
negative index of refraction 4,5. The sensitivity of
this lensing to the conduction electrons properties aids
the detection of anisotropies and tilting of the Dirac
cones6,7, the presence of strain8, and disorder9. Veselago
lensing also facilitates the waveguiding of electrons
in p-n junctions10,11 and in circular geometries12 as
well as the emergence of caustics (wave envelopes of
refracted electrons) which often have cusp singularities.
Moreover, similar to optical birefringence in anisotropic
crystals, where the group velocity depends on light
polarization13 and thus incoming light rays can be
split in two, spin birefringence for electrons emerges in
graphene due to the Rashba spin-orbit interaction14,15

which leads to distinct Fermi velocities for each spin
component. In circular geometries, spin birefringence
brings about the formation of caustics with two cusps,
with a space separation that depends on the strength of
the Rashba spin-orbit coupling16,17. However, spin-orbit
interactions in graphene are small which the detection

of spin-birefringence experimentally challenging.

In addition to spin, electrons in graphene possess the
valley degree of freedom18. The valleys in graphene have
a large separation in momentum space19, which suggests
that this degree of freedom can be potentially used in ap-
plications where it will play a role similar to spin in spin-
tronics20,21. The field that aims to manipulate and con-
trol the valley degree of freedom in applications is known
as valleytronics22–34. Similar to spin-orbit interactions
in spintronics, interactions contrasting the degenerate
valleys in graphene play an essential role in valleytron-
incs. Such interactions include the Kekulé patterning
of graphene35,36,i.e., the periodic bond modulation of
the graphene lattice. Depending on the bond modu-
lation pattern37 two different Kekulé distortions phases
can emerge: the Kekulé-Y38 found in graphene deposited
on Cu[111] and the Kekulé-O39–43 that arises in bilayer
graphene intercalated with Li. The tight-binding calcula-
tions by Gamayun et al.37 found that Kekulé-Y produces
an effective interaction that leads to valley-momentum
locking, while Kekulé-O leads to the formation of a gap
in the electronic spectrum.

Kekulé-Y patterned graphene, breaks a valley degen-
eracy through valley-momentum locking which produces
a low energy spectrum with two nested Dirac cones
with different Fermi velocities37. The energy-momentum
dispersion modification caused by Kekulé-Y patterning
leads to drastic modifications in the magnetic and op-
tical response of graphene44–49, and crucially aids the
control of the valley degree of freedom in the electronic
transport50–57. In this paper we study the scattering
of Dirac fermions from circularly Kekulé-Y-patterned re-
gions in the semiclassical limit and we explore the effects
of this interaction on electron optics and the appearance
of valley birefringence. We also investigate the scattering
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of charge carriers in graphene from short-range scattering
regions with locally enhance Kekulé-Y interactions due
to adatom deposition. Our analysis of the total, trans-
port, and skew cross sections for these short-range scat-
terers reveals the dependence of these cross sections on
the strength of the Kekulé-Y interaction and we show the
appearance of a valley Hall effects due to skew scattering
from these scatterers.

The layout of this work is as follows. In section II we
present the model, section III is devoted the scattering
calculations. Valley birrefringence is analyzed in section
IV, while in section V we study the low-energy scattering.
Finally, we conclude by discussing our main findings.

II. MODEL

Our system consist of an infinite sheet of pristine
graphene containing a circularly Kekulé-ordered patch
of radius R, Fig. 1. We consider the scattering of an
incoming flux of electrons in the x-direction with mo-
mentum k. To describe the electronic properties of the
graphene sheet we adopt the low-energy description, i.e.,
the Dirac Hamiltonian19. Nevertheless, the Kekulé mod-
ulated portion of the lattice has a larger unit cell than
non-modulated graphene lattice. Hence, to match the
pristine and Kekulé patterned graphene wave functions it
is practical to use an enlarged unitary cell for the case of
undistorted graphene. This is equivalent to consider the
group C

′′

6v, with a cell with six atom graphenes unit cell,
which avoids the treatment of degenerate states at two
inequivalent Dirac points58. This is more clearly seen if
we start with the Hamiltonian for the Kekulé region and
then pristine graphene appears as a limiting case.

y

x

R

k

FIG. 1. Schematic of the system (not to scale). A graphene
lattice where an incoming flux of electrons in the x direction
approaches a circular region of radius R with a gate potential
and Kekulé-Y bond texture (red bonds).

