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We present a solution for the nonequilibrium dynamics of an interacting disordered system. The
approach adapts the combination of the equilibrium dynamical mean field theory (DMFT) and the
equilibrium coherent potential approximation (CPA) methods to the nonequilibrium many-body for-
malism, using the Kadanoff-Baym-Keldysh complex time contour, for the dynamics of interacting
disordered systems away from equilibrium. We use our time domain solution to obtain the equi-
librium density of states of the disordered interacting system described by the Anderson-Hubbard
model, bypassing the necessity for the cumbersome analytical continuation process. We further ap-
ply the nonequilibrium solution to the interaction quench problem for an isolated disordered system.
Here, the interaction is abruptly changed from zero (non-interacting system) to another constant
(finite) value at which it is subsequently kept. We observe via the time-dependence of the potential,
kinetic, and total energies the effect of disorder on the relaxation of the system as a function of final
interaction strength. The real-time approach has the potential to shed new light on the fundamental
role of disorder in the nonequilibrium dynamics of interacting quantum systems.

I. INTRODUCTION

The physics of strongly correlated systems remains the
subject of sustained research efforts due to the many in-
triguing properties that they exhibit. Dynamical mean
field theory (DMFT) is now well established as an es-
sential tool in advancing the understanding of these
systems in equilibrium.1–5 The method and its cluster
extensions6–11 have been used extensively for strongly
correlated systems. It has been extended to the nonequi-
librium problem and used effectively to study the dy-
namics away from equilibrium in different settings12–19.
Although it has been adapted to the treatment of hetero-
geneous systems20–22, the approach is typically focused
on clean systems. However, whether by design or as a
result of crystal growth constraints, disorder is ubiqui-
tous and plays a central role in real materials and in the
devices that they enable. The interplay between disorder
and electron-electron interaction strongly influences the
electronic structure and transport properties of materi-
als, and is responsible of many unusual phenomena.23–25

Both disorder and electron interactions are the driving
forces for the associated metal-insulator transitions with
electron localization resulting from electron-electron in-
teraction26,27 or from disorder 28–30. The presence of
both effects gives rise to intriguing behaviors such as
many-body localization (MBL) that are the subject of
intense activity in relevant research communities.31–35

The coherent potential approximation (CPA), that
predates DMFT and shares similarities with this ap-
proach in its formulation, has been separately used
extensively to study various disordered systems.36–39

While DMFT maps the lattice problem onto an impurity
embedded in a self-consistently determined host, CPA
simulates scattering in a random potential by a self-
consistently determined homogeneous effective host. The
CPA method has also been extended to the nonequilib-

rium dynamics of disordered systems and applied to the
analysis of transport in various systems.40,41

Both CPA and DMFT are Green’s function-based ap-
proaches, and can be easily combined to study the inter-
play of disorder and electron interactions.42–46 However,
methods that can describe these ever present interplays
when systems of interest are driven away from equilib-
rium are still lacking.

The implementation of such an approach, combining
both CPA and DMFT nonequilibrium solutions, is the fo-
cus of the present paper. We implement this solution for
interacting disordered systems on the complex time axis.
We use our solution to extract the density of states of the
equilibrium system for different values of the interaction
and different disorder strengths, observing at strong in-
teractions the insulator-to-metal transition that has been
reported in certain correlated systems.47,48 While these
results for the density of states are not novel in them-
selves, obtaining them from our real-time simulation not
only enables us to test the validity of our solution, but
these calculations of equilibrium density of states from
a real time formalism have the added advantage of by-
passing the cumbersome analytical continuation process.
We further apply the formalism to the interaction quench
of an Anderson-Hubbard model where the noninteract-
ing system, initially in equilibrium at finite temperature,
has the interaction abruptly switched to another, finite,
value at a given time. This process reveals different dy-
namics in the time-dependent energies across the quench
as a function of disorder strength.

The rest of the paper is structured as follows. In sec-
tion II, we discuss the model for the interacting disor-
dered system and the nonequilibrium formalism combin-
ing both DMFT and CPA. In section III, we present some
results for the densities of states of the equilibrium prob-
lem and the relaxation of the time-dependent energies
for various final interaction strengths as a function of
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disorder strength. Finally, we end with our conclusion in
section IV.

