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Antiferromagnetic manganese-based nitride antiperovskites, such as Mn3NiN, hold a triangular
frustrated magnetic ordering thanks to their kagome lattice formed by the Mn atoms along the (111)-
plane. As such, the magnetic frustration imposes a non-trivial interplay between the symmetric and
asymmetric magnetic interactions, which can only reach equilibrium in a noncollinear magnetic
configuration. Consequently, the associated electronic interactions and their possible tuning by
external constraints, such as applied epitaxial strain, play a crucial role in defining the microscopic
and macroscopic properties of such topological condensed matter systems. In this work, we explored
and explained the effect of the epitaxial strain imposed within the (111)-plane, in which the magnetic
and crystallographic symmetry operations are kept fixed, and only the magnitude of the ionic
and electronic interactions are tuned. We found a tangible enhancement in the anomalous Hall
conductivity along the (111)-plane (σAHE

111 ) for compression values, whereas, for tension, the AHC
is dramatically reduced. As such, the σAHE

111 component fetches a maximum increase of 26%, with
respect to the unstrained structure, for a compression value close to −1.5%. Our findings indicate
a distinct correlation between the anomalous Hall conductivity and the Berry curvature along the
(111)-plane as a function of the strain. Here, the non-divergent Berry curvature acts as the source
and the strain as the control mechanism of this anomalous transport phenomenon.

I. INTRODUCTION

Antiperovskites, A3BX [1] (also known as inverse-
perovskites) such as Mn3NiN, are cubic structures similar
to perovskites in which the cation and anion position are
interchanged within the unit cell for the standard per-
ovskite crystal structure. Thus, the anions occupy the
octahedral center instead of the corners, which becomes
the site for the transition metal cations, forming a XA6

octahedra. This type of coordination, coupled with their
magnetic response, gives unique properties such as the
anomalous Hall conductivity, AHC, [2, 3], negative ther-
mal expansion [4], giant piezomagnetism [5], magnetic
frustration [6, 7], among others [8–19]. In particular,
the magnetic frustration in triangular magnetic coordi-
nation relies on the Mn–Mn exchange and the Mn–N–Mn
superexchange interaction. Thus, the metallic RKKY
interaction, which favors an antiferromagnetic collinear
arrangement [20], is more prominent but is in competi-
tion with the superexchange [21, 22] interaction mediated
by the nitrogen at the cell center. Apart from the ex-
change and the superexchange, there is also an antisym-
metric coupling, the Dzyaloshinskii-Moriya interaction,
DMI, which is present in the (111)-plane inducing cant-
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ing, which further increases the frustration [7, 23]. Com-
bining all the discussed interactions converges into non-
trivial, noncollinear, and possibly chiral magnetic order-
ing. In this case, the chirality is of vectorial nature and
comes from the removal of the mirror symmetry due to
the magnetic orderings, developing a well defined hand-
edness given by k = 2

3
√

3

∑
ij [
~Si× ~Sj ] (where i, j runs over

all the magnetic moments) [24, 25]. For example, the tri-
angular frustrated magnetism in Mn3NiN is compatible
with the Γ5g and Γ4g [6] magnetic orderings. The Γ4g

(MSG. 166.101) ordering is symmetric under the simulta-
neous application of both the time-reversal symmetry, T ,
and the mirror symmetry,M, along the M 100, M 110 and
M 010 planes in the Seitz notation; conversely, in the Γ5g

(MSG. 166.97) ordering, the T ∗M is broken [3]. More-
over, although the overall electronic band structures of
both magnetic phases are fairly similar, the mirror sym-
metry breaking in the Γ4g allows a sizeable AHC, unlike
in the case of Γ5g in which the AHC is null [3]. The AHE
in antiferromagnets has risen in research interest due to
the possibility of dissipation-less current [26] thanks to
the large AHC found in Mn3Sn and Mn3Ge [27–29]. De-
spite presenting a low density of states at the Fermi level,
noncollinear antiferromagnetic antiperovskites are good
conductors with a tunable AHC, with the strain as the
key to accessing this controllability. The strong mag-
netostructural coupling present in the Mn-based antiper-
ovskites [30, 31], on top of the subtle balance between the
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magnetic, ionic, and electronic structure, opens the door
to engineering a route for AHC controlling using external
constraints. Although several studies had already been
commented on the potential controllability of the AHC
in Mn3NiN by other authors [2, 3, 32, 33], the source of
its behavior is not yet completely understood. For ex-
ample, the reported AHC calculations for Mn3NiN range
from σ111= -301 S·cm−1 [34] to σ111 = 525 S·cm−1 [35]
(see Table SI in Supplemental Material [36]), a very wide
range likely related to a strong dependence on the calcu-
lations approach and parameters chosen by the authors.
Remarkably, the AHC in (001) Mn3NiN strained thin
films has been reported as σxy ≈ 170 S·cm−1 based-on
theoretical calculations whereas the experimentally mea-
sured value in the same work is around σxy = 22 S·cm−1