The space dependent Hamiltonian describing the sys-
tem in Fig. 1 is given by

H = H0 +HY (r) + V (r) , (1a)

where,

H0 = vf (p · σ)⊗ τ0 (1b)

is the low-energy graphene Hamiltonian with p =
−i~(∂x, ∂y) the momentum operator, vf ∼ 106m/s the
Fermi velocity, and σ, τ the sets of Pauli matrices acting
on the sublattice and valley pseudo-spin spaces respec-
tively.

HY = ∆vfσ0 ⊗ (p · τ )Θ(R− r) (1c)

is the Kekulé-Y bond perturbation37 with amplitude ∆
within the circular region,

V (r) = V0Θ(R− r)σ0 ⊗ τ0, (1d)

is a constant gate potential with amplitude V0 in the
Kekulé circular patch, and Θ is the Heaviside function.

The Hamiltonian in Eq. (1a) acts on the states ex-
pressed in the valley isotropic representation59:

Ψ =

[
ψK′

ψK

]
=

−ψB,K
′

ψA,K′

ψA,K
ψB,K

 , (1e)

notice that the subindex A and B in Ψ corresponds to
each graphene’s bipartite lattice while K and K ′ label
the valley. For regions outside the Kekulé modulated
region, the limit of pristine graphene is recovered, ∆ = 0,
thus having a 4× 4 operator which represents the Dirac
Hamiltonian in the enlarged unitary cell.

III. SCATTERING

In this section we study the scattering of Dirac
fermions from a circularly symmetric Kekulé patterned
region. We adopt the partial waves scattering method to
find the S-matrix, which requires finding and matching
the eigenstates in the different scatttering regions of our
system. For any effective theory that uses an envelope
wavefunction, as is the case of the Dirac equation for
graphene, the matching requires a supplemental bound-
ary condition of the form Ψ = MΨ in order to retain
the hermiticity and preserve currents. Here M is a ma-
trix containing the microscopic details and the symme-
tries of the problem59–64. Since we consider the Kekulé-
Y bond modulation as a perturbation within the same
graphene sheet, no major misalignment is expected and
thus for small ∆ we can consider M as unitary through-
out this work. Here we note that we are using a low-
energy approximation near the Fermi level for Kekulé-Y
graphene. As in pristine graphene, the effective equa-
tion is circular symmetric37. At energies away from the
Fermi level the discrete nature of the lattice is initially
reflected via trigonal warping. This part of the spectrum
is not sampled by fermions near the Fermi energy as is
only visible on other scales of energy. Therefore, we can
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safely treat our system as circular symmetric and thus
is natural to evaluate its eigenfunctions in polar coordi-
nates. The z-component of orbital angular momentum
Lz = −i~∂θ does not commute with the Hamiltonian,
[H,Lz] = i~vf (σ × p)z ⊗ τ0 + i~vfσ0 ⊗ (τ × p)z. On
the other hand, the sum of Lz and the intrinsic angular
momenta associated with the valley and sublattice de-
grees of freedom, “valley-lattice-angular momentum” Jz,
is conserved and given by

Jz = Lz +
~
2

(σz ⊗ τ0 + σ0 ⊗ τz). (2)

Here, it is important to notice that [H, ~2σz ⊗ τ0] =

−i~vf (σ×p)z ⊗ τ0, and [H, ~2σ0⊗ τz] = −i~vfσ0⊗ (τ ×
p)z, which leads to [H, ~2σz ⊗ τ0 + ~