II. MODEL AND METHODS

A. Model

We are interested in an interacting disordered system
that can be described in equilibrium by the single-band
Anderson-Hubbard model defined by:

H = −
∑
〈ij〉σ

tij (c†iσcjσ + h.c.) +
∑
i

Uni↑ni↓

+
∑
iσ

(Vi − µ)niσ, (1)

The first term represents the kinetic energy, the second
term the interaction U between electrons, V describes
the random disorder potential, and µ is the chemical po-
tential. tij = thop is the hopping amplitude between
nearest neighboring sites denoted by 〈ij〉. We work in

units where c = h̄ = e = 1. c†iσ (ciσ) is the creation
(annihilation) operator for a particle of spin σ =↑, ↓ at
site i. U is the Coulomb interaction at a doubly oc-

cupied site. ni,σ = c†iσciσ is the number operator for
particles of spin σ at site i. Vi is the local on-site disor-
der potential randomly distributed according to a prob-
ability distribution P (Vi). We use a “box” distribution
P (Vi) = 1

2W Θ(W − |Vi|). We employ the shorthand no-

tation < ... >{V }=
∫
dViP (Vi)(...) to denote the disorder

averaging. Our analysis of the Anderson-Hubbard model
will be done on the Bethe lattice with a large coordina-
tion number z → ∞. We will study this system at half-
filling when, at time tquench, the interaction is abruptly
switched from an initial value of U1 = 0 to a final value
U2 = U while the disorder strength remains constant at
its set value.

B. Nonequilibrium Formalism

For the nonequilibrium many-body formalism, starting
at an initial time tmin, the system is evolved forward
in time to times of physical interest up to a maximal
time tmax, and then backwards again to the initial time
tmin. The formalism involves different types of Green’s
functions including G<(t, t′) (the lesser), G>(t, t′) (the
greater), and GR(t, t′) (the retarded) Green’s functions.
Physical observables can be obtained from these different
Green’s functions.

For a system initially in equilibrium at a temperature
T = 1/β, a vertical branch of imaginary times is added
to the time evolution resulting in the Kadanoff-Baym-
Keldysh contour49–52. This adds to the different Green’s
functions, the Matsubara Green’s function and the mixed
time Green’s functions, for which one of the two times is
on either the forward or the backwards horizontal branch

FIG. 1. The Kadanoff-Baym-Keldysh contour, with initial
and final times tmin and tmax. The interaction quench with
the interaction being switched from U1 = 0 to a finite value
U2 = U occurs at time tquench. The disorder strength W
is held fixed. The real-time and imaginary-time parts of the
contour are discretized with respective step sizes ∆t and ∆τ .

of real times, while the other is on the vertical branch of
imaginary times. The time evolution on the contour is il-
lustrated schematically in FIG.1. In general, the formal-
ism can be either formulated explicitly in terms of the
different Green’s functions or in terms of the contour-
ordered Green’s function from which all others can be
extracted. In the latter situation, which we adopt in the
present paper, the formalism has the advantage of being
very similar to that of the equilibrium problem.
The contour-ordered Green’s function is given by:

Gci,j,σ(t, t′) = θc(t, t
′)G>i,j,σ(t, t′) + θc(t

′, t)G<i,j,σ(t, t′).
(2)

With the lesser and greater Green’s functions defined by
operator averages in the Heisenberg representation:

G<i,j,σ(t, t′) = i〈c†iσ(t′)cjσ(t)〉, (3)

G>i,j,σ(t, t′) = −i〈ciσ(t)c†jσ(t′)〉. (4)

From these, we can construct the retarded and advanced
Green’s functions that are defined by:

GRi,j,σ(t, t′) = −iθ(t− t′)〈{ciσ(t), c†jσ(t′)}〉. (5)

GAi,j,σ(t, t′) = iθ(t′ − t)〈{ciσ(t), c†jσ(t′)}〉. (6)

θc(t, t
′) is the contour-ordered Heaviside function. It or-

ders time with respect to the contour: it is equal to 1 if
t is ahead of t′ on the contour and is equal to 0 other-
wise. Hereafter we drop the superscript c on the contour-
ordered Green’s function: any correlation function not
identified as a particular type (e.g., not G<) should be
understood to refer to the full contour-ordered Green’s
function.

