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Abstract 

  

Intermetallic GdNi adopts a CrB type of crystal structure (space group Cmcm), and it orders 

ferromagnetically via a second-order phase transition at 70 K, exhibiting unusually strong spontaneous 

striction along the three independent crystallographic axes in the ferromagnetically-ordered state. We 

introduce a new microscopic model to describe anisotropic changes of lattice parameters and elastic 

contribution to magnetocaloric effect of GdNi. In the model, results of DFT calculations are used as inputs 

into a Hamiltonian that includes elastic energy of an anisotropic crystal lattice, exchange interactions, and 

Zeeman effect. The magnetic and elastic Hamiltonians are coupled through an anisotropic Bean – Rodbell 

model of magnetoelastic interactions. This coupling gives rise to anisotropic changes in the lattice 

parameters observed experimentally, and the model reveals good to reasonable agreements between the 

current theoretical results and earlier experimental data, thus validating the model within the limits of 

assumptions made. We also show that DFT calculations with 4f electrons of Gd treated as core electrons 

lead to a more adequate estimate of elastic constants of GdNi in comparison with the LDA + U method 

where 4f electrons are treated as valence electrons. 

 

 

Keywords: magnetocaloric effect; elastic properties; magnetic properties, magnetoelastic interactions; 

mean-field theory; rare-earth intermetallics 
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1. Introduction 

 

Rare earth-based intermetallic compounds are of interest to condensed matter scientists due to a broad 

spectrum of fundamentally interesting physical and chemical phenomena that are, at the same time, 

technologically significant, such as unconventional superconductivity, hard magnetism, giant 

magnetocaloric effects (GMCEs), quantum criticality, anhysteretic first-order phase transitions, large 

magnetic anisotropies, catalytic behaviors, and many other [1–8]. Several of those phenomena originate 

from strong coupling of crystal lattices with large localized 4f magnetic moments, characteristic of 

lanthanides, through magnetoelastic interactions. For example, magnetocaloric effects, quantified as the 

isothermal entropy change (∆𝑆!) or/and the adiabatic temperature change (∆𝑇"), may reach outstanding 

values when magnetoelastic interactions are strong. A notable representative is Gd5Si2Ge2 [3], where near 

room temperature ΔST = -14 J Kg-1 K-1 for ΔH = 20 kOe is 2.5 times higher than that of elemental Gd for 

the same magnetic field change due to a discontinuous magnetostructural phase transition that occurs in the 

former, giving rise to GMCE. 

In recent years, the magnetoelastic coupling and its role in the evolution of phase transformations has 

been investigated in a number of compounds both experimentally and theoretically. Alvaranega et al. [9] 

examined the first-order magnetic phase transition of Gd5Si2Ge2 using a microscopic model based on the 

Bean-Rodbell [10] approach. The anhysteretic first-order phase transition of Eu2In, with a very small 

volume change of about 0.1%, has been studied experimentally and theoretically from first-principles [5, 

11], and using a mean-field model that takes into account magnetoelastic coupling [12]. Second-order phase 

transitions in GdNi [13] and GdNiSi3 [14], where anisotropic changes in lattice constants occur in the 

vicinities of global magnetic ordering transitions, have been probed as well. 

Among different rare earth-based materials, only a few intermetallic compounds exhibit rather 

unconventional second-order magnetic phase transition with concurrent changes in both magnetism and 

crystallographic lattice, while crystal symmetry remains invariant across phase boundaries.  One of the 

prime examples of those is GdNi, which shows anisotropic changes in crystallographic parameters during 
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its second-order magnetic phase transition at TC ~ 71 K. The transition is iso-symmetric magnetoelastic, 

and it gives rise to an appreciably large, tunable with Co-doping magnetocaloric effect [14]. Here, 

magnetoelastic coupling plays an important role in the development of interesting thermomagnetic 

properties of GdNi1-xCox, albeit the compounds exhibit second-order magnetic phase transitions irrespective 

of xCo [15].   

Although the mean-field approach has been successfully applied to describe magnetoelastic coupling 

in many materials, there is significant room for improvements. For example, there are new experimental 

results that cannot be described with previously established models, such as the anisotropic, temperature-

dependent spontaneous striction in the case of GdNi below its Curie temperature (TC) [13]. While earlier 

models employed to describe volume changes using magnetoelastic coupling consider isotropic 

magnetoelastic interactions, they do not allow to calculate the lattice parameters independently. To bring 

light to this subject we propose a new microscopic model, which includes exchange interactions coupled to 

the elastic energy through anisotropic magnetoelastic interactions. This model is then used to investigate 

the magnetic and thermal properties of GdNi, including the temperature-dependent anisotropic changes of 

lattice parameters observed experimentally. 