2σ0 ⊗ τz + Lz] = 0.
We can express the eigenfunctions in their total pseudo-
angular momentum basis, such that JzΨm = m~Ψm,
thus

Ψm(r, θ) = eimθ


−e−iθΦB,K′(r)

ΦA,K′(r)
ΦA,K(r)
eiθΦB,K(r)

 , (3)

where θ = tan−1 y/x, and find the radial part of the
wave functions by applying the Hamiltonian in Eq. (1a)
to our spinor in Eq. (3) to get the following set of coupled
differential equations,

L−m[ΦA,K′(r) + ∆ΦA,K(r)] = −i(ε− ν)ΦB,K′(r), (4a)

L+
m−1ΦB,K′(r)−∆L−m+1ΦB,K(r) = −i(ε− ν)ΦA,K′(r),

(4b)

L−m+1ΦB,K(r)−∆L+
m−1ΦB,K′(r) = i(ε− ν)ΦA,K(r),

(4c)

L+
m[ΦA,K(r) + ∆ΦA,K′(r)] = i(ε− ν)ΦB,K(r), (4d)

where,

L±m =
(
∂r ∓

m

r

)
, (4e)

here ε = E/(~vf ), ν = V0/(~vf ). Since L±m acts as a
ladder operator for the cylindrical Bessel functions Jm,

L±mJm(kr) = ∓kJm±1(kr), (5)

thus, a natural ansatz is

ΦA,K(r) = i(ε− ν)CAJm(kr), (6)

ΦA,K′(r) = i(ε− ν)CBJm(kr), (7)

where CA and CB are constants, and k is the electron
wave number. Inserting the anzats in Eq. (6) in the rela-
tions in Eq. (4), results into the exact form of the spinor
solutions and determines the wave numbers

k± =
|E − V0|

~vf (1±∆)
. (8)

Thus the mth angular momentum eigenstates in the inner
region are,

Ψ(inner)
m (r, θ) =T+

me
imθ


Jm−1(k+r)e

−iθ

is′Jm(k+r)
is′Jm(k+r)
−Jm+1(k+r)e

iθ



+ T−me
imθ


Jm−1(k−r)e

−iθ

is′Jm(k−r)
−is′Jm(k−r)
Jm+1(k−r)e

iθ

 ,
(9)

where T+
m and T−m are determined by s′ = sgn(E−V0) and

the boundary conditions. Since the pseudo-angular mo-
mentum is conserved during the scattering process, we
can treat each component of m independently and use
the partial wave method to determine the S-matrix ele-
ments. In the region r > R, we describe the wavefunction
in terms of incoming (in) and outgoing (out) cylindrical
waves, where the corresponding spinor for each valley is

ψ
(out)/(in)
m,K′ (r, θ) |K ′〉 =

[
H

(1)/(2)
m−1 (kr)ei(m−1)θ

isH
(1)/(2)
m (kr)eimθ

]
|K ′〉 ,

(10a)

ψ
(out)/(in)
m,K (r, θ) |K〉 =

[
−isH(1)/(2)

m (kr)eimθ

H
(1)/(2)
m+1 (kr)ei(m+1)θ

]
|K〉 ,

(10b)

|K ′〉 =

[
1
0

]
, |K〉 =

[
0
1

]
, (10c)

here |K〉 and |K ′〉 are valley spinors, H
(1)
m and H

(2)
m are

Hankel functions of the first and second kind respectively,
and s = sgn(E). Now we can write the wavefunctions
in terms of the scattering matrix Sm such that ψm =