In these expressions, c†iσ(t) and ciσ(t) are, respectively,
the Heisenberg representation of the creation and the an-
nihilation operators for an electron at site i with spin σ at
time t; θ is the usual Heaviside function (i. e., θ(t−t′) = 0
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if t < t′ and θ(t, t′) = 1 otherwise); {A,B} is the anti-
commutator of operators A and B. The symbol 〈A〉 is
the expectation value of the operator A evaluated with
respect to the initial thermal state:

〈A〉 =
Tre−βH(tmin)A
Tre−βH(tmin)

, (7)

where H(tmin) = Heq is the initial equilibrium Hamilto-
nian before the quench.

We will particularly examine the dynamics of the sys-
tem through the time evolution of the total, potential
and kinetic energy of the system when the interaction is
abruptly quenched from U1 = 0 to a finite value U2 = U .

Within the DMFT framework, starting from the lat-
tice action and integrating out all sites except site i, the
effective action for the considered Hamiltonian can be
written as:

Seff = −i
∑
σ

∫
C
dtdt′c†σ,i(t)∆(t, t′)cσ,i(t

′)

− i
∫
C
dtHloc(t) (8)

Where Hloc is the local part of the Hamiltonian at site i
that includes the disorder value at this site. In an exten-
sion of the equilibrium CPA, the hybridization ∆(t, t′) is
obtained from the disorder averaged local Green’s func-
tion. From this action, we are readily able to extend the
equilibrium treatment of disorder and interaction42–45 to
the nonequilibrium problem.

The impurity Green’s function for a given disorder con-
figuration is given by:

GVi(t, t
′) = −i〈c(t)c†(t′)〉Seff (9)

=
[
G−1
Vi
− ΣVi

]−1
(t, t′). (10)

Where ΣVi(t, t
′) is the interaction self-energy for the dis-

order configuration of the action (8) and captures effects
of the interaction on the impurity. G is non-interacting
Green’s function for the impurity problem given by:

GVi(t, t′) = ((i∂t + µ− Vi) δc −∆))
−1

(t, t′) (11)

In this way, the disorder averaged local Green’s function
Gave is obtained by averaging the impurity Green’s func-
tion over all disorder configurations:

Gave(t, t
′) = 〈

(
G−1
Vi
− ΣVi

)−1
(t, t′)〉{V } (12)

The symbol 〈· · ·〉{V } denotes average over all possible
disorder configurations, which we perform by taking the
numeric integral of

∫
dV P (V ) · ·· using the midpoint rect-

angular rule.
On the infinite dimensional Bethe lattice, the hy-

bridization is then expressed as:

∆(t, t′) = t∗
2

Gave(t, t
′). (13)

Where t∗ is the hopping amplitude rescaled with the co-
ordination number z so that thop = t∗√

z
. We use t∗ = 0.25

and thus set the bandwidth to be our energy unit and its
inverse to be the time unit. In our solution of (10), we use
second order perturbation theory as the impurity solver,
giving us the self-energy:

ΣVi(t, t
′) = −U(t)U(t′)GVi(t, t′)2GVi(t′, t). (14)

This self-energy ΣVi is the interaction self-energy and it
is calculated, at this stage, for a specific disorder configu-
ration. Given that the disorder distribution is even (i.e.,
for any disorder configuration {Vi}, there is a disorder
configuration {−Vi} that has the same probability), the
chemical potential is set to µ = U/2 and, to low order in
the disorder strength, dropping the Hartree term ensures
half-filling (n = 1) since we use the disorder averaged
Green’s function to set the filling (see appendix).

FIG. 2. Self-consistency loop for the nonequilibrium
DMFT+CPA algorithm on the Bethe lattice.

It should be noted that this nonequilibrium formalism
clearly reduces to DMFT for the clean/non-disordered
system (W = 0) and to the equilibrium CPA for a non-
interacting system (U = 0) in equilibrium.

