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With the evidence of inter-valley attraction-mediated by phonon or topological fluctuations, we
assume the inter-valley attraction and aim at identifying universal properties of moiré flat bands
that shall emerge. We show that by matching the interaction strength of inter-valley attraction with
intra-valley repulsion, the flat-band limit becomes exactly solvable. Away from the flat-band limit,
the system can be simulated via quantum Monte Carlo (QMC) methods without sign problem for
any fillings. Combining analytic solutions with large-scale numerical simulations, we show that upon
increasing temperature, the superconducting phase melts into a bosonic fluid of Cooper pairs with
large/diverging compressibility. In contrast to flat-band attractive Hubbard models, where similar
effects arise only for on-site interactions, our study indicates this physics is a universal property of
moiré flat bands, regardless of microscopic details such as the range of interactions and/or spin-orbit
couplings. At higher temperature, the boson fluid phase gives its way to a pseudo gap phase, where
some Cooper pairs are torn apart by thermal fluctuations, resulting in fermion density of states inside
the gap. Unlike the superconducting transition temperature, which is very sensitive to doping and
twisting angles, the gap and the temperature scale of the boson fluid phase and the pseudo gap phase
are found to be nearly independent of doping level and/or flat-band bandwidth. The relevance of
these phases with experimental discoveries in the flat band quantum moiré materials is discussed.

I. INTRODUCTION

As one of the most intriguing development in 2D
materials, moiré superlattices offer a new opportunity
to access novel quantum states and quantum phenom-
ena [1–4], such as flat bands at magic angle twisted
bilayer graphene (TBG) or transition metal dichalco-
genides (TMD) [5–7]. Recently, these systems were
brought to the forefront of research by a series of in-
triguing experimental discoveries, such as correlated in-
sulating states, continuous Mott transition and supercon-
ductivity [8–34]. In addition to TBG, superconductivity
has also been observed in other 2D materials such as
MoS2 [35, 36], NbSe2 [37] and possibly in twisted bilayer
and double-bilayer WSe2 [10, 32], which is believed to be
due to inter-valley attractions [38–40]. In TBG, inter-
valley attractions has also been considered as a key can-
didate mechanism for the superconducting state, though
the origin of such attractions is still under investigation,
i.e. whether it is phononic or has some more exotic (and
even topological) mechanism [41–58].

Here, we focus on universal principles/properties that
flat-band moiré superconductors shall obey/exhibit, in
that, we introduce an inter-valley attractive interaction
and study its nontrivial consequence. By matching inter-
valley attraction strength with intra-valley repulsion, we
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find that at the flat band limit, such systems can be
solved exactly. Away from the flat-band limit, although
an exact solution is absent, the model can be simulated
via the momentum-space quantum Monte Carlo (QMC)
method [59–61] without suffering the sign problem at any
fillings, as the case in attractive Hubbard model [62–
66]. By combining exact analytic solution, exact diago-
nalization at small sizes and the fully momentum-space
QMC, we show that moiré flat-band superconductors ex-
hibit a rich phase diagram, in sharply contrast to conven-
tional BCS superconductors. As shown in Fig. 2(a-b), at
the temperature above the superconducting dome, the
system doesn’t directly transform into a Fermi liquid.
Instead, it first turns into a super-compressible bosonic
fluid phase, where fermionic excitations are fully gapped
but the compressibility is high and increases/diverges
upon cooling. This physics is in strong analogy to the
flat-band attractive Hubbard model [67, 68], but also
with clear differences. In the flat-band Hubbard model,
the same type of physics only arises when the inter-
actions are strictly on-site, and non-onsite interactions,
such as nearest-neighbor, quickly leads to other physics,
e.g., phase separation [68]. In contrast, for moire flat
bands, our studies indicate that the exactly solution and
related phenomena are extremely robust and fully insen-
sitive to such microscopic details. No matter the inter-
action is short-range or longe-range and no matter spin-
orbit coupling is weak (e.g. graphene) or strong (TMD),
our exact solution and all qualitative features remain the
same. This robust is of crucial important for experimen-
tal study of moiré lattices, where on-site interaction are
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not expected to be dominant and spin-orbit effect may or
may not be strong depending on the materials. As one
further increases the temperature, this bosonic fluid gives
its way to a pseudogap phase, where fermion states start
to emerge inside the gap and gradually fill it up upon
increasing the temperature. These nontrivial sequence of
phase transitions/crossovers arise at filling range larger
than superconducting dome and survive to temperature
much higher than the superconducting transition Tc.

The bosonic fluid phase can be viewed as a liquid
of Cooper pairs, where although the Cooper pairs have
fully formed, (quasi)-long-range phase coherence has not
yet been developed due to strong fluctuations. Exper-
imentally, key signature of this phase is a large single-
particle gap around the Fermi energy, combined with a
high/diverging compressibility. The pseudogap phase is
a partially melted boson liquid, where thermal fluctu-
ations start to tear apart some Cooper pairs , feeding
single fermion spectral weight into the energy gap.