ψ
(in)
m + Smψ

(out)
m ,

Ψ(outer)
m (r, θ) =

∑
α

cαψ
(in)
m,α(r, θ) |α〉

+
∑
α,β

cαSm,αβψ
(out)
m,β (r, θ) |β〉 ,

(11)

where α = K,K ′ and β = K,K ′ are valley indexes. The
symbol Sm,αβ denotes the scattering from α to β val-
ley, cK and cK′ are the weights of the valley polariza-
tion. We can obtain the coefficients for Sm, T+

m and T−m
by applying the boundary conditions at Ψ

(inner)
m (R, θ) =

Ψ
(outer)
m (R, θ), as shown in Appendix A. Additionally, an

incident plane-wave in the x-direction can be expressed
with the aid of the Jacobi-Anger expansion as,

eikr cos θ =

∞∑
m=−∞

inJm(kr)eimθ, (12)

or equivalently as,

Φ0(r, θ) =

∞∑
m=−∞

∑
α

cα
im

2
[ψ(out)
m,α (r, θ) + ψ(in)

m,α(r, θ)] |α〉 .

(13)
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The latter allows one to express Ψ(outer)(r, θ) in terms of
the incoming plane and the outgoing waves, i.e.

Ψ(outer)(r, θ) = Φ0(r, θ)

+

∞∑
m=−∞

∑
α=K,K′

ᾱ6=α

cα
im

2

[
(Sm,αα − 1)ψ(out)

m,α (r, θ) |α〉

+ Sm,αᾱψ
(out)
m,ᾱ (r, θ) |ᾱ〉

]
,

(14)

and the total wave function is obtained by,

Ψ(r, θ) =

∞∑
m=−∞

[
Ψ(inner)
m (r, θ) + Ψ(outer)

m (r, θ)
]
. (15)

IV. VALLEY BIREFRINGENCE

Partially subjecting a graphene sheet to a gate po-
tential that reverses its carriers character from electrons
to holes between gated and non-gated regions leads to
many interesting analogies between its electron dynam-
ics and optical phenomena4,12,16 The key ingredient to
this phenomena is the reversal of the group velocity of
quasiparticles between the regions with and without gate
potentials. For example and to visualize the phenom-
ena, we consider that the Fermi level of the system is
EF > 0, such that for the outer region it crosses the up-
per band. On the hand, in the inner region EF − V0 < 0
with V0 > 0, which means that the Fermi level crosses
the lower band. In this case (Fig. 1, with ∆0 = 0),
for r > R the quasiparticle’s group velocity is paral-

lel to the wavevector, i.e., v
(outer)
g = vf (kx,r(outer) x̂ +

ky,r(outer) ŷ)/|kr(outer) |. In the inner region is anti-parallel

v
(inner)
g = −vf (kx,r(inner) x̂ + ky,r(inner) ŷ)/|kr(inner) |, here
kr(inner) (kr(outer)) is the wavevector in the inner (outer)
region. Since, the group velocity is vg = dE(k)/d(~k), if
k is kept fixed, the sign of E(k) changes for the valence
and conduction bands, making it parallel to the Fermi
momentum for n-type carriers, but anti-parallel for p-
type65.

The reversal of the group velocity from the outer to
the inner region indicates that the gated region will act,
in the semiclassical limit, as a circular electronic lens
with a negative index of refraction n = −kr(inner)/kr(outer) ,
where kr(inner) is the wave number inside the gated patch
and kr(outer) outside, and n is deduced from the electronic
Snell’s law4,18. As shown in Fig. 1, in the limit kR� 1,
the negative index of refraction leads to constructive in-
terference between the different partial wave components
and results in a probability density that forms cardioid
caustics and cusps12, in what mimics the optical caus-
tics which arise from light refraction through a shaped
medium and belong to a class of cusps in catastrophe
theory13. Using differential geometry12, the positions of
the cusps for each p− 1 internal reflections can be shown
to be

xcusp(p) =
(−1)p

|n| − 1 + 2p
R, (16)

and in the case shown in Fig. 2 a), as the amplitude de-
creases with each internal reflection, we can clearly dis-
tinguish the cusps corresponding to p = 1, 2.