C. Algorithm and Numerical Implementation

The nonequilibrium DMFT+CPA algorithm follows
the self-consistency loop illustrated in FIG. (2). The loop
is started by setting the hybridization ∆(t, t′) to an ini-
tial guess (we use an infinitesimal imaginary number) for
the first calculation of the non-interacting Green’s func-
tion on the impurity (11). From this, the self-energy ΣVi
of (14) is calculated for each configuration of the dis-
order, and the average Green’s function Gave of (12) is
calculated by averaging over all disorder configurations.
At each subsequent iteration, the new hybridization is
calculated from the average Green’s function by (13).
This process is repeated until convergence of the aver-
age Green’s function within a desired criteria.

Our implementation of the contour-ordered Green’s
function follows that of Ref.[13]. The different matri-
ces are represented as square complex matrices of size
(2Nt +Nτ )× (2Nt +Nτ ) with each index representing a
point along the complex time axis. Nt is the number of
points along each real-time branch of the contour; Nτ is
the number of points along the imaginary-time branch.
Certain observables (the energies in particular) need to
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be extrapolated to the ∆t → 0 limit. To this end, the
calculation is performed for multiple values of ∆t, and
standard Lagrange interpolating polynomials are applied
to obtain the ∆t→ 0 values of observables. In this paper,
we use Nτ = 200 and typically, Nt values of 800, 1000 and
1200 or 1000, 1200 and 1400 followed by an extrapolation
to the ∆t → 0 limit using Lagrange polynomials on the
3 time grids.

We use the rectangular leftpoint integration rule, such
that ∫

C

dtF (t)→
2Nt+Nτ∑
i=1

wiFi. (15)

Where wi is the integral weight, defined by:

wi = ∆t, 1 ≤ i ≤ Nt
= −∆t, Nt < i ≤ 2Nt

= −i∆τ, 2Nt < i < 2Nt +Nτ .

(16)

The delta function on the contour can be discretized in
multiple equivalent ways. Following Ref.[13], it is often
convenient to point-split the delta function, such that the
first subdiagonal is occupied rather than the diagonal:

δ(ti, tj)→
δij+1

wi
(17)

The product of two Green’s functions in frequency space
becomes a convolution in contour time, which when dis-
cretized is evaluated as a matrix product weighted by the
wi’s:

[A ∗B](t, t′) =

∫
C

dt̄A(t, t̄)B(t̄, t′)→
2Nt+Nτ∑
k=1

AikwkBkj

(18)
and the continuous matrix inverse becomes a discrete ma-
trix inverse. Appropriately including the definition of the
delta function yields

A−1 → [wiAijwj ]
−1. (19)

Where the quantity in square brackets is a discrete ma-
trix. Both Eqns.(18) and (19) can then be evaluated by
standard linear algebra routines such as LAPACK.

Equations (12) and (14) can be efficiently parallelized
with the number of parallel processes defined by the num-
ber of points on the integration over possible disorder
configurations. In practice, a few hundred points at most
are sufficient for the disorder type that we consider.

III. RESULTS

A. Equilibrium density of states

To demonstrate the validity of the developed non-
equilibrium DMFT+CPA method, we first apply the

FIG. 3. Illustration of the relation between the contour time
coordinates (t, t′) and the Wigner time coordinates (Tave, trel)
of the point P in the two-time space.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
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W = 0.5

W = 0.75

FIG. 4. Equilibrium densities of states for the non-interacting
(U = 0) tight-binding Anderson model at three values of
disorder strength W = 0.25, 0.5, 0.75. At a given disorder
strength W , dashed lines are obtained using the standard
frequency-space CPA calculation formalism, while the solid
lines are obtained via the Fourier transform of the Green’s
function calculated using the contour-time formalism. The
dotted black line is the density of states for non-interacting
clean system (W = 0, U = 0). Oscillations in the solid lines
are due to the Gibbs phenomenon in the Fourier transform of
the time domain solution.

nonequilibrium formalism described above for the equi-
librium system in real time. We compare the results from
our time-dependent approach with those calculated using
a real-frequency equilibrium approach. In this context,
the density of states can be obtained from the nonequilib-
rium retarded Green’s function GR(t, t′). First, the time
coordinates are changed from (t, t′) to the Wigner coor-
dinates (Tave, trel). The (t, t′) → (Tave, trel) change of
coordinates is schematically illustrated in FIG.3. Tave is
typically viewed as the effective time of the system while
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trel is the time with respect to which Fourier transforms
are performed to obtain frequency space quantities. A
Fourier transform on this form of the retarded Green’s
function: G(Tave, ω) =

∫
dtrel e

iωtrel G(Tave, trel) yields

the density of states ρ(ω) = − 1
π Im

[
GR(Tave, ω)

]
. For

the equilibrium system, the result of this operation is, in
principle, independent of Tave. However, a choice has to
be made for a value of Tave at which the range of trel
values available enables the best numerical evaluation of
the Fourier transform for the density of states (typically
halfway along the average time axis).