Simulations and analytic theory also indicate that the
crossover temperatures between normal fluid and the
pseudogap phase (or between the pseudogap and the
bosonic fluid phases) are dictated by the energy scale of
the inter-valley attractions, and is nearly independent of
filling levels or flat-band band width. In contrast, the su-
perconducting transition temperature depends strongly
on the bandwidth of the flat band, as well as filling frac-
tions. In the QMC simulations, a superconducting dome
is observed, qualitatively consistent with the experimen-
tal observations in TBG and TMD systems with chemi-
cal potential partially filling all flat bands [10, 13, 15, 32].
As the band width reduces to zero (i.e. towards the flat
band limit), the height of the dome (i.e. superconducting
transition temperature) decreases to zero, although the
non-interacting density of states (DOS) for the flat band
diverges.

II. MODEL

We consider a generic system with two valleys, labeled
by the valley index τ and −τ respectively, connected by
the time-reversal transformation (Tτ = −τ). In the flat-
band limit, kinetic energy can be dropped once other
bands are projected out. For interactions, we define it in
the momentum space as

HI = 1
2Ω
∑
G

∑
q∈mBZ

V (q + G)δρq+Gδρ−q−G, (1)

where q is the momentum transfer in a moiré Brillouin
zone (mBZ) and G is the moiré reciprocal lattice vec-
tor. We set the interaction strength V (q + G) to be an
arbitrary positive function and δρq+G is the density dif-
ference between two valleys

δρq+G = ρτ ;q+G − ρ−τ ;q+G. (2)

where ρτ and ρ−τ are the fermion density from the two
valleys. In band basis, δρ can be projected to the flat

band
δρq+G =

∑
k,m,n

[λm,n,τ (k,k + q + G)c†k,m,τ ck+q,n,τ

−λm,n,−τ (k,k + q + G)c†k,m,−τ ck+q,n,−τ ](3)
where the form factor λ is computed via the unitary
transformation between the plane-wave basis and the
band basis (see Supplemental Material (SM) VI A for
details). This interaction contains inter-valley attraction
and intra-valley repulsion with the same strength V , and
this is how inter-valley attractions are introduced in our
model. With this interaction, this model is exactly solv-
able in the flat-band limit, while away from the exactly-
solvable limit (i.e. with finite band width and chemical
potential), it can be simulated via QMC without sign
problem.

III. EXACT SOLUTION

After dropping the trivial kinetic energy, the flat-band
limit of our Hamiltonian is reduced to H = HI [Eq. (1)],
which can be solved exactly, due to an emergent SU(2)
symmetry with generators

σx = ∆ + ∆†, σy = i(∆−∆†), σz = N̂p −Nd, (4)

where ∆† =
∑

k,m c
†
k,m,τ c

†
−k,m,−τ and ∆ =∑

k,m c−k,m,−τ ck,m,τ creates/annihilates one inter-
valley Cooper pair and N̂p is the particle number
operator of flat bands. The constant Nd is the max
electron number that these flat bands can host in one
valley. It is easy to verify that these three operators
obey the su(2) algebra [σi, σj ] = 2iεijkσk and they all
commute with δρ and HI , [σi, HI ] = 0. In other words,
these three operators generate a SU(2) symmetry group.

This emergent SU(2) symmetry and exact solution are
in analogy to the flat-band Hubbard model [67] and the
SU(4) emergent symmetry of TBG flat bands [69–72],
but there are some key differences. For the Hubbard
model, the emergent symmetry and exact solution only
arises when the interaction is on-site, and interactions be-
yond on-site (e.g., nearest-neighbor) takes away the exact
solution and results in other instability like phase separa-
tion [68]. In contrast, our exact solution is insensitive to
the range and/or the functional form of interactions. It is
also worthwhile to highlight that the attractive Hubbard
model can be exactly mapped to a repulsive Hubbard
at half filling via a particle-hole transformation. Such
a mapping doesn’t exist in general for moiré flat bands,
because the particle-hole transformation will change the
λ function used in the flat-band project. For inter-valley
repulsive model at half filling,

δρ′q+G= ρτ ;q+G + ρ−τ ;q+G

=
∑

k,m,n

λm,n,τ (k,k + q + G)

×(c†k,m,τ ck+q,n,τ − c̄†k,m,−τ c̄k+q,n,−τ ) (5)
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Here, we use particle-hole transformation c̄k,m,−τ =
c†−k,m,−τ . It is obvious that ground states for a gen-
eral inter-valley repulsive model have valley polarized
Z2, not SU(2) symmetry. This difference can also be
seen in charge neutral excitation spectrums as shown in
Fig. 1. One can see although the two models share the
same single-particle excitation spectrum as the red lines
in Fig. 1(a,b), their two-particle spectra are totally dis-
tinct (i.e. continuous excitation in Fig. 1(a) and gapped
in Fig. 1(b) as the blue lines indicate). The attractive
model is gapless due to the Goldstone mode from the
SU(2) symmetry, while the repulsive one is gapped due
to the absence of SU(2) symmetry and Goldstone modes.
We will show how to derive exact solutions briefly below
and leave details in VI D.
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FIG. 1. Excitation spectrum for inter-valley attractive and re-
pulsive model where the system size is 12×12 and parameters
come from VI A. (a) Single-paritcle excitation (red line) and
Goldstone excitation (blue lines) along high symmetry line for
inter-valley attractive model. (b) Single-paritcle excitation
(red line) and gapped charge neutral excitation (blue lines)
along high symmetry line for inter-valley repulsive model.