If in addition to the gate potential the circular re-
gion contains the Kekulé bond texture, then the elec-
tronic bands in this region will be characterized by E± =
±~vf (1±∆)|k|+V0. Therefore, the gating of this region
leads to the Fermi level intersecting the two degenerate
bands, which are characterized by the two group veloci-
ties, vg,± = −vf (1±∆). Then, when ∆ 6= 0, in addition
to the sign reversal of the group velocity between both
regions we also have the two different group velocities in
the inner region. Hence, the Kekulé patterned and gated
region will act as a circular lens with two negative indices
of refraction

n± = −
k±,r(inner)

kr(outer)
, (17)

with k±,r(inner) = k+, k− and are given in Eq. (8). As
shown in Fig. 2b) The Kekulé patterning of the circular
region results into the doubling of the cusps and caustics
of the circular lens, which reflects its birefringent nature.
The degree of birefringence can be characterized by ζ =
|n+−n−|, and for the set of parameters in Fig. 2b) we get
ζ ≈ 0.25. Moreover, the cusps locations is now modified
to

x±cusp(p) =
(−1)p

|n±| − 1 + 2p
R, (18)

and the spatial separation between the two cusps is found
by |x+

cusp − x−cusp|. In Fig. 2 c) we show the valley pre-

serving amplitude component, |ψK′K′(r)|2, which retains
the same valley component as the incoming electrons, and
Fig. 2 d) the valley mixing component, |ψK′K(r)|2, which
flips the valley degree of freedom. From these figures we
can notice that the Kekulé bond texture leads to the os-
cillation of the valley component as electrons travel in
the patterned region, in what mimics the electron’s spin-
momentum coupling in the presence of a Rashba interac-
tion14,16.

V. LOW ENERGY SCATTERING

The scattering process can be further analyzed by ob-
taining the different types of cross sections, such as the
total cross section σt which tells us the magnitude of the
interaction between the incoming flux and the scattering
region, the transport cross section σtr that describes the
average momentum transfer during the scattering, and
the skew cross section σsk which shows the asymmetry in
the scattering around the axis of the incoming flux. This
quantities can be obtained through the scattering ampli-
tude f(θ), which can be found in the far field limit, i.e.,
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a) b)

c) d)

Cusp p=1 Cusp p=2

FIG. 2. Space dependence of the probability density (in log10 scale), for an incoming electron flux in the x-direction with
valley polarization K′ and kR = 300. The dashed line shows the boundary between the scattering regions. A gate potential
V0R/(~vf ) = 600 is present in the inner region. For a) pristine graphene, b) Kekulé-Y distorted graphene in the r < R region
with ∆ = 0.1. The negative refractive index in addition to the circular geometry, leads to an interference pattern that forms a
cardioid shaped envelope with a high concentration at the cusps, which split in two as we turn on the Kekulé distortion. The
position of the cups is given by Eqs. (16) and (18) for the case of a) and b) respectively. Panel c) shows the valley-preserving
component and d) the valley-flip component, for the case described in b). As the incoming electron enters the circular region
their valley state begins to oscillate between K and K′ [panels (c) and (d)]. The wavelength of the oscillation depends on the
amplitude of ∆ as this parameter characterizes the wavenumbers k+ and k−.

via the asymptotic form of the wave function as r →∞

Ψ(r →∞)→ Φ0 +
∑
m

∑
α,β

cαfm,αβ(θ)
eikr√
r
|β〉 , (19)

and using the asymptotic expansion of the Hankel func-
tions,

Hm(kr)(1)/(2) →
√

2

πkr
e±i(kr−

mπ
2 −

π
4 ), (20)

by comparing Eq. (14) to Eq. (19) we can deduce the
scattering amplitude for each partial wave component in
terms of the S matrix components

fm =
e−iπ/4√

2πk

[
Sm,K′,K′ − 1 −iSm,K′,K

iSm,K,K′ Sm,K,K − 1

]
, (21)

where Sm,αβ are the valley preserving (α = β) and valley
mixing scattering (α 6= β) matrix elements corresponding
to the mth partial wave component (α and β represent
the Dirac points, either K or K ′). Then, for each pro-
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cess (valley preserving and valley mixing), we find the
corresponding differential cross section,