FIG.4 shows the density of states ρ(ω) obtained from
the time domain nonequilibrium approach for the An-
derson model of non-interacting electrons subjected to a
random disorder potential (Hamiltonian of Eq. (1) with
U = 0). The solution here corresponds to the nonequilib-
rium CPA. For the clean noninteracting system (W = 0
and U = 0), the density of states has a semi-elliptical line-

shape ρ0(ω) = 1
2πt∗2

√
4t∗2 − ω2 (dotted line in FIG.4).

For a given disorder strength W , the density of states
obtained from the time domain calculation (solid line)
is compared with the frequency domain (dash line) CPA
results. As expected, increasing the disorder strength
W causes the broadening and suppression of the spectral
peak. The density of states for this noninteracting system
has sharp edges that are hard to resolve numerically and
give rise to oscillations due to Gibbs phenomenon in the
Fourier transform of the real-time approach. Neverthe-
less, the overall lineshape is in good agreement between
the two methods.

We now apply the method to the Anderson-Hubbard
model in equilibrium at temperature T such that 1/T =
β = 40 for different parameters and examine the densi-
ties of states obtained from our real-time method. These
results are presented in FIG.5 for the equilibrium inter-
acting disordered model with U = 0.25 (a), U = 0.5 (b),
U = 0.75 (c), U = 1.4 (d). In panels (a), (b) and (c), the
solid line represents the clean system limit W = 0, the
dashed line W = 0.25 and the dotted line W = 0.5. In
panel (d), a gray scale is used with darker shades indicat-
ing stronger disorder. The clean system, represented by
the dashed blue line, restores the expected equilibrium
Hubbard density of states for the Bethe lattice.53 For
weak interactions (FIG.5-(a,b)), as the disorder is tuned
from weak to strong values, we observe a broadening of
the density of states. For moderate interaction strength
(FIG.5-(c)), the density of states at weak disorder display
Hubbard sidebands and a quasiparticle peak. As the dis-
order strength is increased, the sidebands and the quasi-
particle peak are suppressed in favor of a single broad
peak akin to the density of states of the weakly interact-
ing clean system. This behavior is more pronounced at
strong interactions (FIG.5-(d)) where the the clean sys-
tem displays a gap separated by the two Hubbard bands.
Increasing the disorder strength for this system gradually
fills the gap in a process similar to the insulator-to-metal
transition that has been reported in certain correlated
materials.47,48
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FIG. 5. Equilibrium densities of states with different disor-
der strengths for the equilibrium Anderson-Hubbard model
at temperature T such that 1/T = β = 40 with U = 0.25 (a),
U = 0.5 (b), U = 0.75 (c), U = 1.4 (d). In (a), (b) and (c),
the solid line represents the clean system limit W = 0, the
dashed line W = 0.25, and the dotted line W = 0.5. In panel
(d), a gray scale is used for disorder strengths increasing from
lighter to darker shade with a maximum disorder strength
(W = 0.5) represented by the black line and the clean system
(W = 0) represented by the dashed blue line.

B. Relaxation of the energy across the interaction
quench

We study the time-evolution of the kinetic, potential
and total energy in time when the interaction is sud-
denly switched on from an initial non-interacting system
(U1 = 0) in thermal equilibrium at temperature T given
by 1/T = β = 40 to a finite interaction strength U2 = U .

The total energy is obtained by summing up the kinetic
and potential energies54.