[33]. Despite the disagreement, when the measured and
computed AHC are compared, their conclusion was re-
lated to a direct compression (tension) to increase (de-
crease) relation between the strain and the AHC. How-
ever, applying the strain in such a direction would dis-
tort the crystal into a tetragonal symmetry, changing the
magnetic and structural relationship and adding a weak-
ferromagnetic canting into the magnetic response [5]. Be-
cause the symmetry is the trigger of the AHC in the an-
tiferromagnetic antiperovskites, distortions, and changes
in symmetry operations could put a veil over the actual
control mechanism and physical origins of this property
in Mn3NiN. Moreover, the experimental epitaxial growth
of thin films of antiperovskites onto perovskites, SrTiO3,
has been achieved [37, 38] demonstrating the feasibility
of obtaining strained thin-films. Another experimental
study was performed, achieving an epitaxial growth of
Mn3NiN on the piezoelectric BaTiO3 [39] showing a cor-
relation between the strain and the AHC values. So far,
it is possible to experimentally explore the effect of the
strain on antiferromagnetic nitride antiperovskites such
as Mn3GaN and Mn3NiN. Notwithstanding these efforts,
the explanation of the strain effect, its link with the elec-
tronic and ionic structure in this material, and the ori-
gin of a possible experimental control of the AHC by
means of the strain, still allows room for a more profound
comprehension. Therefore, in this paper, we show from
first-principles calculations the analysis of the epitaxial
strain as a control parameter of the electronic proper-
ties. Furthermore, we explored the AHC, and the Berry
curvature, BC, features in the antiferromagnetic antiper-
ovskite Mn3NiN as a prototype among its family. Thus,
our results explain the physical origin of the AHC con-
trollability and possible experimental tuning.

This paper is organized as follows: We present the com-
putational details and theoretical approaches required
for the analysis of structural and electronic phenomena
within the Mn3NiN antiperovskite (in Section II). Then,
we condensed our results and research associated with
the structure behavior, electronic properties, anomalous
Hall conductivity, and the Berry curvature (in Section
III). Finally, we provide our conclusions, in Section IV,
and general remarks.

II. COMPUTATIONAL DETAILS

We performed first-principles calculations within the
density-functional theory (DFT) [40, 41] approach by us-
ing the vasp code (version 5.4.4) [42, 43]. The projected-
augmented waves scheme, PAW [44], was employed to
represent the valence and core electrons. The electronic
configurations considered in the pseudo-potentials, as va-
lence electrons, are Mn: (3p63d54s2, version 02Aug2007),
Ni: (3p63d84s2, version 06Sep2000), and N: (2s22p3,
version 08Apr2002). The exchange-correlation was rep-
resented within the generalized gradient approximation
GGA-PBEsol parametrization [45]. The Mn:3d or-
bitals were corrected through the DFT+U approxima-
tion within the Liechtenstein formalism [46]. Due to
the strong magnetostructural response observed in the
Mn3AN antiperovskites [47], we used the U = 2.0 eV
parameter in the Mn:3d orbitals. This U value allows
the structural optimization to reproduce the experimen-
tally observed lattice parameter, which is key in obtain-
ing an appropriate charge distribution and, ultimately,
the electronic properties under strain. Moreover, we also
compared the PBEsol+U obtained electronic structure of
Mn3NiN with the computed by the strongly constrained
and appropriately normed semilocal density functional,
SCAN, [48, 49], observing a fair agreement of the elec-
tronic structure in both cases. Importantly, recent re-
ports of SCAN-based calculations have shown results in
good agreement with the experimental reports, includ-
ing lattice constant [50, 51], the magnetic and the elec-
tronic structure [30] in strongly-correlated 3d perovskites
and Heusler Mn-based alloys [52]. All the procedures de-
scribed above are essential due to the needed accuracy
related to the lattice degrees of freedom as a function of
the applied strain and its effect on the magnetostructural
behavior. The periodic solution of the crystal was repre-
sented by using Bloch states with a Monkhorst-Pack [53]
k -point mesh of 12×12×12 and 600 eV energy cut-off to
give forces convergence of less than 0.001 eV·Å−1 and an
error in the energy less than 10−6 eV. The spin-orbit cou-
pling (SOC) was included to consider non-collinear mag-
netic configurations [54]. The anomalous Hall conductiv-
ity, and associated observables, were obtained with the
Python library WannierBerri [55] using the maximally
localized Wannier functions and the tight-binding Hamil-
tonian generated with the Wannier90 package [56]. The
interpolation was performed with 80 Wannier functions
with projections on the s,p,d orbitals for the Mn and
Ni atoms and s,p for N atoms. For the disentanglement
process, we used an energy window +3.0 eV higher than
Fermi level as the maximum, and none for the minimum,
and a convergence tolerance of 5.0×10−8 Å2. We ob-
tained, with the support of the WannierTools code [57],
the number of band crossings around the Fermi energy,
for the range between −1.3 to 1.3 eV, as well as their po-
sition in energy and momentum. The latter considering
a energy-gap crossing (Ew) below the threshold of Ew =
0.050 eV computed in a 17×17×17 k-mesh. The atomic
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FIG. 1. (Color online) (a) Mn3NiN cubic structure showing the Mn, Ni, and N atoms in violet, yellow, and green colors,
respectively. Here, the (111)-plane is shown in yellow color. (b) The kagome lattice, on the (111)-plane formed by the Mn
atoms, is highlighted on top of the cubic Mn3NiN structure. (c) 15-atom hexagonal reference obtained after rotating the
5-atom structure, aligning the (111)-plane kagome lattice with the xy-plane. (d) Noncollinear antiferromagnetic Γ4g ordering,
in which the magnetic moments per atom are depicted in red color. Additionally, the kagome lattice is also shown, as well as
the schematics of the strain application. (e) Ground state energy difference, ∆E = EΓ4g − EΓ5g , versus the applied epitaxial
strain suggesting a lower energy for the Γ4g in each case. (f) Variation of the inter-plane and in-plane Mn–Mn distances as a
function of the epitaxial strain.