σαβ(θ) =

∣∣∣∣∣
∞∑

m=−∞
fm,αβe

imθ

∣∣∣∣∣
2

, (22)

total cross section,

σt,αβ =

∫ π

−π
σαβ(θ)dθ = 2π

∞∑
m=−∞

|fm,αβ |2, (23)

transport cross section,

σtr,αβ =

∫ π

−π
σαβ(θ)(1− cosθ)dθ

= σt,αβ − 2π

∞∑
m=−∞

Re(fm,αβf
∗
m+1,αβ),

(24)

and the skew cross section,

σsk,αβ =

∫ π

−π
σαβ(θ)sinθdθ

= 2π

∞∑
m=−∞

Im(fm,αβf
∗
m+1,αβ),

(25)

by summing over all different allowed processes

ση =
∑
α,β

ση,αβ , (26)

we obtain the total, transport, and skew cross sections
(η ∈ {t, tr, sk}).

For low carrier concentrations and small regions with
Kekulé bond texture (kR� 1) the most significant scat-
tering channels are those of angular momentum m =
−1, 0, 1. Within this regime, we show in Fig. 3 the total
cross section against the strength of gate potential V0.
In the absence of Kekulé patterning, the total cross sec-
tion of the gated region displays one peak which uniquely
arises from the valley preserving process and indicates the
formation of quasi-bound states in this region with finite
life-time characterized by the width of the peak17,66. An
increasing strength of the Kekulé interaction leads to the
central (valley-preserving) peak height shrinking and its
location shifting, while two new resonant (valley-mixing)
peaks emerge. These two new peaks correspond to quasi-
bound states forming due to valley mixing processes as
it is shown in the inset of Fig. 3, and consequently their
height increases with increasing values of ∆, as shown in
Fig. 3.

When local interactions in a graphene sheet lead to
the breaking of effective time reversal (time reversal per
valley) while preserving the total time reversal, as is the
case for the Kekulé patterning, it is possible to have a
skew scattering, and by symmetry considerations it can
be shown that17

σsk,αα = −σsk,ᾱᾱ, (27a)

FIG. 3. Total cross section σt as a function of V0 for incoming
electrons in the x-direction with kR = 1.5 × 10−3. In the
regime kR � 1 the resonances appear near the zeros of J0,
here we show the resonances around the first one κ1

0 = 2.4048
[see Appendix A, Eq. (A2a)]. (Inset) Total cross section for
intra-valley σt,KK + σt,K′K′ and inter-valley σt,KK′ + σt,K′K

process with ∆ = 0.01.To present the evolution of the inter-
valley peaks, this figure only contains a zoom around the ∆ =
0 peak. Notice that the valley-mixing peaks are not shown in
the figure for the largest two ∆ values. These peaks are out
of the figure range since ∆ shifts the the inter-valley peak and
increases its separation from the intra-valley peaks.

σsk,αᾱ = 0. (27b)

The latter equations indicate that electrons with opposite
valley polarization get deflected towards opposite direc-
tions as they get scattered, thus producing a valley-Hall
effect. To measure the asymmetry of the scattering per
valley we calculate the skew parameter γV , which is de-
fined as,

γV =
1

2
(γK − γK′), (28a)

where the skew parameter for a valley β = K or β = K ′

is

γβ =

∑
α σsk,αβ∑
α σtr,αβ

, (28b)

this quantity is directly connected to the transverse valley
currents and is equal to the valley Hall angle at zero
temperature in the absence of side-jump effects67,

ΘV H =
jV H
jx

= γV . (29)
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a) b)

c)

FIG. 4. a) Differential cross section for valley preserving pro-
cesses, K-valley (blue) and K′-valley (red), showing the tilt
of electrons with opposite valley-polarization towards oppo-
site directions around the x-axis. The dashed black line in a)
corresponds to the differential cross section without Kekulé
distortion. b) Valley skew parameter γV as function of both
energy and the gate potential for a region of R = 9Å and
Kekulé amplitude ∆ = 0.1, the star marker indicates the val-
ues used for a). c) Average of γV as a function of energy
for 4000 randomly sized Kekulé-Y regions (9 ≤ R ≤ 18) Å,
considering V = 1 eV and different values of ∆.

