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Cavity-mediated magnon-magnon coupling can lead to a transfer of spin-wave excitations between two spa-
tially separated magnetic samples. In this paper, we present a scheme to substantially amplify this transfer
efficiency through the application of a two-photon parametric drive on the cavity. Further, we enunciate the
physical origin of the enhancement. The recurrent multiphoton absorption by the cavity opens up an infinite
ladder of accessible energy levels, which can induce higher-order transitions within the magnon Fock space.
This is reflected in a heightened spin-current response from one of the magnetic samples when the neighbor-
ing sample is coherently pumped. The enhancement induced by the parametric drive can be considerably high
within the stable dynamical region. Specifically, near the periphery of the stability boundary, the spin current is
amplified by several orders of magnitude. Such striking enhancement factors are attributed to the emergence of
parametrically induced strong coherences precipitated by a long-lived mode, which is analogous to a bound state
in continuum (BIC). While contextualized in magnonics, the generality of the principle would allow applications
to energy transfer between systems contained in parametric cavities.

Photon mediated interactions are a quintessential resource
in various branches of sciences. A prime example is the well
known dipole-dipole interaction (DDI) , which, according to
quantum electrodynamics, arises from the exchange of a pho-
ton [1] between two atoms. The DDI consists, in general,
of a dissipative component as well which can vanish at cer-
tain separation of the dipoles. This DDI determines the en-
ergy/excitation transfer [2, 3] between, say, the donor and the
acceptor molecules, and is of paramount importance in the
generation of quantum gates [4, 5]. It is therefore desirable to
have a mechanism which can control and potentially improve
such an interaction. One routine technique is to use high-
quality cavities and employ large coupling between the cavity
photons [6–8]. A natural question then arises - can one fur-
ther improve the cavity-mediated energy transfer which would
instrumental to the realization of quantum-enhanced funda-
mental interactions and development of sophisticated quan-
tum machines and networks?

In this letter, we provide a definite answer to this question
and demonstrate the possibility of enhancing photon-mediated
transfer of excitations. Guided by the developments in quan-
tum metrology using squeezed states [9–13], we propose to
use parametric interactions, which give rise to squeezed states
of matter and light, to enhance the cavity-mediated transfer of
excitations. We would specifically apply the idea in the con-
text of cavity magnonics [14–19] and show significant am-
plification of the photon-mediated transfer of spin currents
between magnetic samples [20] by using parametric interac-
tions in cavities. We show that parametric interactions can
produce long-lived modes like BIC which result in subtantial
enhancement of the spin currents. We note that many other
applications of parametric interactions have appeared in liter-
ature: enhanced cooling [21]; exponentially enhanced spin-
cavity photon coupling [22, 23]; enhanced phonon-mediated

spin-spin coupling in a system of spins coupled to a cantilever
[24]; possibility of first order superradiant phase transitions
[25]; enhancement in the generation of entangling gates [26];
amplification of small displacements of trapped ions [27].

Here, we focus on cavity magnonics involving the cou-
pling of high-quality microcavities and YIG spheres. These
systems are attracting increasing attention [28–30] as favor-
able candidates to observe various semiclassical [31–39] and
quantum phenomena [40–43] at the macroscopic level. Some
of the key developments include the coupling of magnons to
a superconducting qubit [40] and phonons [41], microwave-
to-optical interconversion [31, 32], exceptional points [33],
entanglement [42, 43] and many more. One of the remark-
able signatures of such a coupling was the observation of a
cavity-mediated transfer of spin excitations [20]. Two YIG
samples were placed at the opposite ends of a microwave cav-
ity and by manipulating the cooperativity of one of them, re-
searchers could detect the modifications in magnon popula-
tion, namely, the spin current of the other. Here we demon-
strate how the photon-mediated transfer of spin-wave excita-
tions can be significantly boosted by a two-photon parametric
drive applied to the cavity. The parametric interaction could
be produced either from a χ(2)-type or χ(3)-type nonlinearity.
By coherently pumping one of the samples, we probe modi-
fications to the steady-state magnon occupancy in the neigh-
boring sample as a function of the parametric drive strength.
Our analysis showcases the emergence of parametrically in-
duced coherences characterized by a long-lived mode lead-
ing to precipitous enhancement in the spin current response.
The enhancement can be extraordinarily large around the two-
photon resonance condition ωd = ωp/2, where ωd and ωp are
the frequencies of the magnon drive and the parametric pump
field respectively. This phenomenon is brought to bear by the
cumulative effect of two-photon-excitation events. The cas-
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caded absorption of photons by the concerned magnon mode
opens up higher-order transition pathways within the magnon
Fock space. The fact that magnificent enhancement factors
can be achieved even within the permissible stable regime of
the nonlinear dynamics underscores the utility of this scheme.
The analysis presented in this letter is generic, pertinent to
a wide class of systems with a parametrically driven compo-
nent. This is because energy transfer is ubiquitous. The inves-
tigated paradigm would apply, for example, to nonlinear Kerr
boson systems driven far from equilibrium [44].