structure figures were elaborated with the vesta code
[58]. Finally, the band structure was analyzed with the
Python library PyProcar [59].

III. RESULTS AND DISCUSSION:

As commented before, we aim to avoid additional
contributions induced by the strain application in the
(001)-plane of the 5-atom reference, depicted in Fig 1(a).
Therefore, we studied the effect of the epitaxial strain
applied only in the directions parallel to the (111)-plane
so that the kagome lattice, magnetic ordering, and their
associated symmetry conditions are conserved. To ob-
serve the atomic arrangement present in the (111)-plane
and its spatial orientation, a broader view of that zone
is shown in Fig. 1(b). Here, the kagome lattice formed
by the Mn atoms is highlighted in a yellow plane. To
gain access to the (111)-plane of the 5-atom reference,
the structure was rotated to make that plane parallel to
the cartesian xy-plane as shown in Fig. 1(c). In such
orientation, it is obtained an equivalent 15-atom hexago-
nal cell shown in the same figure. This achieves a better
representation of the structural symmetry and allows the
homogenous application of the epitaxial strain. In this
new representation, the a direction of the lattice belongs

in the xy-plane and serves as a linearly independent crys-
tallographic direction to apply the epitaxial strain. As it
can be seen in Fig. 1(d), stretching along the plane would
only change the Mn–Mn distance and not the atomic ar-
rangement. In this setup, the strain controls the intensity
of the exchange and the superexchange interactions only
by modifying the interatomic distances but conserving
the magnetic symmetry.

Concretely, the strain was applied as follows. The a
lattice parameter is variated along with the values from
−3% to +3%. This still allows the full relaxation of the
crystal structure and atomic positions along the c direc-
tion in all cases. The applied strain percentage, η, is
defined in terms of the unstrained lattice parameter a0

and the imposed value a as:

η =
a− a0

a0
× 100%, (1)

As such, the above relationship, Eq. 1, gives com-
pression and tension over the structure for negative and
positive values of η, respectively.