Because our Hamiltonian is semi-positive definite [V >
0 in Eq. (1)], two obvious zero-energy ground states can
be immediately identified: the empty and fully filled
states labeled by |ψ0〉 and |ψ2Nd〉, where δρ |ψ0〉 =
δρ |ψ2Nd〉 = 0. In terms of the SU(2) symmetry group,
these two states are fully polarized states of the σz op-
erator, known as the highest weight states, where the
eigenvalues of σz reach the highest/lowest possible values
±Nd. Due to the SU(2) symmetry, any SU(2) rotation of
these two ground states must also be a degenerate ground
state. Here, we can use ∆† and ∆ as raising and lower-
ing operators of the su(2) algebra, and generate all the
degenerate ground states from the empty state |0〉 ≡ |ψ0〉

|ψ2n〉 ≡

√
(Nd − n)!
n!(Nd)!

(∆†)n |0〉 (6)

where 0 ≤ n ≤ Nd and |ψ2n〉 is the degenerate ground
state with 2n fermions. Another way to understand these
degenerate ground states is to realize [HI ,∆†] = 0 implies
that it costs no energy to create a Cooper pair. Thus, we
can introduce arbitrary number of Cooper pairs to the
empty state, and obtain a degenerate ground state |ψ2n〉
with n Cooper pairs. It is worthwhile to highlight that
the BCS wavefunction ψBCS = 1

N exp( vu∆†) |0〉 is also an

exact ground state of this model. But this one is nothing
special and just one of Nd + 1 degenerate ground states.
The BCS wavefunction may not be favored when kinetic
term and chemical potential is introduced, since chemical
potential term will favor a certain filling but not mixing
states with different particle number.

In the exact solution, single particle correlation
function can be computed by noticing c†k,τ |ψ2n〉 =√

Nd−n
Nd
|ψ2n+1,k,τ 〉, ck,τ |ψ2n〉 =

√
n
Nd
|ψ2n−1,−k,−τ 〉,

where |ψ2n+1,k,τ 〉 ≡
√

(Nd−n−1)!
n!(Nd−1)! (∆†)nc†k,τ |0〉. As shown

by red line in Fig. 1, single particle excitation is fully
gapped and independent with inter-valley interaction (no
matter repulsion or attraction). For repulsive interac-
tions, the gap is an insulating gap without other charged
excitation inside [70–74]. In our model, this gap is the
Cooper gap, i.e., the energy cost to break a Cooper pair.
The Cooper gap scales linearly with interaction energy
V and there are continuous charged excitations within
the gap as the blue line in Fig. 1(a). Thus, at low tem-
perature T � V , all electrons are paired into Cooper
pairs, i.e., the system is a fluid of Cooper pairs without
unpaired fermions.

We can also compute the correlation func-
tion of Cooper pairs

〈
∆(t)∆†(0)

〉
by noticing

∆† |ψ2n〉 =
√

(Nd − n)(n+ 1) |ψ2n+2〉. Because
[HI ,∆] = [HI ,∆†] = 0, this correlation function is
time-independent at any temperature. At T = 0, this
correlation function is〈

∆(t)∆†(0)
〉

= Nd(Nd + 2)
6 ∼ N2

d

6 , (7)

which is in good agreement with QMC simulations (see
SM Fig. 4(a,b)). It is also worthwhile to point out that in
the thermodynamic limit, this N2

d scaling diverges faster
than the system size, indicating an instability towards
superconductivity at T = 0.

Despite the finite Cooper gap and diverging supercon-
ducting correlation function, Cooper pairs in this boson
fluid don’t lead to superconduct at any finite tempera-
ture. This is because the superconducting order param-
eter is part of a SU(2) generator. Therefore, a super-
conducting state would spontaneously break the SU(2)
symmetry, instead of just the U(1) charge symmetry. In
other words, the symmetry breaking pattern here is in
the Heisenberg universality class, instead of XY. For 2D
systems at finite T , it has long been known that thermal
fluctuations will destroy any order that spontaneously
breaks a SU(2) symmetry (i.e., there is no finite tem-
perature order for Heisenberg spins in 2D). Thus, al-
though Cooper pairs have formed at T ∼ V , long-range
or quasi-long range phase coherence cannot be developed
at any finite temperature. This conclusion is verified in
QMC simulations, where we observe a fully-developed
Cooper gap at finite T , but the phase coherence remains
disordered even down to lowest accessible temperature
[Fig. 2(a,c,e,g)]. In addition to preventing the forma-
tion of a finite T superconducting phase, the SU(2) sym-
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metry also offers an interesting link between supercon-
ductivity fluctuations and particle-number fluctuations.
From the SU(2) symmetry, we have 〈σ2

z〉 = 〈σ2
x〉 and

thus 〈N̂2
p 〉−〈N̂p〉2 = 2〈∆∆†〉. Because superconductivity

fluctuations diverge as ∝ N2
d at T = 0, particle-number

fluctuations must also diverge as ∝ N2
d . This scaling vi-

olates one fundamental assumption of statistical physics,
the central limit theorem, which requires square fluctua-
tions to scale linearly with system sizes. Such violation
is a consequence of the infinite ground-state degeneracy.

