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We provide a systematic approach for constructing approximate quantum many-body scars
(QMBS) starting from two-layer Floquet automaton circuits that exhibit trivial many-body re-
vivals. We do so by applying successively more restrictions that force local gates of the automaton
circuit to commute concomitantly more accurately when acting on select scar states. With these
rules in place, an effective local, Floquet Hamiltonian is seen to capture dynamics of the automaton
over a long prethermal window. We provide numerical evidence for such a picture and use our
construction to derive several QMBS models, including the celebrated PXP model.

I. INTRODUCTION

Understanding how thermalization arises from uni-
tary evolution remains a fundamental challenge in the
study of non-equilibrium quantum dynamics. The Eigen-
state Thermalization Hypothesis1,2 (ETH) postulates
that eigenstates of many-body quantum systems them-
selves encode thermal correlations when viewed by a local
observer. Although ETH has been numerically verified
in a wide variety of quantum systems3–5, several impor-
tant exceptions are known that challenge its associated
dogma. The most prominent of these are integrable sys-
tems which occur in models with fine-tuned parameters6,
and many-body localized systems7–10 where more robust
local integrals of motion11 emerge due to strong disor-
der. These systems exhibit a lack of level repulsion at all
energies, a hallmark of non-ergodicity, and have certain
persistent quantum correlations12–14.

More recently, an experiment in a chain of Rydberg
atoms found dramatic revivals in many-body quantum
correlations after apparent relaxation, only when the sys-
tem is initialized in specific states15. It is now under-
stood that certain quantum systems can break ergodicity
weakly16, by only violating the ETH over a sub-extensive
number of eigenstates. These systems have been dubbed
quantum many-body scars17 (QMBS), generalizing the
phenomenon well known in the single-particle setting18.
Since the initial findings, low entanglement eigenstates
in the middle of the spectrum have been discovered in
well known models19,20 and a number of theoretical pro-
posals for constructing new QMBS Hamiltonians have
been put forth, with the aid of spectrum generating al-
gebras21–24, projective constructions25, matrix product
state representations26, among others; see Ref.27 for a
more exhaustive list of references.

Crucially, these proposals yield Hamiltonians where
the scar eigenstates are known exactly. These scar eigen-
states appear in group of degenerate eigenstates called
towers, where adjacent towers are separated in energy
by the same amount ∆E . Low entanglement states
can generally be constructed from these scar eigenstates
and are seen to exhibit perfect revivals in correlations

with a period T ∼ 1/∆E indefinitely. This is in con-
trast to the experimentally motivated PXP model16,17,28

which hosts approximate scar eigenstates and in which
many body revivals decay over a long but finite duration.
The corresponding scar towers are only approximately
equidistant in energy, implying that low entanglement
states obtained from a superposition of scarred eigen-
states don’t show perfectly regular revivals due to slow
dephasing. Although weak perturbations may be added
to exact QMBSs to obtain such a decay of revivals, it
remains a challenge to explain the existence of QMBS
Hamiltonians such as the PXP model that have no small
parameter, as well as uncover what sets the timescale for
the decay of quantum revivals.

In this work, we illustrate general principles to de-
rive (both exact and approximate) QMBS Hamiltonians
without any small parameters, starting from Floquet au-
tomaton (unitary) circuits, and show how a timescale for
the decay of revivals naturally emerges in this setting.
Automatons have a long and rich history of study, aris-
ing from their intriguing dynamical properties in both
the classical29 and quantum settings30–33, and are often
associated with systems with state space34–36 or kinetic
constraints37–40.

The Floquet automata considered in this work are uni-
tary circuits that effect permutations of computational
basis states on a chain of qubits (although more general
automata can be adopted). For the automata considered,
the Hilbert space is naturally fragmented into disjoint
subspaces of computational basis states which are cycled
through with successive applications of the automaton
circuit. Thus, all computational basis states revive at
fixed (but different) time intervals. It is natural to ask
if these automata, which can be described as simple uni-
tary circuits in the quantum setting, can be used to con-
struct QMBS Hamiltonians which show similar revivals.
We find that the answer is yes, and the principles uncov-
ered can be used, for instance, to derive the PXP model,
reveal timescales that govern the relaxation, and obtain
new QMBS models that show revivals for arbitrarily cho-
sen computational basis states.