 

2. Theory 

GdNi crystallizes in the orthorhombic CrB-type structure and orders ferromagnetically at a 𝑇#  around 

70 K [13,16,17]. In order to describe its magnetic and elastic properties, the model Hamiltonian is composed 

of a magnetic contribution, ℋ$%&, from the 4f electrons of Gd3+ ions, neglecting the Ni ions, which are 

non-magnetic [5,13], and an elastic term,	ℋ'(: 

ℋ = ℋ$%& +ℋ'(,         (1) 

where 

ℋ$%& = ∑ ℑ),($𝐽()𝐽$)),	(,$ − 𝑔𝜇,𝜇- ∑ 𝐻)𝐽()),( ,      (2) 

and 

ℋ'( =
.!
/
∑ 𝐶01𝜀0𝜀10,1 .         (3) 
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The first term in the Hamiltonian (2) represents exchange interactions between Gd ions, where ℑ),($ 

are the exchange parameters, 𝐽() represent the i-th Cartesian component of the total magnetic moment of the 

Gd ions and the sums 𝑙, 𝑚 are taken over all magnetic ions. The second term in (2) represents the Zeeman 

effect, where 𝑔 is the Landè factor, 𝜇,  is the Bohr magneton, and 𝜇-𝐻)  is the i-th component of the applied 

magnetic field. Hamiltonian (3) represents the elastic energy, where 𝑉- is the unit cell volume at a reference 

temperature, 𝐶01 are the stiffness constants, with 𝛼, 𝛿 = 1,… , 6 following the generalized Hooke’s law in 

the Voigt notation [18,19], which is given by 𝜎0 = ∑ 𝐶01𝜀11 , where 𝜎0 and 𝜀1 are the stress and strain 

components, respectively. It is worth noting that, in general, there are 21 independent stiffness constants, 

number of which is reduced as crystal symmetry increases from triclinic to cubic. For the orthorhombic 

CrB-type structure of GdNi there are 9 independent stiffness constants [20].  

Equation (2) can be simplified considering a mean field approximation, and the average among nearest-

neighbor exchange interactions considering that all of the Gd ions in the structure are crystallographically 

equivalent, leading to ℑ),($ = ℑ). In this framework, the exchange term, per ion, can be written as: 

∑ ℑ)𝐽()𝐽$)
2'3	)45
;⎯⎯⎯⎯= 	∑ 𝜆)?𝐽)@𝐽) +

6"78"9
#

/)),	(,$ ,      (4) 

where 𝜆) = 2𝑧ℑ) are the normalized exchange parameters, z is the number of nearest neighbors and 〈𝐽)〉 is 

the thermodynamic mean of the i-th component of the total magnetic moment. 

In order to couple the magnetic and elastic Hamiltonians, we consider an anisotropic Bean – Rodbell-

like [10,21] dependency of the normalized exchange parameters, given by: 

𝜆) = 𝜆)- + 𝜆):𝜀),         (5) 

where 𝜆)- are the exchange parameters without strain, 𝜆): are the magnetoelastic parameters, and 𝜀) are the 

first three strain components, with i = 1, 2 and 3. Coupling of the exchange parameters with only the three 

first strain components avoids monoclinic or triclinic distortions since GdNi remains orthorhombic at any 

temperature [13]. From here on we, therefore, consider 𝜀; = 𝜀< = 𝜀= = 0. 
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Combining equations (2) through (5) in the total Hamiltonian (1), after normalization to a single ion 

the eigenvalues and eigenvectors can be obtained, and the Helmholtz free energy can be calculated as: 

𝐹 = 𝑓	 − 	𝑘,𝑇𝑙𝑛 J
>)5?@A#$%&#$ BCD

>)5?@A &#$BCD
K,        (6) 

where 𝑓 = :
/
∑ 𝜆)) 〈𝐽)〉/ +ℋ'(, 𝑥 = 𝛽N𝐻OO⃗ 'EN𝐽, 𝛽 = :