The kinetic energy per lattice site is defined by:

Ekin(t) =
1

N

∑
k,σ

εk〈c†k,σ(t)ck,σ(t)〉. (20)

Where N is the number of sites, k is the momentum
vector, and εk is the dispersion relation. The kinetic
energy can thus be rewritten as:

Ekin(t) = 2

∫
ρ(ε)εG<ε (t, t)dε. (21)

Where ε is the band energy.
The potential energy follows from the expression of the
double occupancy:

Epot(t) = [Gave ∗ Σave]
<(t, t) +

U(t)

4
. (22)
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FIG. 6. Relaxation, as a function of disorder strengths, of
the kinetic, potential, and total energies of the Anderson-
Hubbard model when the interaction is switched at time t = 0
from U1 = 0 to a finite value of U2 = U . In panels (a) for
U = 0.25 and (b) for U = 0.5, the relaxation is shown for the
clean system W = 0 (solid line), W = 0.5 (dashed line), and
W = 0.75 (dotted line). In panel (c) for U = 0.75, results
are shown for the clean system W = 0 (solid line), W = 0.25
(dashed line), and W = 0.5 (dotted line). In panel (d) for
U = 1.0, results are shown for the clean system W = 0 (solid
line), W = 0.5 (dashed line). Panel (d) for U = 1.0 shows
the breakdown of the solution with second order perturbation
theory as the impurity solver.

Where

G<ε (t, t′) =
{

[(i∂t − ε)δc − Σ]−1
}<

(t, t′) (23)

is the lattice lesser Green’s function, Gave is the Green’s
function averaged over all disorder configurations, Σave
is the self-energy obtained from the Dyson equation with
Gave, and the noninteracting Green’s function. It thus
includes the effects of both the interaction and the dis-
order. The lesser part of the convolution Gave ∗ Σave is
taken in equation (22) for the potential energy.

Since the system is isolated, the total energy has a
constant value before the quench and another constant
value after. For the equilibrium system before the in-
teraction quench, both the potential and kinetic energy
are also constant. However, they exhibit nontrivial dy-
namics after the quench. This is illustrated in FIG.6. In
panels (a) for U = 0.25 and (b) for U = 0.5, the relax-
ation is shown for the clean system W = 0 (solid line),
W = 0.5 (dashed line), and W = 0.75 (dotted line). In
panel (c) for U = 0.75, results are shown for the clean
system W = 0 (solid line), W = 0.25 (dashed line), and
W = 0.5 (dotted line). In panel (d) for U = 1.0, re-
sults are shown for the clean system W = 0 (solid line),
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FIG. 7. Momentum distribution function at the latest av-
erage time of the simulation for the initial non-interacting
equilibrium system at a temperature such that 1/T = β = 40
quenched at time t = 0 to an interaction strength U = 0.25
(a), U = 0.75 (b) for disorder strengths W = 0.0 (black),
W = 0.25 (red), W = 0.5 (blue) and W = 0.75 (green line in
panel (a) only).

W = 0.5 (dashed line). For weak final interactions where
the density of states is broadened by the disorder, the
relaxation of both the potential and kinetic energy have
a monotonic evolution before a plateau at their steady
state values. This is shown in FIG.6-(a) for U = 0.25
and FIG.6-(b) for U = 0.5. Here, the steady state ki-
netic energy increases with disorder strength while the
steady state potential energy decreases with increasing
disorder strength. FIG.6-(c) shows the energy relaxation
as the final interaction is increased to moderately strong
values (U = 0.75) where the equilibrium density of states
would feature a quasiparticle peak flanked by the onset of
the Hubbard sidebands. The steady state potential en-
ergy shows little change with the disorder strength while
the steady state kinetic energy decreases with increasing
disorder strength.

Our solution for the nonequilibrium problem using
second order perturbation theory as an impurity solver
breaks down for strong interactions for this interacting
disordered system. This breakdown is manifested
through the divergence of the kinetic and potential
energies and a total energy after the quench that is not
constant as pictured in FIG.6-(d) for U = 1.0. The
breakdown is similar to what was previously observed
for the interaction quench of the clean system using
nonequilibrium DMFT with second order perturbation
theory as an impurity solver.54 Note also that the
self-consistency loop for both the equilibrium and the
nonequilibrium situation becomes unstable for strong
interaction strengths and for strong disorder (U and
W of the order of the bandwidth). Nevertheless, our
solutions are robust for weak to moderate interaction
strengths.