For concreteness, we focus on automata with a two-
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layer brickwork circuit, illustrated in Fig. 1(a), which
is composed of the elementary gate U0 and whose Flo-
quet unitary is given by UF = e−iAe−iB , where A,B
are local Hamiltonians related by translation. Here, A
can be thought to be a sum of local, spatially disjoint
Hamiltonians Aj ≡ i logU0,j (to be made more pre-
cise later). A naive application of the Baker-Campbell-
Hausdorff (BCH) formula to obtain a Hamiltonian from
UF is bound to fail as higher order BCH terms blow up
in amplitude quickly while growing more non-local. In-
stead, we ask when the local Hamiltonian, Heff = A+B,
can reproduce dynamics generated by UF on a subspace
of chosen ‘orbit’ states, by virtue of forcing higher-order
BCH terms to remain small (or ideally vanish) in this
subspace. In particular, defining Cn(A,B) as the nth

order term in the expansion, we formulate rules that
strongly suppress

∥∥Cn(A,B)Po
∥∥, where Po is the pro-

jector onto the orbit subspace. Note that this bounds
both‖PoCnPo‖, which governs the corrections to the dy-
namics within the subspace of chosen orbit states, and∥∥(1− Po)CnPo

∥∥, which governs the leakage from the or-
bit states into ‘generic’ states. In fact, forcing all CnPo
terms to vanish identically ensures that the Hamiltonian
Heff = A + B admits certain eigenstates that are eigen-
states of both A and B separately41:—it is these select
eigenstates, which if small in number, and possessing
low entanglement, become the scarred eigenstates of the
Hamiltonian Heff. The latter is naturally the case if A
is composed of a set of spatially disjoint local Hamiltoni-
ans, for instance, as we assume. In fact, to derive QMBS
Hamiltonians, a natural starting point may be to con-
sider Hamiltonians H = A + B and devise rules such
that A,B have a finite set of common, low-entanglement
eigenstates. Importantly, the connection to an under-
lying automaton further guarantees that eiAn = 1 for
some integer n, and forces the eigenvalues of A (and
similarly B) to be equidistant in energy, another crucial
property of QMBSs which leads to observable many body
revivals. (In a separate work, it will be shown that all
mid-spectrum excited states of the spin-1 AKLT model
can be found by finding common eigenstates of appropri-
ate partitions19.)

Beyond providing us with some principles to construct
new QMBS Hamiltonians, the reference to automata also
sheds light on the possible mechanism of decay of re-
vivals in imperfect QMBSs. Two putative timescales
emerge. First, the terms of the BCH expansion ne-
glected in Heff give rise to leakage from ideal transition
between orbit states as predicted by the automaton cir-
cuit; the corresponding timescale τl is governed by the in-
verse of

∥∥(1− Po)CnPo
∥∥ (for some finite n), and second, a

prethermal timescale τp ∼ en0 emerges that justifies the
truncation of Heff to finite order—although the rules are
designed to suppress BCH terms on orbit states, they
eventually begin to grow at some higher order n0. We
find evidence of such phenomenology in the PXP model.
In particular, there is an associated Floquet automa-
ton33 which yields the PXP Hamiltonian upon trunca-

tion of the BCH series. We find that BCH terms initially
decrease with increasing order n, characteristic of the
amplitude of terms in the Floquet-Magnus (FM) expan-
sion42 in the high frequency limit, with a period T < 1.
This behavior is suggestive of a prethermalization43–46

window τp ∼ e1/T wherein a truncated Hamiltonian can
be justified. The parameter T is an emergent timescale
that comes from the suppression of commutators in our
case and is not intrinsic to the two two-layer automaton
which has a unit drive period. Next, we also find that
adding higher order BCH terms to the PXP model im-
proves revivals, up to the order above which the BCH
series starts diverging again. Furthermore, these addi-
tional BCH terms correspond well with terms other au-
thors have found using symmetry arguments in helping
improve revivals in the PXP model23,47. In this setup,
the amplitude of these terms is fixed by the BCH expan-
sion and not numerical optimization.