Since the electronic, magnetic, and crystalline struc-
tures of Mn3NiN are strongly entangled due to its size-
able magnetostructural coupling, the cell optimization
and electronic relaxation were carefully performed within
the PBEsol+U approximation. The latter in order to
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reproduce the experimental unstrained cell lattice con-
stant (a0 = 3.886 Å below TN = 262 K) [60] with a
stable Γ4g magnetic ordering and to obtain a correct re-
laxed structure under strain. The best agreement be-
tween the experiment measured and the computed lat-
tice parameter was found for U = 2.0 eV (see Table SII
in the supplemental material [36]). This correction leads
to a hexagonal cell with the parameters of a = 5.496 Å
and c = 6.726 Å within the stable Γ4g magnetic order-
ing. This value of lattice parameters are equivalent to
a lattice parameter a0 = 3.885 Å in the 5-atom refer-
ence. Therefore, the Hubbard correction and the volume
cell optimization helped to avoid a pre-strained setup
which is the case of pure LDA/PBE based calculations, in
which a volume adjustment is needed because of the un-
der/overestimation of the experimentally observed value
[51]. Moreover, recent studies indicate a strong depen-
dence on the electronic and lattice degrees of freedom in
Mn-based compounds [30, 49]. The structural stability
of the Γ4g phase of Mn3NiN was tested under epitaxial
strain by obtaining the full phonon-dispersion curves at
η = −3.0%, 0.0%„ and +3%, see Fig. S1(a) [36]. The
latter aims to ensure that the ranges of strain chosen
were within the limits of the structural stability and that
no phase transitions might be induced. As shown in Fig.
S1(a) [36], the full phonon-dispersion shows no imaginary
or unstable phonons, confirming the structural and vibra-
tional stability of Mn3NiN under the considered strain
values. Furthermore, the magnetic phase stability of the
Γ4g over the Γ5g was also tested (see Fig. 1(e)). As it
can be observed from this figure, the compression epitax-
ial strain reinforces and stabilizes the Γ4g order, whereas,
for expansion strain values, the difference in energy be-
tween the antiferromagnetic orderings is reduced. Thus,
the negative strain values serve as a mechanism to freeze
in the Γ4g ordering in the Mn3NiN. In the Mn3NiN case,
both magnetic orderings would present similar magne-
tocrystalline anisotropy energy (MAE) in the absence of
strain, corroborated experimentally [61–63] and indicat-
ing a possible combination of the Γ4g and Γ5g orderings
in the experimentally synthesized samples. Nonetheless,
a more recent report points to a bias of the magnetism
in Mn3NiN towards the Γ4g ordering [34] and, in agree-
ment with our results in Fig. 1(e), the Γ4g ordering is
more stable with respect to the Γ5g state, at compres-
sive strain values. Moreover, we have also explored the
possible presence of a ferromagnetic canting along the
(111)-axis. Nevertheless, such canting vanishes after full
atomic and electronic relaxation under strain. The latter
can be explained in terms of the lattice dynamics of the
Mn3NiN antiperovskites, which shows that the FM state
along the (111)-axis is dynamically unstable, inducing an
unstable phonon at the R-point related to out-of-phase
octahedral rotations [49]

The variations of the plane-to-plane distance between
the kagome planes, in comparison with the distance be-
tween two Mn nearest atoms of the same plane, are pre-
sented in Fig. 1(f). The compression (tension) strain ap-
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FIG. 2. (Color online) (a-c) Electronic band structure (first
row) and Berry curvature (second row) of the Mn3NiN in the
Γ4g noncollinear magnetic phase. Here, marked in a black cir-
cles are presented two Weyl nodes in the T–Γ path as well as
various non-topological band crossings in red circles close to
the Fermi level. (d-f) Density-of states, DOS, for the −3.0%,
0.0%, and +3.0% strain values including the d-orbitally pro-
jected Mn and Ni states. (g) DOS states integration for an
energy range of 0.1 eV under, over, and around the Fermi
energy.

plication, directly on the plane of the magnetic kagome
lattice, produces the expected response of increasing (de-
creasing) the separation of the (111) family of planes,
as shown in the graph of Fig. 1(f). Furthermore, lin-
ear variations of the distance between Mn atoms of the
same plane induced inverse linear variation in separating
the kagome planes. Consequently, the exchange and su-
perexchange interactions can be finely tuned, ultimately
gaining control over the frustration mechanism. Thus,
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the (111) applied strain is advantageous from the sym-
metry point of view because the initial R3̄m symmetry
is preserved along the deformation path on the 15-atom
reference. Therefore, the symmetry relationships do not
change; instead, only the electronic effects can be tuned
through the control over the interacting moments by the
epitaxial strain. Additionally, symmetry preservation al-
lows straining and optimizing on the 15-atom reference
and then returning to the 5-atom representation to per-
form the rest of the calculations and analysis, avoiding
electronic bands unfolding issues. To recover the 5-atom
representation, we made use of the transformation ma-
trices, as implemented in the findsym tool [64, 65]. In
what follows, all the calculations and analyses are carried
out on the 5-atom reference for each relaxed strained cell.