F'!
, 𝑘, is the Boltzmann constant, 𝑇 is the temperature, 

𝐻OO⃗ 'E is the effective magnetic field with 𝐻)
'E = 𝜆)〈𝐽)〉 + 𝑔𝜇,𝜇-𝐻) being its components. The order 

parameters in equation (6) are the three mean values of the total magnetic moment components, 〈𝐽)〉, which 

are associated with the magnetization through 𝑀) = 𝑔𝜇,?𝐽)@, and the 6 strain components, 𝜀0, as described 

below. By minimizing the Helmholtz free energy with respect to each of the nine order parameters, one 

obtains for 〈𝐽)〉: 

?𝐽)@ = 𝐽 G"
(),$(C)
JGKK⃗ ()J

,         (7) 

where 𝐵8(𝑥) is the Brillouin function and for 𝜀0: 

𝜀: =
M####**N##*#O6&&78&9

#P(##*#&*N#**#&#)6#&78#9
#P(#&###*N####&*)6*&78*9

#

#
,   (8) 

𝜀/ =
(##*#&*N#**#&#)6&&78&9

#PM#&&#**N#&*#O6#&78#9
#P(#&##&*N#&&##*)6*&78*9

#

#
,   (9) 

𝜀Q =
(#&###*N####&*)6&&78&9

#P(#&##&*N#&&##*)6#&78#9
#PM#&&###N#&##O6*&78*9

#

#
,   (10) 

𝜀; = 𝜀< = 𝜀= = 0,         (11) 

where 𝐶 = 	𝑉-U𝐶::𝐶//𝐶QQ − 𝐶QQ𝐶:// − 𝐶::𝐶/Q/−𝐶//𝐶:Q/ + 2𝐶:/𝐶:Q𝐶/QV. 

3. DFT Methods 

Elastic constants were calculated using spin polarized density functional theory (DFT) as implemented 

in Quantum Espresso [22–24] and the thermo_pw package [25]. All calculations were performed using the 

recommended standard solid-state pseudopotentials (SSSP Efficiency) [26,27] for Gd [28,29] and Ni [30], 

employing the generalized gradient approximation of Perdew, Burke and Ernzerhof [31,32]. 4f electrons of 

Gd were treated using two different approaches: i) 4f as core electrons (open core approximation) and (ii) 
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4f as valence electrons. In the latter case, the placement of strongly correlated 4f-states was corrected by an 

effective Hubbard term 𝑈'EE 	= 	𝑈 − 𝐽 = 6	eV as prescribed by Cococcioni and Gironcoli [33]. 

Geometry optimization was performed as follows. First, the experimental b/a and c/a ratios and atomic 

positions, are used to perform a series of energy vs. volume calculations in order to obtain the equilibrium 

volume, which is fitted to the Birch-Murnaghan [34,35] equation of state. Next, using the equilibrium 

volume, the 𝑏/𝑎 ratio is varied while keeping 𝑐/𝑎 fixed, fitting the resulting 𝐸 × 𝑏/𝑎 data to a 4th order 

polynomial to obtain the equilibrium 𝑏/𝑎; the same procedure is followed to optimize 𝑐/𝑎. Finally, the 

atomic coordinates are relaxed using the optimized lattice parameters. For these calculations, we consider 

a 6x6x5 k-mesh, cutoff energies of 90 Ry (4f as core) and 60 Ry (4f as valence) and total energy accuracy 

of 10-8 Ry. Brillouin zone integrations were performed with a Methfessel-Paxton [36] smearing of 0.015 

Ry. The optimized crystallographic parameters along with the bulk modulus (B) and its derivative (B’) are 

listed in Table 1. 

 

Table 1: DFT-optimized crystallographic parameters of GdNi, bulk modulus (B) and its derivative with 

respect to pressure (B’). 

Approach 
Lattice parameters Relaxed coordinate 𝒚 

Volume 
(Å3/ion) 

B 
(GPa) B’ 

a (Å) b (Å) c (Å) Gd Ni 

4f as valence 3.7987 10.4118 4.1987 0.1397 0.4294 20.76 78 4.0 

4f as core 3.7643 10.1294 4.2470 0.1392 0.4277 20.24 79 3.8 

Experiment 3.7730 10.3189 4.2134   20.51   

 

The stiffness constants, 𝐶)R, were calculated employing the strain-stress method as implemented in the 

thermo_pw package [4]. In this method, the optimized lattice is deformed by a series of strains, allowing 
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for atom relaxation. For the orthorhombic CrB-type structure of GdNi, we need to determine 9 independent 

elastic constants, therefore, we consider the 6 strain matrices listed below. 