To set the stage, we shortly recapitulate the problem of two
spatially separated macroscopic ferrite samples of YIG cou-
pled to the microcavity field. Owing to an effective cavity-
mediated coupling between the two spheres, an external driv-
ing field applied to the first YIG sample would elicit a spin
current from the second one. The system Hamiltonian, in the
reference frame of the driving field, assumes the form [17, 45]

H0/~ = ∆ca†a +

2∑
j=1

∆ jm
†

jm j +

2∑
j=1

g j[a†m j + am†]

+iΩ(m†1 − m1), (1)

where a is the annihilation operator representing the cavity,
∆c = ωc − ωd is the cavity detuning, m1,m2 are the two Kittel
modes representing magnonic excitations in the two samples,
and ∆1 = ω1 − ωd, ∆2 = ω2 − ωd the respective detunings.
For each j, the parameter g j = (

√
5/2)γe

√
N jBvac denotes the

coherent magnon-photon interaction strength, with γe being

the gyromagnetic ratio, Bvac =

√
µ0~ωc

2Vc
the magnetic field

of vacuum, and N j the total number of spins in the sample.

Plus, Ω =
γe

2

√
5µ0ρ1d1Dp

3c
is the Rabi frequency of the ap-

plied drive, where ρ1 and d1 are the respective spin density
and diameter of the first sample, while Dp is incident power
of the applied drive. To understand this transfer of spin-wave
excitations at the level of transitions among energy levels, we
note that in the absence of the extrinsic magnon drive, the
Hamiltonian is excitation-preserving, with only an oscillatory
energy transfer between the magnon and the cavity modes.
Now let us label the eigenstates of the noninteracting sys-
tem as |na, n1, n2〉, where na, n1 and n2 indicate populations
of the cavity and the two magnon modes respectively. If a
weak coherent drive (at the single-photon level) on m1 excites
the system into the state |0, 1, 0〉, energy would be exchanged
back and forth among the energy levels |0, 1, 0〉, |1, 0, 0〉, and
|0, 0, 1〉, provided the dissipation is negligible. The transfer
happens via the pathway |0, 1, 0〉 → |1, 0, 0〉 → |0, 0, 1〉, and
this simple scheme can be easily extended to the case of co-
herent drives.

Amplified spin current: We now demonstrate the impact
of a parametric drive applied to the cavity on the associated
transfer efficiency in the system considered above. Precisely,
we would be leveraging the potential of parametrically en-
hanced spin-photon interactions to amplify the spin currents
from magnetic samples loaded into a cavity resonator. The

FIG. 1: Schematic of two ferrimagnetic samples of YIG, co-
herently coupled to a single-mode cavity, which is driven ex-
ternally by a two-photon parametric drive. A uniform bias
magnetic field B0 applied to either of the YIG spheres gener-
ates the corresponding Kittel mode and the YIG1 is driven
externally by a coherent drive of low photon occupancy.

new schematic is portrayed in Fig. 1, where the cavity field
is now parametrically driven. The preceding Hamiltonian has
to be supplemented by an additional contribution of the form
Hp/~ = (G/2)(a2 + a†2), so that the Hamiltonian for the para-
metric system [22, 23, 25] would be given by H = H0 + Hp.
To quell the time-dependence of the Hamiltonian, the fre-
quency of the applied magnon drive ωd has been set equal
to ωp/2. Our objective is to investigate the steady-state spin-
current response from the second YIG. Under the semiclas-
sical approximation, the dynamical equations for the mode
amplitudes at the level of mean fields can be obtained from
the master equation of the system. These equations can be
condensed in the form of a 6 × 6-matrix-differential equation