This manuscript is organized as follows. In Sec. II, we
detail the two-layer automata circuits we consider, with
UF = UAUB , discuss the fragmentation of the Hilbert
space into sets of orbits, and the Floquet eigenstates of
this system. We then discuss how we define the local
Hamiltonians A, and B from such automata. Sec. III de-
scribes how we obtain a set of rules that can be used to
generate scarred eigenstates in the effective Hamiltonian
Heff = A + B and in particular embed certain (arbi-
trarily chosen) computational basis states in this scarred
subspace. Sec. IV then describes a series of new models
QMBS-A,B,C that we arrive at, using the methodology
proposed, along with the PXP model. In Sec. V, we first
provide evidence that the models show scar phenomenol-
ogy and are non-integrable. The models QMBS-A,B,C
exhibit successively stronger revivals (with QMBS-C ex-
hibiting perfect revivals), in accordance with the fact that
higher order BCH terms are more strongly suppressed in
each successive model as per our construction. In Sec. VI,
we discuss the amplitude of terms in the BCH expansion
which connects the automaton to the Hamiltonian—for
the PXP model, we find the amplitude of these terms
show similar non-monotonic behavior expected in sys-
tems driven at high frequencies, indicating the possibil-
ity of a prethermalization window; adding more BCH
terms to the PXP model also appears to improve revival
strength and regularity. The evidence for such behavior
is, however, limited in the other models we study. We end
with Sec. VII where we discuss some questions that are
raised by this approach and which need further analysis,
besides summarizing our findings.

II. UNDERLYING CELLULAR AUTOMATON
AND ASSOCIATED HAMILTONIAN

A. Physical setting

The quantum cellular automata considered in this
work can be represented by a unitary circuit composed of
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FIG. 1. a) A quantum cellular automaton (Floquet unitary
UF ) that converts one Néel state to another; b) and d) Local
commutation rules of Type I and II respectively enforced on
the orbit subspace; c) Global rules.

two layers acting on a one-dimensional chain of L qubits
with periodic boundary conditions. The two layers com-
bined are denoted by UF , as shown in Fig. 1(a). Each
layer is composed of local unitary gates U0 that permute
the computational basis states of the Hilbert space on
which they act locally (the gates are chosen to have sup-
port on 4 qubits in this work) as well as multiplying them
by a phase phq, see Fig, 2. Furthermore it is assumed that
there exists an integer n such that Un0 = 1 which follows
naturally from the permutation structure of the unitary
U0 provided the phases accrued also satisfy certain con-
ditions; see Sec. II B. As mentioned in the introduction,
having Un0,j = 1, with n finite is key to obtaining a scar
subspace with equidistant eigenvalues embedded in an
otherwise thermalizing spectrum. In the case of the U0

considered in this work, UF itself is a permutation of the
set of computational basis states that spawn the entire
Hilbert space. This implies that UF can be decomposed
into a set of disjoint cycles containing successive compu-
tational basis states obtained upon successive application
of UF to a given state, see Fig. 3. This fact can be used
to solve exactly for the Floquet eigenstates of UF , as dis-
cussed in Sec. II B.

The first layer of the circuit can be described as the
exponential of a Hamiltonian B such that e−iB yields
the first layer of the circuit. Similarly, the second layer
is associated with a Hamiltonian A, see Fig. 1(a). The
exact definition of A and B is given in Sec. II C.