From the fluctuation-dissipation theorem, this diver-
gence in particle-number fluctuations implies a diverging
compressibility at low T : κ = 1

Nd

d〈N̂p〉
dµ = β

〈N̂2
p〉−〈N̂p〉2
Nd

=
2β
Nd

〈
∆∆†

〉
. Here n0 is the particle density. When tem-

perature is reduced, κ increases. In the low temperature
limit, because

〈
∆∆†

〉
∝ N2

d , κ diverges as κ ∝ βNd. This
divergence is also seen in QMC simulations in Fig 2(g).

In summary, in the flat-band limit, exact theory anal-
ysis predicts a bosonic fluid of Cooper pairs within a full
Cooper gap. This bosonic fluid has a high compress-
ibility, which diverges at T → 0. To highlight this di-
verging compressibility, we label this state as SCBF (for
super-compressible bosonic fluid) in our phase diagrams
Fig. 2(a) and (b).

IV. ED AND QMC SIMULATIONS

For simplicity, here we only consider one flat-band per
valley, and choose parameters according to twisted ho-
mobilayer TMDs [75, 76] to carry out exact diagonaliza-
tion (ED) and QMC simulations (see SM VI A). Same
techniques can also be applied to systems with more flat
bands (e.g., TBGs), and all qualitative features shall re-
main. We first simulate systems with sizes 3 × 3 and
3 × 4 (number of momentum points in mBZ) via ED.
The number of ground states and single-particle excita-
tions perfectly match the analytic theory (see SM Fig. 5).
The implementation of the momentum space QMC simu-
lation are shown in VI B and VI C in SM, where we prove
the absence of sign problem at any fillings and regard-
less of band width. This allows us to efficiently simulate
this model (for system size up to 9× 9) and explore the
phase space both at and away from the flat-band limit.
For benchmark, we compute the single-particle Green’s
function and superconductor correlation function at the
flat-band limit, which agree nicely with analytic theory
(see SM Fig. 4(a,b)).

With the imaginary-time correlation functions ob-
tained in QMC, we further employ the stochastic analytic
continuation (SAC) method to extract the real-frequency
spectra [61, 77–87]. In Fig. 2(c-d), we plot the fermion
DOS at different temperature for a 9 × 9 system. At
T < 0.3, a full gap is observed, which is the Cooper gap
discussed above. For 0.3 < T < 0.8, fermion spectral
weight start to emerge inside the gap, i.e., a pseudogap
(PG) is formed. Defining P = 1

2N2
d

〈
∆∆† + ∆†∆

〉
, we

also try to determine the superconducting phase transi-
tion temperature Tc by probing the onset of quasi-long
range order. This is achieved via data cross of P × Lη
versus T as shown in Fig. 2(e,f) and by comparing the
slope of d ln(P )

d ln(L2) versus β (see SM Fig. 4(c,d)) with the
BKT anomalous dimension exponent η = 1

4 [88–91], us-
ing P = L−ηf(L · exp(− A

(T−Tc)1/2 )). In Fig. 2(e) for the
case of flat-band limit, the cross point is indeed approach-
ing Tc → 0, confirming the absence of finite temperature
phase transition, in full agreement with the exact solu-
tion.

With the exactly solvable limit understood, a kinetic
energy term with finite (but small) bandwidth is in-
troduced, which explicitly breaks the SU(2) symmetry.
Here, again, we use the kinetic term of a homobilayer
TMD and expands the band width to 0.8 meV. Same
qualitative features are expected for other more compli-
cated setups, such as TBGs. Without the SU(2) sym-
metry, a BKT superconducting phase becomes allowed,
and in QMC simulations, we indeed observe a super-
conducting dome with chemical potential partially fill-
ing flat bands, in analogy to experiments reported in
TBGs. Above the superconducting dome, the pseudo-
gap and SCBF phases remain. Because the band width
is still smaller than interaction energy scale, the temper-
ature scales for the pseudogap and SCBF phases, which
are dominated by interactions, are almost invariant for
different band fillings (see Fig. 2(b) and SM Fig. 6), con-
sistent with the STM experiment in TBG between dif-
ferent integer fillings [92]. Another observation in TBG
experiment is dµ/dn reduces towards 0 at superconduct-
ing dopings [2], which implies a large compressibility κ.
This is also seen in our simulation results.