𝜖# = b
𝜖: 0 0
0 0 0
0 0 0

c 𝜖S = b
0 0 0
0 𝜖/ 0
0 0 0

c 𝜖T = b
0 0 0
0 0 0
0 0 𝜖T

c 

𝜖U =
1
2
b
0 𝜖= 0
𝜖= 0 0
0 0 0

c 𝜖G =
1
2
b
0 0 𝜖<
0 0 0
𝜖< 0 0

c 𝜖V =
1
2
b
0 0 0
0 0 𝜖;
0 𝜖; 0

c 

 

The application of 𝜖# , 𝜖S and 𝜖T does not change the orthorhombic cell shape, only affecting the 𝑎, 𝑏 

and 𝑐 lattice parameters, respectively. Conversely, 𝜖U , 𝜖G and 𝜖V lead to a monoclinic distortion. 

Furthermore, 𝜖#  allows the determination of 𝐶::, 𝐶:/ and 𝐶:Q; from 𝜖S one obtains 𝐶// and from 𝜖T one 

obtains 𝐶QQ. Consequently, 𝜖U , 𝜖G and 𝜖V allow the determination of 𝐶==, 𝐶<< and 𝐶;;, respectively. 

For each matrix, six strains are applied in the range between [-1.25%, 1.25%], so the lattice remains in 

the elastic regime, resulting in 36 relaxation procedures. For these calculations we increase the k-mesh to 

10x10x8 while keeping the other parameters as described above. We point out that in order to improve 

convergence, we increased the number of electronic bands to 50 for 4f as core and to 60 for 4f as valence 

electrons. 

The calculated stiffness constants (no experimental data exist) are shown in Table 2, where set 1 

corresponds to spin polarized calculations with 4f as valence and set 2 to 4f as core electrons. We note a 

good agreement between the constants calculated by the two methods, showing that, as expected, 4f 

electrons do not contribute significantly to bulk elastic properties. This can also be seen from the optimized 

crystallographic parameters shown in Table 1, where the largest difference does not exceed 3%.  

 

Table 2: Stiffness constants (in GPa) for GdNi crystal obtained from spin polarized GGA calculations 

using the 4f as valence (set 1) and the 4f as core electrons (set 2). 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 
set 1 97 56 70 97 71 103 35 27 27 
set 2 88 56 70 103 72 103 38 30 30 
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One may verify that both sets of stiffness constants shown in Table 2 satisfy the necessary and sufficient 

Born criteria for the stability of orthorhombic systems [37]. Since these constants are valid for single 

crystals, one may use the Voigt [18], Reuss [38] and Hill average [39] methods to determine the 

polycrystalline bulk modulus (B) and shear modulus (G), from which one may obtain Young’s modulus 

(E), Poisson’s ratio (𝜈) and also estimate the Debye temperature (𝜃S) [40,41]. Thus determined constants 

for an isotropic polycrystalline material are listed in Table 3. 

 

Table 3: Isotropic bulk modulus (B) and shear modulus (G) in GPa obtained from the stiffness constants 

(𝐶)R) using Voigt (BV, GV), Reuss (BR, GR), and Hill (BH, GH) average methods; Young’s modulus (𝐸 in 

GPa); Poisson’s ratio (𝜈); and Debye temperature (𝜃S in K) for GdNi. 

 BV BR BH GV GR GH E 𝝂 𝜽𝑫 
set 1 77 77 77 24 22 23 63 0.36 199 
set 2 76 70 73 26 22 24 65 0.35 202 

 

4. Results and discussions 

To describe the magnetoelastic properties of GdNi using the proposed mean-field model, we use the 

DFT-derived stiffness constants from Table 2. In the model, the shear stress components of equation (11) 

are null. Hence, 𝐶;;, 𝐶<<, 𝐶== do not contribute to the calculations of the order parameters. Also, to further 

simplify the model we take 𝜆:- = 𝜆/- = 𝜆Q- = 𝜆-, i.e., assume isotropic exchange interactions in the 

absence of strain, and postulate that 𝜆:: = 𝜆/: = 0 and 𝜆Q: ≠ 0, i.e., magnetoelastic interactions are 

considered only along the z-axis. We note that the latter postulation assumes the z-axis as the easy 

magnetization direction, which is reasonable considering that linear striction below TC along the z-axis is 

opposite to that observed along the x and y axes. As illustrated in Figure 1, by considering magnetoelastic 

interactions exclusively along the z-axis, the model predicts behavior similar to that observed 

experimentally, that is, a and b decrease, and c increases as temperature in the ferromagnetic region 

increases.  Despite a single magnetoelastic parameter used in the calculations, the model also predicts that 
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stress components are dependent on magnetization through the magnetic moment components, ?𝐽)@, as can 

be seen from equations (8)-(10). 