Ẋ = −iHeffX + ΩFin, (2)

where X = (a m1 m2 a† m†1 m†2)T , Heff =

(
H(0)

eff
J

−J −H∗(0)
eff

)
is a 6 × 6 coupling matrix, and Fin = (0 1 0 0 1 0)T .
The expectation-value notations 〈.〉 have been dropped for
brevity. The constituent block elements of Heff are given by

H(0)
eff

=

∆c − iκ g1 g2
g1 ∆1 − iγ1 0
g2 0 ∆2 − iγ2

 and J =

G 0 0
0 0 0
0 0 0

, where

2κ, 2γ1, 2γ2 are the respective relaxation rates of the cavity
mode and the two magnon modes. Thus H(0)

eff
denotes the cou-

pling matrix in the absence of the parametric drive, i.e., with
G set equal to 0. Eq. (4) would permit a steady-state so-
lution insofar as the eigenmodes of Heff have decaying char-
acter. Subject to this assumption, the steady-state spin-current
response from the second magnetic sample could be expressed

as M = |m2|
2, wherein m2 =

∑
j=2,5

[
− iH−1

eff

]
2 j

Ω.

To keep the analysis straightforward, we henceforth work
with the assumption that ∆1 = ∆2 = ∆c = ∆, κ = γ1 = γ2 = γ,
and g1 = g2 = g. As was just stated, the stability of the steady
state hinges on the imaginary parts of the eigenvalues, which
we label as λi’s. This is formally equivalent to the Routh-
Hurwitz criterion for the stability of nonlinear dynamics. The
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FIG. 2: Phase diagram highlighting the region of sta-
ble dynamics for (a) the three-mode cavity-magnon sys-
tem considered in this letter, and (b) a parametrically
driven single-mode cavity without any coupled accessories.

stable and the unstable regimes for this parametric model are
numerically plotted in Fig. 2(a), for the ratio g/κ = 2, with
the demarcating partition between the two indentified by the
equality Im(λi) = 0 for at least one λi. Commensurately,
there exists a critical parametric coupling strength Gc(∆) be-
low which the dynamics is stable. Contrast this with the cor-
responding stable regime obtained in the absence of magnons,
i.e., g = 0, which is juxtaposed for reference in Fig. 2(b). Not
only does the magnon-photon coupling skew the stablity cri-
terion, it does so in a highly nontrivial fashion. The effect is
clearly not monotonic in ∆. It can also be shown that the sta-
bility criterion does not depend on the two-photon detuning
δ = ωd − ωp/2 and the same phase diagram would apply to
the case of non-zero detuning.

In order to capture the effect of the parametric drive, we
introduce a dimensionless parameter F that embodies the rel-
evant enhancement in the spin-current response, F =

MG,0
MG=0

.
To start off, we note that this ratio is independent of the Rabi
frequency Ω, which, for this kind of experiments, would cor-
respond to the low-power regime, like 1µW. Moreover, for a
specified value of G, this ratio is fundamentally predicated on
the properties intrinsic to the system. Consequently, any de-
parture of F from unity is construed as a reinforcement due
to the two-photon driving term. In other words, F would rep-
resent additional advantage of using the parametric drive over
what is achievable otherwise.

We next present detailed results for the spin current based
on Eq. (3). Note that we choose parameters such that the sys-
tem is stable. Fig. 3(a,b) foregrounds the impact of variation
in G on F in the form of a two-dimensional (2D) plot. The
color-coded expanse within the graph, with G < Gc, pertains
to the stable regime. Over a significant extent within the sta-
ble domain, the factor remains appreciably higher than unity.
Particularly prominent is the narrow belt near the partition be-
tween the stable and unstable regimes, where the magnitude
of F starts surging expeditiously to larger orders of 10. In
view of this, we have split the stable domain into two distinct
regions. Fig. 3(a) corresponds to the region over which the
amplification factor is bounded above by 10. For the range
of parameters close to the stability partition, the logarithmic

FIG. 3: Spin-current amplification factor plotted (a,b) over
the two-dimensional ∆ − G plane, and (c) against G for
∆/κ = 3. The figures in (b,c), plotted in logarithmic
scale, highlights the region where F exceeds 10, and tes-
tify to the tremendous level of enhancement near the phase
boundary Gc/κ = 0.95. The inset in (b) depicts a nar-
row segment of this region while the inset in (c) is a
plot over the domain where F is bounded above by 10.