We further analyse the relaxation of the system af-
ter the quench by plotting the momentum distribution
function as a function of disorder strength for the two
observed relaxation scenarios at a late simulation time,
n(ε, tave = 20.0) = G<ε (t, t). Where G<ε (t, t) is the equal
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time lesser Green’s function from equation (23). This
momentum distribution is shown in FIG.7 for U = 0.25
(a) and U = 0.75 (b). Our results show that the momen-
tum distribution function for an interaction quench on a
system that is initially non-interacting into weakly inter-
acting system, behaves as if increasing disorder strength
is analogous to lowering the temperature FIG.7 (a). On
the other hand, when the quench takes the system from
non-interacting to a moderate interaction strength the
momentum distribution after the quench behaves as if
the temperature of the system increases with increasing
disorder strength FIG.7 (b). This is consistent with the
identification of the insulator-to-metal transition and of
the nontrivial relaxation across the quench as a function
of disorder strength when the interaction strength is in-
creased from weak to moderate. Note the absence of a
W = 0.75 curve in FIG.7-(b) because of the breakdown
of the formalism discussed above.

IV. CONCLUSION

We have presented a nonequilibrium solution for cor-
related disordered systems using a combination of CPA
and DMFT on the complex time axis of the Kadanoff-
Baym-Keldysh contour. The solution maps the lattice
onto an impurity embedded in a self-consistently deter-
mined mean-field and the disorder is treated through
averaging over different individual configurations. We
applied the approach to the equilibrium problem and
showed that it effectively produces the densities of states

of the system, bypassing the need for the analytical con-
tinuation calculation. To demonstrate the application of
the formalism on a nonequilibrium problem, we simulate
an interaction quench on the Anderson-Hubbard model.
Here, a system initially in equilibrium at finite tem-
perature sees its interaction strength abruptly changed
from zero to another finite value. We identify different
relaxation processes in the energies of the system as a
function of disorder strength. Our solution uses second
order perturbation theory as an impurity solver and
breaks down at stronger interaction values. We plan
to extend these studies to other parameter regimes by
adopting other diagrammatic solutions for the impurity
solver and also analyze in greater detail the nature of
these relaxation processes. Altogether, the approach
presents a valuable tool for studies of nonequilibrium
dynamics of correlated disordered systems and may
shed new light on non trivial dynamics that arise from
combined effects of both correlations and disorder when
these systems are driven away from equilibrium.
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APPENDIX

In the frequency domain the Green’s function for a
given disorder configuration Vi, with the self-energy eval-
uated up to second order, can be written as:

G(U, Vi) =
1

ω + µ− Vi − ΣHVi − Σ
(2)
Vi
−∆

. (24)

Setting the chemical potential to µ = U/2 and writing the
Hartree term as ΣHVi = U

2 ni, we can rewrite the Green’s
function as:

G(U, Vi) =
1

ω + U
2 (1− ni)− Vi − Σ

(2)
Vi
−∆

. (25)

Defining ω̄i = ω − Vi − Σ
(2)
Vi
−∆, we can write

G(U, Vi) =
1

ω̄ + U
2 (1− ni)

. (26)

By breaking the disorder averaging process, for an even
disorder distribution, into averages on pairwise sets
{Vi,−Vi} labelled with indices i and −i, we have:

〈G(U, Vi)〉{Vi,−Vi} =
1

2

(
1

ω̄i − U
2 (1− ni)

+
1

ω̄−i − U
2 (1− n−i)

)
. (27)

Expanding ni = 1 + εVi, and then the resulting expres-
sions with 1

ω̄i
− 1

ω̄−i
, to first order in Vi, we obtain:

〈G(U, Vi)〉{Vi,−Vi} ≈
1

2

[
1

ω̄i
+

1

ω̄−i

]
+O(V 2

i ). (28)

Or

〈G(U, Vi)〉{Vi,−Vi} ≈
1

2
(G(U, Vi) +G(U,−Vi)) +O(V 2

i ).

(29)
Where G(U, Vi) and G(U,−Vi) on the right-hand side
do not feature the Hartree term. Thus, to low order
in the disorder, setting the chemical potential to µ =
U/2 suppresses the Hartree term. However, for strong
disorder, these terms will become important and so will
have to be included. Note that we use the bandwidth
4t∗ = 1 as our unit of energy, thus keeping our results
within the regime of validity.