Considering that the model contains two parameters, namely, the exchange interactions parameter 

without strain (𝜆-) and the z-axis magnetoelastic interactions parameter (𝜆Q:), it can be further reduced to 

a single free variable. Recall that GdNi undergoes a second-order magnetic phase transition, hence, its Curie 

temperature (TC) is independent of the magnetoelastic interactions [12,42]. This allows one to fix 𝜆- =

1.148 meV to properly reproduce experimentally observed TC = 70 K, and still describe both the 

temperature-dependent lattice parameters and the magnetic properties of this compound, leaving 𝜆Q: a 

single adjustable parameter. The latter is selected for best fit of the modelled functions using experimental 

data for the lattice parameters and heat capacity [13]. As a result, we find 𝜆Q: = −32 meV and -25.5 meV 

for, respectively, the first and second sets of the stiffness constants of Table 2. 

Figure 1 shows the temperature dependencies of the lattice parameters of GdNi, where the values 

calculated using the second set of parameters from Table 2 are compared with the experimental lattice 

parameters from Ref. [13]. Theoretical results of Figure 1 were obtained considering the thermal expansion 

of the lattice parameters explicitly, for example, for a as: 

𝑎(𝑇) = 𝑎- + 𝑎-𝜀:(𝑇, 𝜇-𝐻) + 𝑎-𝛼:𝑇,       (12) 

where 𝑎- and 𝛼: are, respectively, the y-axis intercept (a at 0 K) and the slope (thermal expansion 

coefficient) of the linear fit of the experimental data for the lattice parameter 𝑎 above TC, and 𝜀:(𝑇, 𝜇-𝐻) 

is given by equation (8). The relations for 𝑏(𝑇) and 𝑐(𝑇) are similar, with 𝑎- and 𝛼:,  𝑏- and 𝛼/, and 𝑐- 

and 𝛼Q listed in Table 4 y-axis intercepts and thermal expansion coefficients obtained from linear fits of the 

experimental data from ref. [13] in the paramagnetic region. 
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Table 4: y-axis intercepts and thermal expansion coefficients obtained from linear fits of the experimental 

data from ref. [13] in the paramagnetic region. 

𝒂𝟎	(Å) 𝒃𝟎	(Å) 𝒄𝟎	(Å) 𝜶𝟏(𝑲N𝟏) 𝜶𝟐(𝑲N𝟏) 𝜶𝟑(𝑲N𝟏) 

3.755 10.245 4.246 13.978 × 10N= 24.038 × 10N= 0 

 

One can see a good agreement between the theoretical results and experimental data for the 𝑎(𝑇) and 

𝑐(𝑇), whereas the calculated values for 𝑏(𝑇) are underestimated in the ferromagnetic region. An increase 

of the magnetoelastic parameter improves the 𝑏(𝑇) results but the agreement for 𝑎(𝑇) and 𝑐(𝑇) 

deteriorates, leading to overvaluations in the ferromagnetic region. Similar results are obtained when the 

first set of parameters from Table 1 is used in calculations (not shown). 

 

 

Figure 1: Temperature dependencies of lattice parameters of GdNi. Solid and dashed lines represent 

theoretical calculations and symbols are experimental data [13]. 

 

Figure 2(a) shows the heat capacity of GdNi for 𝜇-𝐻 = 0, 2 and 5 T. The symbols represent 

experimental data [13] and lines are theoretical results for the second set of parameters of Table 1. In order 

to calculate heat capacity, we added the lattice contribution to the magnetic heat capacity derived from the 

model. The lattice heat capacity was calculated in the Debye approximation with ΘS = 200	𝐾, very close 

to the value obtained from the DFT calculations of Table 3. The electronic contribution to the heat capacity 
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is neglected because it is much smaller when compared to the lattice and magnetic contributions around TC. 

One may note a good agreement between the experimental data and the theoretical results. 