graph in Fig. 3(b) displays a significantly large spot where
the magnitude of F � 10. To provide useful estimates,
a one-dimensional (1D) projection of the 2D plot onto the
∆/κ = 3 subspace is showcased in Figs. 3(c). Initially, as the
narrow strip near the boundary is approached, we encounter
about a tenfold enhancement in the spin-current response, i.e.,
F ' O(10). Further advances towards the boundary ren-
ders prodigious enhancements by several orders of magnitude
(F ' O(102 − 104)), evidenced by the inset in Fig. 3(c). What
is intrigiuing is that these remarkable enhancement factors are
all accessible within the stable regime. One may ask if it is
possible to enhance the standard (G = 0) photon mediated
spin current by simply increasing the coupling strength g. Our
calculations show that for G = 0, corresponding to a fixed ∆,
the spin current increases, peaks and then saturates for large
g-values. The peak value is less than 10 times the saturation
value. This behavior persists over a fairly large range of ∆.
Thus, the kind of enhancement reported in Fig. 3 cannot be
achieved by increasing the coupling strength g. For complete-
ness, in Fig. 4, we also compare the enhancement factor for a
non-zero magnitude of the two-photon detuning δ = ωd−ωp/2
against the corresponding graph in the resonant setting. The
inclusion of a two-photon detuning serves to regularize the
somewhat divergent behavior of F near the edge of the phase
boundary. The detuning merely translates the coupling matrix
as Heff → Heff − δ. On account of this rigid translation, the
imaginary parts of the eigenvalues remain unaffected while
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FIG. 4: Comparative graph illustrating the respec-
tive enhancement factors under the two-photon reso-
nance condition δ/κ = 0, and in the detuned sce-
nario, with δ/κ = 0.2 chosen as an example. Here,
δ = ωd − ωp/2 signifies the two-photon detuning.

the real parts get shifted by −δ. This explains why the phase
boundary does not change but the almost divergent nature of
the response near the boundary is further stabilized. We also
remark that the techniques for producing parametric drives in
microwave domain are known from the early work of Yurke
[46] and many others [47, 48]. Josephson junction amplifiers
operating at low temperatures have evolved as the keystone for
these experiments. This is in contrast to the ones in the optical
domain which work at room temperature and utilize second
order nonlinearities in crystals (see, for example, [49]). As
an alternative strategy sustainable at room temperature, we
also float the possibility of modulating the parametric pump
at twice the cavity frequency, thereby generating the desired
parametric interaction.

While we have presented the numerical results of the spin-
current enhancement using the semiclassical approach, it is
worthwhile to examine the contributions from quantum fluc-
tuations to these semiclassical results. To account for quan-
tum corrections, we need to work with the quantum Langevin
equations [42] and evaluate the covariance matrix of pho-
ton and magnon variables. The analysis demonstrates that
the quantum contribution remains many orders of magnitude
smaller than the semiclassical contribution and can be ig-
nored. The physical reason behind this is the the Langevin
forces are delta-correlated, i.e.

〈
F(t)F†(t′)

〉
= 2γδ(t − t′), so

that the fluctuations are effectively driven by a flux of strength
γ. The semiclassical response, on the contrary, ensues from a
classical driving field characterized by the Rabi frequency Ω.
Since for a driving power of 1 µW, (Ω/γ) ∼ 105, the quantum
contribution remains strongly subordinated.

Parametric-drive-induced long-lived mode: The anoma-
lously large enhancement observed along the inner fringes of
the stability boundary, and depicted in Fig. 3(c), is an imme-
diate consequence of parametrically induced magnon-photon
coherences. In particular, strong coherence leads to the emer-
gence of a long-lived mode which sharply reinforces the re-

FIG. 5: (a) Real and (b) Imaginary parts of the eigen-
values of the reduced 4 × 4 system involving the modes
a and M = (m1 + m2)/

√
2 (as described by Eq. (10)).

sponse function. We can streamline the characterization of
eigenvalues by expressing the starting Hamiltonian in terms
of the collective magnon operators M = (m1 + m2)/