V. DISCUSSION

We proposed a model describing 2D flat-band inter-
valley superconductor. The exact solution and QMC
simulations reveal nontrivial phenomena, such as doping
independent gap and large compressibility above the su-
perconducting dome, which seems consistent with exper-
imental studies. The super-compressible fluid phase and
pseudogap phases acquire intriguing features. In trans-
port measurements, these states are conductors, but in
tunneling experiments, they behaves like an insulator,
with a finite gap/pseudogap. However, as the system is
cool down to the superconducting phase, this gap evolves
adiabatically across the superconducting transition, in
direct contrast to an insulating-superconductor transi-
tion. Upon gating, the large compressibility will lead
to large response in fermion density, which is a unique
feature due to moiré flat bands and distinguishes this
bosonic fluid from other failed superconductors of non-
flat bands [93]. It is also important to point out that
despite the absence of superconductivity, the boson fluid
phase may exhibit certain properties of a superconductor,
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FIG. 2. QMC simulations of the flat-band limit (top row) and away from the flat-band limit (bottom row). The bandwidths of
non-interacting band structures are set to 0 and 0.8meV respectively. (a-b) Phase diagrams. In the flat-band limit (a), a finite
chemical potential drives the system into a trivial insulator with either empty (µ � 0) or complete filled (µ � 0) bands. In
Fig. (b), the yellow/purple region is the pseudogap (PG)/ super-compressible bosonic fluid (SCBF) phase, and the blue region
marks the superconducting (SC) dome. (c-d) Density of states for a 9× 9 system at µ = 0. The Cooper gap survives above the
superconducting transition temperature and turns into a pseudogap above T ∼ 0.3. (e-f) Critical scaling of P × Lη versus T
with BKT anomalous dimension η = 1/4. The crossing point of different system sizes (L = 6, 7, 8, 9) marks the superconducting
transition temperature: Tc ∼ 0 in (e) and ∼ 0.13 in (f). (g-h) Inverse of compressibility κ for L = 6, 7, 8, 9 at µ = 0. At low
temperature, diverged compressibility κ in (g) converges in superconducting phase as shown in (h).

e.g., Andreev reflection, because all fermions have been
paired up. These Cooper pairs may also lead to other
nontrivial phenomena. For example, because charge car-
riers now have charge 2e, an extra factor of two may
emerge in interferometry via the Aharonov-Bohm effect.
The bosonic nature of the Cooper pairs may also lead
to non-Fermi liquid behavior, such as the violation of
Wiedemann-Franz law, absence or suppression of quan-
tum oscillations and/or Friedel oscillations, and the de-
parture of C ∝ T scaling in heat capacity.
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VI. SUPPLEMENTAL MATERIAL

A. Simulation setting

In homobilayer TMDs, after two layers are rotated by a small angle θ, we can see in the moiré Brillouin
zone (mBZ) +K valley for the top and bottom layers are shifted to Kt and Kb (see for example, Fig.1 in
Ref. [75]). A moiré continuum Hamiltonian [7, 75] for the +K valley, which is similar to the BM model in Ref. [6]:

H+(k, r) =
(
−~2(k−Kb)2

2m∗ + Pb(r) PT (r)
P †T (r) −~2(k−Kt)2

2m∗ + Pt(r)

)
, where b and t refer to bottom and top layers. m∗ is

the effective mass, and k is momentum measured from +K point. Moiré potential Pb,t,T can be parameterized:
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PT (r) = w
(
1 + e−iG2·r + e−iG3·r

)
, Pl(r) = 2wz

∑
j=1,3,5 cos (Gj · r + lψ), where l ∈ {b, t} = {+1,−1} and Gj is

the moiré reciprocal lattice vectors with length |Gj | = 4π√
3aM

and polar angle π(j−1)
3 . Here aM = a0/θ is the moiré

lattice constant when θ is small. These parameters have been obtained from the first-principle calculations for MoTe2
homobilayer

(
~2/2m∗a2

0, wz, w, ψ
)

= (495meV, 8meV,−8.5meV,−89.6◦)[7]. The Hamiltonian of the other valley −K
can be obtained by applying the time-reversal operation: H−(k, r) = H+(−k, r)∗.

Our form factor λm,n,τ (k,k + q + G) is defined by λm,n,τ (k,k + q + G) =
∑

G′,X u
∗
m,τ ;G′,X(k)un,τ ;G′+G,X(k + q),

where u∗m,τ ;G′,X(k) is unitary transiformation matrix linking plane-wave and band basis, while the index X represents
all other degrees of freedom, such as layer, sublattice, spin indices, etc. To describe twisted TMDs, one can simply
discard this subindex X.

For our interaction V (q), we use double-gate screened Coulomb interaction

V (q)
Ω ≈ θ

Nk

4π√
3

tanh(q · d)
q · aM

meV (8)

Here θ is twist angle 1.38◦, Nk is number of momentum points in mBZ and d is the distance between two screened
gates set as d = 2aM . At this twist angle, the dispersion of the top three bands is plotted in Fig. 3.
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(
FIG. 3. Dispersion of the top three bands in mBZ.

B. Implementation of QMC

We follow the implementation of momentum space quantum Monte Carlo developed by us in Ref. [59]. Starting
from Hamiltonian in flat band basis

HI = 1
2Ω
∑
G

∑
q∈mBZ

V (q + G)δρq+Gδρ−q−G

δρq+G =
∑

k,m,n

[λm,n,τ (k,k + q + G)c†k,m,τ ck+q,n,τ − λm,n,−τ (k,k + q + G)c†k,m,−τ ck+q,n,−τ ] (9)

According to the discrete Hubbard-Stratonovich transformation, eαÔ2 = 1
4
∑
l=±1,±2 γ(l)e