The electronic band structure and the Berry curvature
calculated along the Γ–L–T–Γ–F, and P2–Γ paths in the
BZ for the η = −3.0%, 0.0%, and +3.0% in the 5-atom
reference are presented in Fig. 2(a-c) with a relevant
Weyl node near Fermi in the T–Γ path marked inside a
red circle. Here, the L–T path lies along the (111)-plane
(where the kagome lattice lies) while the P2–Γ path runs
perpendicularly to the same plane. When the structure
is compressed, the energy bands close to the Fermi en-
ergy in the L–T path are pushed away from the Fermi
level (see Fig. 2(a)). Meanwhile, as shown in the same
figure, electron bands shift up in energy together in the
P2–Γ path. On the other hand, the behavior is the op-
posite when tension is applied, as observed in the η =
+3% case presented in Fig. 2(c). The Berry curvature,
in the second row of the Fig. 2(a-c), shows a distinctive
behavior in the L–T path; all the remaining path show
very localized and discontinuous Berry curvature while in
the mentioned path the curvature is a smooth and spread
function. The extracted projections, per atomic specie,
of the electronic band structure for η = −3.0%, 0.0%,
and 3.0% (see Fig. S2 in the Supplemental Material [36])
show that Mn:3d-states represent the major contribution
above the Fermi level. Meanwhile, Ni:3d-states domi-
nate the band structure under the Fermi energy, with
its most substantial contribution around -1.25 eV. Both
Mn and Ni atomic species share the intermediate (−0.5,
+0.5) eV range of energy. Thus, the conduction phe-
nomena result from the hybridization of the Mn and Ni
d-orbitals around the Fermi energy. Aiming to analyze
the available charge and states around the Fermi level,
we computed the DOS for η = −3%, 0%, and +3% and
the results are contained in Fig. 2(d-f). Here, we ob-
served a displacement of the total DOS with respect to
the energy as a response to the applied strain. Tracking
the minimum of the DOS, located at −0.5 eV in the η
= 0.0% DOS plot in Fig. 2(e), which moves up (down)
in energy for compression (tension), this behavior be-
comes clear. More precisely, the available states near the
Fermi level decrease with compression and increase with
tension, see Fig. 2(g). To further dive into the DOS sub-
tleties around the Fermi level, the Mn and Ni:3d-orbitals
projections of the DOS are included in Fig. 2(d-f). As

it can be observed, the contribution at the Fermi level
from the 3dxy/yz/xz orbitals increase (decrease) for ten-
sion (compression) strain values. The same is the case
for 3dz2/x2−y2 . In general, the 3d orbitals are pushed up-
wards in energy when the structure is compressed. In the
case of Ni:3d orbitals, a marginal contribution is observed
close to the Fermi level. Finally, the direct integration of
the total DOS for each η in the [−0.1,+0.1] eV interval,
as presented in Fig. 2(g), confirms the relationship be-
tween the electronic states and the strain inferred from
the complete and partial DOS analysis. Moreover, the
integration of the DOS over the ranges [−0.1,0.0] and
[0.0,+0.1] eV for the occupied and unoccupied bands, re-
spectively, follow the same behavior already observed in
the [−0.1,+0.1] eV interval.

Before discussing our AHC findings, it is worth men-
tioning the different sources behind the AHC. The AHC
in crystals can be the result of different sources: the in-
trinsic, side jump, and the skew scattering contribution,
as shown in Ref. [66]. The last two of them are a conse-
quence of impurities in the crystal that deflect and scat-
ter the electrons sideways. In this work, we concentrate
our attention on the intrinsic component of the AHC,
which results from the electronic, magnetic, and struc-
tural properties of a perfect crystal. Additionally, the
intricate combination of the many interactions present in
the frustrated triangular shape created between the Mn
atoms in the kagome plane reduces the symmetry to R3̄m
in the Γ5g case. Finally, in the case of the Γ4g magnetic
ordering, shown in Fig 1(e), theM-symmetry is also re-
moved, ending up with the R3̄m’ symmetry. This lack
ofM-symmetry is essential for the existence of AHC in
the Γ4g phase. The M-symmetry is also the reason for
the absence of that property in the Γ5g phase. Thus, the
AHC reported in this work is calculated based on the
relationship defined as follows [66]:

σAHCαβ = −e
2

~
εαβγ

∫
BZ

∑
n

d3~k

(2π)3
fn(~k)Ωγn(~k), (2)

The latter, Eq. 2, as implemented in the Wannier-
Berri code [55]. Here, in Eq. 2, εαβγ is the antisym-
metric tensor,

∑
n fn(~k)Ωγn(~k) is the summation over all

the included bands contribution to the Berri curvature,
Ωγ(~k), and fn(~k) is the Fermi distribution. In Eq. 2, the
γ subscript runs over a discrete grid of energy points, al-
lowing the AHC calculation in other energy levels apart
from the Fermi level. By looking at the Eq. 2, two main
factors are candidates to explain the AHC behavior as a
function of the epitaxial strain: The available electronic
states around the Fermi level and the Berry curvature
integration in the BZ. The Γ4g phase of the Mn3NiN sys-
tem is a non-collinear antiferromagnet with a non-zero
magnetic moment of each Mn atom but with zero net
magnetization. Consequently, without a net internal or
external magnetic field, the Hall conductivity must re-
sult from the anomalous Hall effect (AHE) through a
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a) b)