In the presence of the Kekulé-Y modulation, the val-
ley asymmetry of scattering around the x-axis can be also
deduced from the valley dependent differential cross sec-
tion. In Fig 4 a), we present the differential cross section
per valley for the set of parameters indicated by a star
marker in Fig. 4 b). In contrast, we notice a symmetric
scattering in the absence of the Kekulé-Y modulation,
which is shown by the dashed black line in Fig 4 a). To
show the dependence of the skew scattering in our system
on the local potential of the Kekulé-Y patterned patches
V0, and the Fermi energy (E), in Fig. 4 b) we show a
map of the skew parameter, γV , as a function of V0 and E
for Kekulé patterned regions with R = 9 Å and ∆ = 0.1.
In the latter we should note that the regions of high γV
coincide with the regions of resonant scattering, i.e., res-
onant regime in the total cross section (Fig. 3), and which
indicates that skew scattering is resonantly enhanced67.
To demonstrate the robustness of skew scattering in the
system to variations in size of the Kekulé-Y patterned
patches, we consider a uniform random distribution of
impurity sizes in the dilute limit. In Fig. 4 c) we show
the average of γV for different values of ∆ and V0. Since
skew scattering is resonantly enhanced, then its detection

survives the random variations in the sizes of the Kekulé
patterned patches in the dilute limit, and which allows
for the detection of valley Hall effect signatures in trans-
port experiments. We also note that since the RV0/(~vf )
governs the appearance of the different scattering regimes
in Fig. 3, then skew scattering is also robust to variations
in the locally enhanced potential.

Let us briefly discuss a suitable set of parameters. ∆
is fixed by the Kekulé pattern bond modulation, which
we will suppose as others37 of order ∆ ≈ 0.1 although, in
principle, its value can be varied by applying strain41,68,
a way to determine this parameter is by modeling the
Kekulé lattice using a DFT approach and obtaining and
effective tight-binding model. The experimental setup
can vary the two parameters V0 and R. For example,
in Fig. 4 we presented the results for patches of size
R = 9 Å, which is the minimal size to have multiple unit
cells in the patch regions, so we can still apply our low
energy continuum model, values above that will be also
valid. From the figure, we see that detection will involve
the condition V0R/~vf ≈ 2.42 from where we obtain a
gate voltage of around 0.66 eV. From there, V0 can be
diminished at will.

VI. CONCLUSIONS

We have studied the scattering of Dirac Fermions from
Kekulé distorted and gated regions in graphene. For large
Kekulé patterned and gated regions, we have shown that
the scattering of electrons from these circular patches
leads to the formation of caustics and cusps reminiscent
of a circular birefringent electronic lens with two negative
indices of refraction. Moreover, the separation of the
cusps in the circular lens is proportional to the Kekulé
interaction and provides a direct measure of its strength
in systems with tailored Kekulé patches.

For low carrier concentrations, we have shown that the
presence of scatterers with a locally enhanced Kekulé in-
teraction and gate potential leads to the electrons from
different valleys deflecting in opposite directions due to
the skew scattering produced by the Kekulé distortion.
Skew scattering in the system leads to the appearance of
a valley Hall effect. We have also shown that the skew
scattering-generated valley Hall effect can be present in
systems where the Kekulé patterning is not uniform but
when it consists of patches with random sizes and po-
tentials. The latter suggests the plausible experimental
realization and detection of the skew scattering induced
valley Hall effect in Kekulé patterned graphing systems
via four probe experiments.Also, it may be worth extend-
ing this study to other short-wavelength modulations, for
example, for

√
3×
√

3 superlattices and twisted multilay-
ered graphene69.