√
αη(l)ô + O

(
α4), where

γ(±1) = 1 +
√

6
3 , γ(±2) = 1 −

√
6

3 , η(±1) = ±
√

2(3−
√

6) and η(±2) = ±
√

2(3 +
√

6), we can rewrite the partition
function as,

Z = Tr{
∏
t

e−∆τHI(t)} = Tr{
∏
t

e
−∆τ 1

4Ω

∑
|q+G|6=0

V (q+G)[(δρ−q−G+δρq+G)2−(δρ−q−G−δρq+G)2]}

≈
∑
{l|q|,t}

∏
t

[
∏

|q+G|6=0

1
16γ

(
l|q|1,t

)
γ
(
l|q|2,t

)
] Tr{

∏
t

[
∏

|q+G|6=0

eiη(l|q|1,t)Aq(δρ−q+δρq)eη(l|q|2,t)Aq(δρ−q−δρq)]} (10)
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Here t is the imaginary time index with step ∆τ , Aq+G =
√

∆τ
4
V (q+G)

Ω and {l|q|1,t, l|q|2,t} are the four-component
auxiliary fields.

Generally, average of any observables Ô can be written as,

〈Ô〉 = Tr(Ôe−βH)
Tr(e−βH) =

∑
{l|q|,t}

P ({l|q|,t}) Tr[
∏
t B̂t({l|q|,t})]

Tr[Ô
∏

t
B̂t({l|q|,t})]

Tr[
∏

t
B̂t({l|q|,t})]∑

{l|q|,t} P ({l|q|,t}) Tr[
∏
t B̂t({l|q|,t})]

(11)

P ({l|q|,t}) =
∏
t[
∏
|q+G|6=0

1
16γ

(
l|q|1,t

)
γ
(
l|q|2,t

)
], B̂t({l|q|,t}) =

∏
|q+G|6=0 e

iη(l|q|1,t)Aq(δρ−q+δρq)eη(l|q|2,t)Aq(δρ−q−δρq),

respectively. We see Pl = P ({l|q|,t}) Tr[
∏
t B̂t({l|q|,t})] as possibility weight and 〈Ô〉l = Tr[Ô

∏
t
B̂t({l|q|,t})]

Tr[
∏

t
B̂t({l|q|,t})]

as sample

value for configuration {l|q|,t}. Then Markov chain Mento Carlo can compute this 〈Ô〉.

C. Absence of Sign problem

Here, we prove there is no sign problem for our Hamiltonian. Single-particle matrixes between two valleys satisfy,

δρq+G,τ =
∑

k,m,n

[
λm,n,τ (k,k + q + G)c†k,m,τ ck+q,n,τ

]
δρq+G,−τ =

∑
k,m,n

[
−λm,n,−τ (k,k + q + G)c†k,m,−τ ck+q,n,−τ

]
=
∑

k,m,n

[
−λ∗m,n,τ (k,k− q −G)c†−k,m,−τ c−k+q,n,−τ

]
=
∑

k,m,n

[
−λ∗m,n,τ (k,k− q −G)c̃†k,m,−τ c̃k−q,n,−τ

]
= −δρ∗−q−G,τ

(12)

Here, c̃k,m,−τ = c−k,m,−τ . Then one can see even with flat band kinetic terms,

B̂t,τ
({
l|q|,t

})
= e−∆τH0,τ

∏
|q|6=0

eiη(l|q1|,t)Aq(δρ−q,τ+δρq,τ )eη(l|q2|,t)Aq(δρ−q,τ−δρq,τ )

B̂t,−τ
({
l|q|,t

})
= e−∆τH0,−τ

∏
|q|6=0

eiη(l|q1|,t)Aq(−δρ∗q,τ−δρ∗−q,τ)eη(l|q2|,t)Aq(−δρ∗q,τ+δρ∗−q,τ) = B̂∗t,τ
({
l|q|,t

})

Tr
[∏

t

B̂t
({
l|q|,t

})]
= Tr

[∏
t

B̂t,τ
({
l|q|,t

})]
· Tr

[∏
t

B̂t,−τ
({
l|q|,t

})]
=

∣∣∣∣∣Tr
[∏

t

B̂t,τ
({
l|q|,t

})]∣∣∣∣∣
2

(13)

This is always a non-negative number so that there is no sign problem.

D. Details for exact solution

First, we show the Nd + 1 degenerate ground states belong to one Nd + 1 dimensional irrep of SU(2), which can be
represented by normal Young diagram below

· · · · · ·︸ ︷︷ ︸
Nd

The dimension of irrep can be calculated by hook’s rule

d[Nd](SU(2)) =
∏
j

2 + j − 1
j

= (Nd + 1)!
Nd!

= Nd + 1 (14)
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Then, we derive single-particle excitation of Hamiltonian in Eq. (1). In the single-particle Hilbert subspace,
HI = 1

2Ω
∑

G,q V (q + G)
∑

k,m,n,n′,τ λm,n′,τ (k,k + q + G)λn′,n,τ (k + q + G,k)c†k,m,τ ck,n,τ , where m,n, n′ are flat
band labels. One can see there is no inter-valley term, so it is expected this single-particle spectrum is the same
as that in the inter-valley repulsion Hamiltonian, which can be seen the red lines have same dispersion as shown in
Fig. 1. By diagonalizing [λτ (k,k + q + G)λ†τ (k,k + q + G)]m,n, we can obtain excited eigenstates |ψ1,k,τ 〉 = c†k,τ |0〉.
Then (∆†)nc†k,τ |0〉 is also an excited eigenstate with the same eigenvalue εk,τ .