FIG. 3. (Color online) (a) Anomalous Hall conductivity as a
function of energy for various strain values. The AHC around
− 0.2 eV is showing a downward shifting behavior marked
with a red dashed line for compression and tension strain val-
ues alike. (b) AHC value extracted at Fermi energy, including
the error estimated as the standard deviation of the last 20
computational iterations.

non-vanishing Berry curvature, as in Eq. 2. The latter is
resulting in the following tensor for the R3̄m’ magnetic
symmetry group [3, 67]:

σΓ4g =

 0 σxy −σxy
−σxy 0 σxy
σxy −σxy 0

 (3)

with all the non-zero components identical σxy = σzx =
σyz and therefore represented all by the σxy component.
The strain application proposed in this work is now ad-
vantageous because the symmetry preservation guaran-
tees a fixed AHC tensor form and symmetry conditions,
as seen in Eq. 3. As such, the setup for the strain, as seen
in Fig. 1(e), is the key to studying the AHC in Mn3NiN
as a pure function of the strain without altering the al-
lowed symmetry features, and then, the variations on the
AHC in the (111)-plane ση111 = 1√

3
(σηxy + σηyz + σηzx) can

be extracted as a function of η in the kagome lattices.
Fig. 3(a) shows the σ111 component of the AHC as a

function of the energy, in the energy range [−0.5,+0.5]
eV, for strain values between η = −3.0% to 3.0%. In
Fig. 3(b), is presented a bar plot condensing the σ111

value at the Fermi level for each strain value, as well
as their error bars. The latter error bars, marked in

red in Fig. 3(a), were estimated as the standard devi-
ation of the last 20 adaptive refinement iterations [55]
while computing the σxy component based on the Eq.
2. Interestingly, the AHC results show a particular be-
havior; its value does not just increase or decrease with
the epitaxial strain; as seen in Fig. 3(a), the whole func-
tion suffers a flattening with the compressive and tensile
stress incremental. Additionally, the maxima and min-
ima of the conductivity function diverge away from the
Fermi level with both types of deformation. Further-
more, as seen in the barplot of Fig. 3(b), the tensile
strain produces almost an AHC vanishing value, stretch-
ing the (111)-plane as low as η = +1% and upwards re-
duces the conductivity dramatically. The compression,
on the other hand, induces an increase of the AHC from
σ0%

111 = 114 S·cm−1 to σ−1%
111 = 144 S·cm−1 representing

an increase of 26%. However, the AHC remains constant
in a plateau zone that holds until η = −2%. Further
values of strain compression, after η = −2%, does not
enhances the AHC, instead, the conductivity drops after
this strain value, reaching σ−3%

111 = 111 S·cm−1 for η =
−3%, a value similar to the case η = 0%. Looking at
Fig. 3(a), a small spike of AHC is spotted just under the
Fermi level for η = 0.0%. Later, it disappears for tension
but enhances under compression, growing non-stop along
the interval 0%≥ η ≥−2.0%. Moreover, the mentioned
spike moves up to energies higher than the Fermi level,
being its maximum synchronized with the Fermi level for
a compressive η between −1.0% and −2.0% Thus, our
findings suggest that the area under the AHC curve is
redistributed with the strain rather than shifted. Con-
sidering the Eq. 2 and aiming for gathering more infor-
mation on the origin of the AHC control mechanism, the
σ−1.5%

111 and the Berry curvature were calculated. The
conductivity for the additional strain value turned out as
σ−1.5%

111 = 141 S·cm−1, confirming the plateau zone pre-
viously mentioned. Here, some saturation is occurring
that is stable within −1%≥ η ≥−2%.