Figure 2(b) shows a comparison between experimental data and theoretical calculations using the first 

and second set of parameters of Table 1, as well as the capacity calculated without accounting for 

magnetoelastic interactions. Clearly, including the magnetoelastic interactions leads to a much better 

representation of the experimental heat capacity, both in the shape and values of the heat capacity around 

TC. One can also observe a slightly better fit for the 4f as core electrons (second set) of the calculated 

parameters. This is because the magnetoelastic parameter for the 4f as core electrons calculations is slightly 

smaller than the magnetoelastic parameter for the 4f as valence electrons (first set), which results in a 

smoother transition and smaller values of the heat capacity around the Curie temperature.  

Notably, these results indicate that 4f as core electrons approximation may be used to obtain elastic 

constants of a broader family of Gd-based intermetallics, and these constants may be later used in model 

Hamiltonians to describe, for instance, anisotropic behaviors of lattice parameters. We also note that 

treating 4f as core electrons decreases the computational effort in DFT, since more complicated than a 

simple ferromagnet magnetic structures (e.g., an antiferromagnetic one) do not need to be explicitly 

considered during the simulations. This conclusion is in line with previous analysis of rare earth-based 

materials that consider the 4f electrons as core, see for instance [43,44]. 

 

Figure 2: Temperature dependence of the GdNi heat capacity in zero and applied magnetic fields of 2 and 

5 T (a). (b) Comparison between zero-field heat capacity of GdNi and theoretical results assuming 4f as 
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valence (set 1) and 4f as core (set 2) electrons, and neglecting magnetoelastic interactions. Lines represent 

computed results and symbols represent experimental data of Ref. [13]. 

 

Figure 3(a) shows the temperature dependence of the isothermal entropy change, ΔS!, and Fig. 3(b) is 

the same for the adiabatic temperature change, ΔT", for magnetic field changes from 0 to 2 T and 0 to 5 T. 

The theoretically calculated magnetocaloric effect is higher when compared to the experimentally available 

data for ΔS!  [15] and ΔT", with the latter calculated from the entropies derived from experimental 𝐶2(𝑇) 

data of [13] using 𝑆 = ∫
#+
!
𝑑𝑇. The discrepancies are expected because in addition to assumptions and 

simplifications explained above, the experimental data are obtained from a polycrystalline sample and the 

theoretical results are obtained by assuming a single crystal [45]. When comparing the ΔS! results 

calculated with and without the magnetoelastic interaction parameter, as shown in Figure 4, the shapes of 

the ΔS!(𝑇) curves more closely follow experimental results at temperatures below TC when the strain due 

to ferromagnetic ordering becomes significant. This is highlighted in the inset of Figure 4 illustrating 

ΔS!(𝑇) data normalized to the corresponding peak values.   

 

Figure 3: (a) Isothermal entropy change and (b) adiabatic temperature change of GdNi as functions of  

temperature under magnetic field changes from 0 to 2 and 0 to 5 T. Lines represent the results of model 

calculations and symbols represent values calculated from  the experimental data shown in Figure 2 [13,15].  
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Figure 4: Comparison of the isothermal entropy change of GdNi computed from the model with and without 

magnetoelastic interactions. Inset shows same data normalized to the corresponding peak values. Lines 

represent model calculations while symbols are from experimental heat capacity data of Fig. 2 [15].  

 
5. Final comments  

In summary, we introduce a model Hamiltonian that includes coupling of anisotropic magnetoelastic 

interactions and magnetic degrees of freedom in addition to exchange and Zeeman terms. The model, 

reduced to a single adjustable variable, reproduces anisotropic changes of lattice parameters and specific 

heat in zero and applied magnetic fields, as well as magnetocaloric effect of GdNi qualitatively, and for 

some properties, nearly quantitatively. An excellent agreement between measured and calculated specific 

heat indicates that treating 4f electrons of Gd as core electrons and using DFT-derived stiffness constants 

as inputs into the mean-field Hamiltonian is a viable approach. This approach likely opens door to 

predictions of stiffness constants and temperature- and field-dependent magnetoelastic behaviors in other 

rare-earth materials where magnetic structures may be different from a simple ferromagnetic arrangement 

of the magnetic moments. We also hope that the results of this work will lead to applying the same 

methodology to investigate other compounds known to exhibit anisotropic temperature dependencies of 

lattice parameters in the magnetically-ordered state, such as antiferromagnetic GdNiSi3 [14]. 
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