We would like to normalize the ground state and single-particle excitation states above it, such as, |ψ2n〉 =√
(Nd−n)!
n!Nd! (∆†)n |0〉, |ψ2n+1,k,τ 〉 =

√
(Nd−n−1)!
n!(Nd−1)! (∆†)nc†k,τ |0〉, and c†k,τ |ψ2n〉 =

√
Nd−n
Nd
|ψ2n+1,k,τ 〉, ck,τ |ψ2n〉 =√

n
Nd
|ψ2n−1,−k,−τ 〉, and ∆† |ψ2n〉 =

√
(Nd − n)(n+ 1) |ψ2n+2〉. Here |ψ2n〉 and |ψ2n±1,k,τ 〉 are normalized eigen-

states with 2n and 2n± 1 electrons. According to those normalization relations, we can derive single-particle Green’s
function at zero temperature limit,

Gk,τ (t) =
Tr(e−(β−t)HI ck,τe

−tHI c†k,τ )
Tr(e−βHI )

lim
β→∞
= 1

Nd + 1[
Nd−1∑
n=0

e−tεk,τ
∣∣∣〈c†k,τψ2n|ψ2n+1,k,τ

〉∣∣∣2
+

Nd∑
n=1

e−(β−t)εk,τ |〈ψ2n−1,−k,−τ |ck,τψ2n〉|2]

= 1
2

[
e−tεk,τ + e−(β−t)εk,τ

]
, (15)

note we use t ∈ [0, β] instead of the usual τ to represent the imaginary time as τ has been occupied as valley index.
Besides, we can also exactly derive imaginary time correlation of Cooper pair operators at zero temperature.

〈
∆(t)∆†(0)

〉
= Tr(e−(β−t)HI∆e−tHI∆†)

Tr(e−βHI )
lim
β→∞
= 1

Nd + 1

Nd−1∑
n=0

∣∣〈∆†ψ2n|ψ2n+2
〉∣∣2

= Nd(Nd + 2)
6 . (16)

Since pairing correlation function P is defined as P = 1
2N2

d

〈
∆∆† + ∆†∆

〉
, we actually achieve P at zero temperature.

Next, following the proof of statement 4 in Ref. [59], we formulate in QMC framework and give a proof of relation
〈N̂2

p 〉 − 〈N̂p〉2 = 2〈∆∆†〉 when there is no kinetic term in our Hamiltonian.

One can see B̂t,τ
({
l|q|,t

})
is an unitary operator for any configuration

{
l|q|,t

}
. In single-particle basis, we write

the matrix form of
∏
t B̂t,τ

({
l|q|,t

})
as U = eM1eM2 · · · eMn . According to QMC’s formula, Green’s function for this

configuration is defined as

Gi,j(τ) =
Tr
[
ci,τ c

†
j,τ

∏
t B̂t,τ

({
l|q|,t

})]
Tr
[∏

t B̂t,τ
({
l|q|,t

})] = [(I + U)−1]i,j (17)

By seeing G(τ) +G†(τ) = (I+U)−1 + (I+U−1)−1 = (I+U)−1 +U(I+U)−1 = I, we have Gi,j(τ) +G∗j,i(τ) = δi,j .
To compute particle fluctuations, we can write 〈N̂2

p 〉l and 〈∆∆†〉l as
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〈∆∆†〉l = 〈
∑

k1,m1

c−k1,m1,−τ ck1,m1,τ

∑
k2,m2

c†k2,m2,τ
c†−k2,m2,−τ 〉l

=
∑

k1,m1

∑
k2,m2

〈c−k1,m1,−τ c
†
−k2,m2,−τ 〉l〈ck1,m1,τ c

†
k2,m2,τ

〉l

=
∑

k1,m1

∑
k2,m2

|Gk1m1,k2m2 |
2

〈N̂2
p 〉l = 〈

∑
k1,m1,τ1

c†k1,m1,τ1
ck1,m1,τ1

∑
k2,m2,τ2

c†k2,m2,τ2
ck2,m2,τ2〉l

=
∑

k1,m1,τ1

∑
k2,m2,τ2

〈c†k1,m1,τ1
ck1,m1,τ1〉l〈c

†
k2,m2,τ2

ck2,m2,τ2〉l + 〈c†k1,m1,τ1
ck2,m2,τ2〉l〈ck1,m1,τ1c

†
k2,m2,τ2

〉l

=

 ∑
k1,m1

2−
[
Gk1,m1(τ) +G∗k1,m1

(τ)
]2

+
∑

k1,m1

∑
k2,m2

∑
τ

[δk1,k2δm1,m2 −Gk2m2,k1m1(τ)]Gk1m1,k2m2(τ)

= N2
d + 2

∑
k1,m1

∑
k2,m2

|Gk1m1,k2m2 |
2

= N2
d + 2

〈
∆∆†

〉
l

(18)

Since we can also easily see 〈N̂p〉l = Nd, after averaging all configurations, one will get 〈N̂2
p 〉 − 〈N̂p〉2 = 2〈∆∆†〉.