Surprisingly, a comparison between the AHC (in Fig.
3) and the states available near the Fermi level (see Fig.
2(g)) within the range [−0.1,+0.1] eV, directly associated
with fn(~k), in Eq. 2, shows no correlation. Here, we ex-
pected to find a connection because of the Ωγ(~k) depen-
dence on the Fermi distribution. However, the number
of states increases with the tension while the AHC gets
almost destroyed under such circumstances. A DOS pro-
jection onto the Mn:3d and Ni:3d orbitals, which domi-
nate most of the band structure around the Fermi level,
showed a non-similar behavior to the AHC. The contri-
bution of those orbitals follows the same rules as the to-
tal DOS, as already discussed in the electronic structure
analysis. For instance, the only source of control that re-
mains for the AHC is the Berry curvature, which will be
analyzed in what follows. The Mn3NiN BZ is shown in
Fig. 4(a) in which P2–Γ and L–T are shown with respect
to the (111)-plane kagome lattice. In Fig. 4(b) is pre-
sented the AHC as well as the number of band crossings
in the [-0.1,0.1] eV range. The BC integration results
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for η = −3.0%,−1.5%, 0.0% and 3.0% along the P2–Γ
and the L–T paths are shown in the left and right parts
of Fig. 4(c), respectively. Analyzing the BC along the
P2–Γ path shown in Fig. 4(c), various discontinuities
belonging to band crossings near and at the Fermi level
can be identified. As provided by the symmetry analysis
later in this manuscript, most of those crossings are not
protected by the symmetries of the system and therefore
belong to the non-topological band crossings classifica-
tion. However, the rhombohedral symmetry preserva-
tion throughout the strain application process is advan-
tageous because it allows the shape of the band struc-
ture to remain mostly unaltered. As a result, the band
crossings can only move up and down in energy or, in
the case of non-topological band crossings, be dissolved
by the external perturbation. Notably, the trivial band
crossings near the Fermi level (shown in Fig. 2(a-c)) pro-
duce a divergent component of the BC that is maximum

a)

c)

Γ

b2
b1

b3

T

P2

F

L

+3%-3% 0% -1.5%

b)

FIG. 4. (Color online) (a) Brillouin zone for the rhombohedral
structure of Mn3NiN. Here, the plane parallel to the (111)-
plane is highlighted and the high symmetry points included
in the band structure calculation. (b) Bar plot including the
σ111 component of the AHC as well as the number of non-
topological band crossings in the range [−0.1,0.1] eV around
the Fermi level. (c) Berry curvature calculated for the path
connecting the high symmetry points P2–Γ on the left and
L–T on the right, perpendicular and parallel to the kagome
lattices, respectively.

for the unstrained structure, very weak for compression,
but considerable for tension strain. Despite that, the
results showed the highest AHC values for compression
and unstrained cases, while in the case of tension strain,
the AHC sees a minimum. Moreover, the counting of the
band crossings near the Fermi energy shown in Fig. 4(b),
in agreement with the DOS integral, shown in Fig. 2(g),
displays a proportional compression (tension) to decrease
(increase) of the number of crossings. Thus, giving more
crossings near the Fermi level for tension than for com-
pression and an intermediate number of crossings for the
unstrained case. Again, the Berry curvature of the non-
topological crossings does not follow the behavior already
seen in the AHC. Therefore, in agreement with Huyen et
al. [32], our results suggest that the highly localized and
divergent Berry curvature, induced by the band crossings
near the Fermi level, is not the AHC primary origin.

Despite several bands crossings found in the band
structure, not all are actual Weyl nodes; instead, the ma-
jority are non-topological crossings, which resist small
symmetry-preserving perturbations but do not result
from the crystallographic and magnetic symmetries. In
what follows, the Weyl nodes identification process will
be presented.

Bands can be either spanned in Bloch or Wannier
functions; the first unlocalized in the momentum space
and the second localized in the real space. In this
case, a relationship between the localized orbitals of
atomic sites with the wave functions can be established
[68, 69]. Therefore, the crystal symmetry is inherited
by the Hamiltonian. Thus, the reciprocal paths along
where symmetry-protected Weyl nodes can be detected
are determined from the character tables of the high sym-
metry points and the compatibility relations of the band
representations for the symmetry group. The character
tables and the compatibility relations were obtained from
the Bilbao crystallographic server, providing information
for all the known symmetry groups. Such tables are
calculated through a generalized implementation of the
induction algorithm based on the Frobenius reciprocity
[70, 71].

In systems like the Mn3NiN Γ4g magnetic phase, the
degeneracy of the energy bands is lifted by the TRS
breaking. However, some degeneracies remain due to
their topological origin and are protected by nonsymmor-
phic symmetries (e.g., the roto-translations). Accord-
ing to the compatibility relations for the R3̄m’ (166.101)
magnetic symmetry group, the symmetries in this non-
collinear antiferromagnet induce and the C3(111) protect
a total of 6 possible Weyl nodes located along the path
Γ:(0,0,0)→ T:(1/2, 1/2, -1/2), each belonging to cross-
ings of pairs of bands from the Γ-point at an intermediate
Λ-point which separates again towards the point T (see
Table SIII in Supplemental material [36]).