√
2 and

m = (m1 − m2)/
√

2. This leads to

H /~ = ∆a†a + ∆M†M + ∆m†m + g[a†M + aM†]

+G(a2 + a†2) + iΩ[(M† + m†) − h.c)], (3)

Clearly, the mode m, which is decoupled from the cavity field,
can be dispensed with, and the coupled dynamics would in-
volve only a, M, and their adjoints. The relevant dynamical
equation can now be cast as

Ẋ = −iHeffX + ΩFin, (4)

where we have X = (a M a† M†)T and Heff =(
H (0)

eff
J

−J −H ∗(0)
eff

)
, with H (0)

eff
=

(
∆ − iγ g

g ∆ − iγ

)
, and J =(

2G 0
0 0

)
. We now plot the four eigenvalues (real and imagi-

nary parts) of the reduced Hamiltonian Heff at G/κ = 0.95 in
Figs. 5(a,b). It is observed that there exists a particular eigen-
value λ3 with vanishing real part, and whose imaginary part
becomes tantalizingly close to zero at ∆/κ ≈ 3. Viewed alter-
natively, the mode identified by λ3 is symbolic of a long-lived
or a bound state in continuum. Since H −1

eff
∼ (det[Heff])−1 ∼

(
∏

j λ
−1
j ), the effect of a vanishingly diminutive eigenvalue is

reflected in the dramatic amplification of the steady-state re-
sponse. The stark enhancement in the spin current stems from
the energy of a two-photon parametric drive and stands testi-
mony to the emergence of higher-order energy transition path-
ways ensuing from the parametric term (see Fig. 6). With-
out the parametric drive, the transfer efficiency was dictated
by the applied magnon drive. However, with the provision
of a parametric drive, an elementary two-photon excitation
can raise the state |1, 0, 0〉 to |3, 0, 0〉. As the intracavity field
interacts with the magnons, this energy can be redistributed
amongst all the participating entities, leading to a myriad of
allowed final states, such as |2, 1, 0〉, |1, 1, 1〉, and |1, 0, 2〉, to
cite a few. Therefore, the possibility of effecting higher-order
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FIG. 6: Higher-order energy transitions afforded
by the parametric drive, assuming that YIG1 is
driven by a coherent field at one-photon level.

magnon occupancies opens up, even in the limit of very weak
pumping rates. In general, for adequately strong values of G,
transitions from |1, 0, 0〉 to higher-order excited states of the
form |2n + 1, 0, 0〉 can be achieved with greater probabilities,
which, in turn, would engender higher-order excitations of the
magnon modes. While we illustrate the energy transitions as-
suming an external drive at the single-photon level, these ar-
guments are easily generalized to the case of larger coherent
drives.

To sum things up, we have brought to light the emergence
of parametrically induced strong coherence effects in a cavity-
QED system which can lead to magnificent enhancements in
the cavity-mediated transfer of spin excitations. In light of
the recent upswing of interest in cavity magnonics, we have
highlighted the application of this principle to the parametric
amplification of spin currents in magnetic samples. To under-
line the origin of this enhancement, we have set forth a com-
pact explanation in terms of higher-order energy transitions
from the system’s ground state stimulated by the cascaded
two-photon absorption from the parametric pump. Increas-
ing the strength of the parametric drive only serves to em-
bolden this effect, with progressively higher and higher spin
currents being observed. The efficiency of this process peaks
at the two-photon resonance condition ωd = ωp/2, support-
ing enhancement by orders of magnitude even within the sta-
ble phase of the system dynamics. The spectacular amplifica-
tion of spin-current transfer at the resonance condition stems
from a parametrically produced long-lived mode in the sys-
tem. The developed formalism and the accompanying results
would apply to various kinds of systems. Quite generally, the
energy-transfer protocol could be applied to systems of atoms,
superconducting qubits and quantum dots, trapped ions, and
spin ensembles, in general. Likewise, nonlinear effects such
as bistability would also be reinforced on account of the para-
metrically induced coherences. We have preliminary results
which show that for typical values of the Kerr like nonlinear-
ities in magnons and for power levels lower than 0.1 µ W, the
results in Fig. (3) are not quite affected except when G/κ ex-

ceeds 0.9. However, this subject requires a detailed analysis
and will be a topic of investigation in the future.
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