Finally, we would like to derive two-fermion excitations following similar method in Ref. [74]. For p 6= 0, it is easy
to check

〈
0
∣∣∣∆nc−k2−p,−τ ck2,τ c

†
k1,τ

c†−k1−p,−τ (∆†)n
∣∣∣ 0〉 = δk1,k2A and

〈
0
∣∣∣∆nc†k2+p,τ ck2,τ c

†
k1,τ

ck1+p,τ (∆†)n
∣∣∣ 0〉 =

δk1,k2A where A is a normalization constant. This means two-fermion excitations on ground states
c†k1,τ

c†−k1−p,−τ (∆†)n |0〉 or c†k1,τ
ck1+p,τ (∆†)n |0〉 are orthogonal so that they can be seen as well-defined basis. Ac-

cording to SU(2) symmetry, they should have the same excitation spectrum. By noticing HI applying on this basis
forms a closed subspace,

HIc
†
k,τ ck+p,τ (∆†)n |0〉

=
[
HI , c

†
k,τ ck+p,τ

]
(∆†)n |0〉

=
∑

q+G6=0
V (q + G)[λτ (k,k + q + G)λτ (k + q + G,k)c†k,τ ck+p,τ

− 2λτ (k + p,k + p + q + G)λτ (k + q + G,k)c†k+q,τ ck+q+p,τ

+ λτ (k + p + q + G,k + p)λτ (k + p,k + p + q + G)c†k,τ ck+p,τ ](∆†)n |0〉 (19)

One can diagonalize this matrix in subspace to compute eigen excitation states as shown in Fig. 1(a). These excitations
can be c†k1,τ

ck1+p,τ with zero charge or c†k1,τ
c†−k1−p,−τ with charge 2e. Thus within single-particle gap, there are

continuous charged bosonic excitations.

E. Supplemental figures

Here, we use our exact solution results to benchmark the numerical code. As shown in Fig. 4(a-b), QMC simulations
at low temperature match perfectly with the exact solution Eq. (15) and superconductivity pairing correlation function
P from QMC with increasing β also matches the one computed from Eq. (16). In Fig. 4(c-d), one can see the critical
temperature determined by slope crossing matches well with Fig. 2(e-f) in the main text.

We show our ED results here for 3 × 4 system at particle number N = 12 and N = 11 in Fig. 5. One can see
one-charge excitations are gapped at all momentum points, and there are some excitations within the single-particle
gap.

QMC+SAC DOS results with kinetic term at different chemical potential are shown in Fig. 6. One can see small
kinetic term with small chemical potential almost does not change single particle excitation. Also, the DOS figures
below temperature T = 0.3 (β = 3.3) which are the low temperature supplement of main text Fig. 2(c-d) are shown
in Fig. 7. One can see after full gapped, the position of peak is almost unchanged around single particle excitation
energy. This can be understood intuitively that the DOS only measures single particle Green’s function so that the
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pair excitation which is described by two particle Green’s function as shown in Fig. 4(a) within the single particle gap
can not be observed by DOS.

Average particle number
〈
N̂p

〉
versus chemical potential µ is plotted with kinetic term in Fig. 8(a) and without

kinetic term in Fig. 8(c) as supplement of Fig. 2(g-h). Due to the huge compressibility at low temperature, it is hard
to compute d〈N̂p〉

dµ by numerical differentiation precisely. We use particle fluctuation measured from QMC directly to

derive the compressibility data in main text Fig. 2(g-h) by κ = β
〈N̂2

p〉−〈N̂p〉2
Nd

. The comparison of these two methods
for different temperature is shown in Fig. 8(b,d).

0 5 10 15
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0 10 20 30 40 50 60
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
QMC
ES

( )a

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

L=3 (QMC)
L=3 (ES)
L=6 (QMC)
L=6 (ES)

( )b

( )c ( )d

FIG. 4. Benchmark results for QMC. (a-c) are results at flat band limit, (d) is simulated with kinetic term. (a) The blue line
is the single-particle Green’s function for 9× 9 momentum mesh in mBZ with β = 6 at Γ point from QMC, while the red line
is the exact solution (ES) according to Eq. (15). (b) Superconductivity pairing correlation function for 3× 3 and 6× 6 systems
from QMC and ES. ES result comes from Eq. (16). (c-d) slope = d ln(P )

d ln(L2) vs β at µ = 0. At the superconducting transition
temperature, this slope shall reach − η2 = − 1

8 (the red horizontal line), in good agreement with Fig. 2(e-f) in the main text.
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FIG. 5. ED results for 3 × 4 system at particle number N = 12 and N = 11. Black point represents ground state, red points
are single-particle excitations and blue points are all one-charge excitations.
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FIG. 7. DOS for 9× 9 at low temperature T from QMC+SAC. (a) DOS without kinetic term. (b) DOS with kinetic term.
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FIG. 8. Average particle number
〈
N̂p
〉

versus chemical potential µ for 6 × 6 without kinetic term (a) and with kinetic term

(c). Compressibility versus chemical potential derived from κ = 1
Nd

d〈N̂p〉
dµ

(colorful lines) by numerical differentiation and

κ = β
〈N̂2

p〉−〈N̂p〉2
Nd

(colorful circles) by QMC direct measurement without kinetic term (b) and with kinetic term (d).
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