Because of the Weyl nodes protected status, they
are resistant to all the symmetry-preserving perturba-
tions in the system and are also non-dependent on the
SOC. Therefore, the C3(111) protected Weyl nodes must
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hold against tiny or extreme strain values, such as -
3%≤ η ≤+3%, either in the presence or the absence of the
SOC. After analyzing the band structure in the T-Γ path
for band degeneracies with band inversion, we identified
some crossings that disappear under compression or ten-
sion, but four crossings hold from -3% to 3% strain (see
Table SIV in Supplemental material [36]). Among the
found nodes, the Weyl node shown in Fig. 2(a-c) occupy-
ing the energy levels âĂŤ0.461, -0.413, and -0.4177 eV for
-3%, 0%, and 3%, respectively, is the closest to the Fermi
level. Despite remaining intact in all the strain cases, the
mentioned crossing showed no inference in the BC at the
Fermi level. Furthermore, as reported in Kübler et al.,
[72], the chirality of both, inward and outward magnetic
moments triangles is the same, in which case the contri-
bution of the Weyl nodes to the Berry curvature cancels
out in pairs inside the AHC integral, Eq. 2. On the
other hand, the BC in the L–T section, shown in Fig.
4(c), provides both types of BC, localized and not lo-
calized, over the path. The localized BC is once more
uncorrelated to the AHC data. This confirms what has
already been discussed in the BC analysis along the P2–Γ
segment. Interestingly, the spread BC correlates to the
AHC for each strain value. The highest values of the BC
are Ω0%

111 = −20.5 Å2, Ω−1.5%
111 = −22.5 Å2 and Ω−3%

111 =
−18.4 Å2, while for +3% a relatively small value of BC is
spotted Ω+3%

111 = −8.6 Å2. The AHC values in each of the
mentioned cases are σ0%

111 = 114 S·cm−1, σ−1.5%
111 = 140

S·cm−1, σ−3%
111 = 111 S·cm−1 and σ+3%

111 = −27 S·cm−1.
It is important to remark that the L–T path lies in a
plane parallel to the (111)-plane, and the P2–Γ is paral-
lel to the magnetic symmetry axis (i.e. along the (111)-
axis and perpendicular to the kagome lattice, see Fig.
4(a)). Thus, as expected, the AHE occurs only over the
(111)-plane (i.e. into the kagome lattice) and not in the
perpendicular direction. Therefore, the AHC, induced
by a nonvanishing BC in the (111)-plane, conducts the
carriers over the same plane where the T ∗M preserving
magnetic orderings are placed. This non-divergent BC
can be attributed to interband coherence induced by the
electronic field [66]. Avoided band crossings at the Fermi
energy level benefit the AHC due to the strong interac-
tion of the occupied and the unoccupied bands [73–75].
The latter was observed for the computed BC within the
(111)-plane included in Fig. S3 [36].

IV. CONCLUSIONS AND GENERAL
REMARKS

Through first-principles calculations and theoretical
analysis, we have investigated the strain-driven control-
ling of AHC in Mn3NiN antiperovskite. We found that
the strain application in the (111)-plane preserves the
symmetries of the system, allowing only control over the
dispersion of the bands in energy. Such preservation
keeps intact the source of the AHC, the T ∗ M in the
Γ4g magnetic ordering, leaving the AHC tensor form un-

changed in each case. Therefore, the AHC is a function of
the distance between the Mn atoms within the same and
different kagome lattice planes. Our results indicate a
non-direct relationship between the AHC magnitude and
the epitaxial strain. Thus, compression (tension) strain
values lead to an enhancing (decreasing) of the AHC only
within the range –2%≤ η ≤1% of strain. Moreover, we
observed that the strain induced a redistribution of the
AHC function maxima and minima near the Fermi en-
ergy. The magnitude of the AHC and the BC as strain
functions showed a correlation over their components in
the kagome lattice plane. However, there is a limit to
this control mechanism. The maximum AHC value is
reached between −1%≤ η ≤ −2%; further compression
only reduces the AHC. Remarkably, neither the total nor
the 3d-orbital projected DOS in the vicinity of the Fermi
energy presented correlations to the AHC. Instead, the
physics behind the tuning of the AHC relies on the non-
divergent Berry curvature within the (111) kagome plane.
Noteworty, the AHC in this compound showed no corre-
lation to the band crossings (trivial or topological), and
the AHC could be traced to the avoided crossings and
the interband coherences. The BC in the L–T path in
this plane increases as the strain reduces the Mn-Mn dis-
tance. Therefore, the strain in the (111)-plane proved to
be an effective tool to tune the AHC in the Γ4g magnetic
phase of Mn3NiN.
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