Therefore, valley birefringence directly measures the
presence of Kekulé-Y distortion, and its strength relates
to wavefronts separation at the cusps. In the case of low-
carrier concentrations, the combination of Kekulé distor-
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tion and gate potential can lead to an asymmetric scat-
tering between valleys and thus produce a valley-Hall ef-
fect, even if the Kekulé pattern is not uniform.

Optical birefringence allows the identification of inter-
nal anisotropies, stresses, and space inhomogeneities of
materials and even allows decoupling polarized modes
in optical fibers. Consequently, our results could serve
to design configurations that discern broken symmetries
and thus be used to design valley decoupled electronic
analogs to optical fibers.
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Appendix A: Boundary Conditions

In this appendix we find explicit solutions for the co-
efficients in Sec. III, which are found by solving for
the boundary conditions. The solution of the sys-
tem of equations resulting from the boundary condition

Ψ
(inner)
m (R, θ) = Ψ

(outer)
m (R, θ) gives us the following an-

alytical expressions for the Sm matrix element s and the
amplitudes T±m ,

Sm,K′K′ =ss′(H(1)
m H

(2)
m−1Xm +H

(1)
m+1H

(2)
m Xm−1)/Dm

− (2H
(1)
m+1H

(2)
m−1Qm +H(1)

m H(2)
m Zm)/Dm,

(A1a)

Sm,KK =ss′(H
(1)
m−1H

(2)
m Xm +H(1)

m H
(2)
m+1Xm−1)/Dm

− (2H
(1)
m−1H

(2)
m+1Qm +H(1)

m H(2)
m Zm)/Dm,

(A1b)

Sm,K′K =
−ss′YmPm

Dm
, (A1c)

Sm,KK′ =
−ss′Ym−1Pm+1

Dm
, (A1d)

T+
m =c1(j−m+1H

(1)
m − ss′j−mH

(1)
m+1)Pm/Dm

+ c2(j−m−1H
(1)
m − ss′j−mH

(1)
m−1)Pm+1/Dm,

(A1e)

T−m =c1(j+
m+1H

(1)
m − ss′j+

mH
(1)
m+1)Pm/Dm

− c2(j+
m−1H

(1)
m − ss′j+

mH
(1)
m−1)Pm+1/Dm,

(A1f)

where we defined,

Dm =− ss′(H(1)
m H

(1)
m−1Xm +H

(1)
m+1H

(1)
m Xm−1)

+ 2H
(1)
m+1H

(1)
m−1Qm +H(1)

m H(1)
m Zm,

(A2a)

Xm = j+
mj
−
m+1 + j+

m+1j
−
m, (A2b)

Ym = j+
mj
−
m+1 − j

+
m+1j

−
m, (A2c)

Zm = j+
m−1j

−
m+1 + j+

m+1j
−
m−1, (A2d)

Qm = j+
mj
−
m, (A2e)

Pm = H(1)
m H

(2)
m−1 −H

(1)
m−1H

(2)
m , (A2f)

here all Hankel functions are evaluated at kR and j±m =
Jm(k±R).
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12 J. Cserti, A. Pályi, and C. Péterfalvi, Physical review let-
ters 99, 246801 (2007).

13 M. Berry and C. Upstill (Elsevier, 1980), vol. 18 of Progress
in Optics, pp. 257–346.

14 Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).



9

15 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

16 M. M. Asmar and S. E. Ulloa, Physical Review B 87,
075420 (2013).

17 M. M. Asmar and S. E. Ulloa, Physical Review B 91,
165407 (2015).

18 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

19 M. I. Katsnelson and M. I. Katsnelson, Graphene: carbon
in two dimensions (Cambridge university press, 2012).

20 V. K. Joshi, Engineering Science and Technology, an In-
ternational Journal 19, 1503 (2016), ISSN 2215-0986.
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