The sites on which the automata acts are labeled with
the index j ∈ {1, 2, 3, 4, ..., L}. The local unitary gate
U0,j is defined to act on the sites {j, j + 1, j + 2, j + 3}.
With this notation, the unitaries corresponding to the
first and second layers are

e−iB =

L/4∏
j=1

U0,4j−1, e−iA =

L/4∏
j=1

U0,4j−3; (1)

see Fig. 1 (a).

FIG. 2. Example of a permutation gate U0 acting on 4 adja-
cent qubits.

FIG. 3. Example of a cycle of length 4 produced by the quan-
tum cellular automaton UF

B. Eigenstates and eigenvalues of UF

The eigenstates of UF can be obtained from the cy-
cles that the computational basis states undergo upon
evolution by UF . Indeed, suppose that UF produces a
cycle of length l given by the sequence of computational
basis states |q〉 → |σ(q)〉 → |σ2(q)〉 ... |σl−1(q)〉 → |q〉
where |q〉 represents the qth computational basis state,
and σn(q) corresponds to the n consecutive applications
of the permutation σ associated with UF on the state
|q〉 (UF simply permutes the computational basis states
up to a phase). Supposing that the unitary UF only
has matrix elements 0 or 1 (no phase is acquired due
to UF ), one directly observes that the quantum state
|q〉 + |σ(q)〉 + . . . + |σl−1(q)〉 is an eigenstate of the Flo-
quet unitary with an eigenvalue of 1. More generally, it
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is easy to show that states of the form

|m, q1〉 =
1√
l

l−1∑
k=0

eiαkUkF |q1〉 (2)

with

β =
Φ + 2πm

l
Φ = −i log(〈q1|U lF |q1〉)

αk = −kβ m ∈ {0, 1, ..., l − 1}
(3)

form a complete orthonormal eigenbasis of UF , where
|q1〉 in Eq. 2 is a computational basis state appearing
in a given cycle of length l and eiβ is the eigenvalue of
the state |m, q1〉. For a given |q1〉, distinct values of m
yield distinct eigenvalues which implies that the obtained
states are mutually orthogonal. Eigenstates correspond-
ing to different cycles are composed of different computa-
tional basis states, so they necessarily are orthogonal to
each other. Thus, a complete orthonormal basis can be
obtained by selecting a representative state |q1〉 in each
cycle, and the eigenvalue m. Note that if an integer n
such that Un0 = 1 is to exist, it must be the case that all
the β are integer fractions of 2π which is equivalent to
requiring that all Φ associated with distinct |q1〉 are an
integer fraction of 2π.

Eqs. (2,3) show that Floquet eigenstates |q1,m〉, with
m ∈ {0, ..., l − 1}, when viewed as eigenstates of a corre-
sponding Floquet Hamiltonian HF (such that e−iHF t =
UF ), correspond to eigenstates separated by a multiple
of the constant energy difference ∆E = 2π

l . The com-
putational basis states that appear in a given cycle of
small length are thus ideal candidates as area-law entan-
glement states to embed in a physical model related to
UF . How this can be done is discussed in Sec. III. First,
however, we discuss how Hamiltonians A and B are pre-
cisely defined from the two-layer automata considered.

C. Local Hamiltonians from quantum cellular
automata

We note that Hamiltonians A and B are not uniquely
defined from UF—there exist multiple Hamiltonians that
that yield UF when exponentiated. Since a single layer
of UF is composed of spatially decoupled unitaries U0,
we can also construct A and B from local Hamiltonians
satisfying

h0,j = i logU0,j . (4)

This equation alone does not uniquely specify h0,j , but
this ambiguity can be lifted by writing U0,j in terms of
the orthonormal Floquet eigenstates obtained from Eq. 2
which yields

U0,j =

24∑
k=1

eiβk |βk〉 〈βk| . (5)

|βk〉 are the Floquet eigenstates of U0,j as defined in Eq.
2. h0,j is then defined as

h0,j ≡ −
24∑
k=1

β̃k |βk〉 〈βk| (6)

where β̃k is −i times the principal logarithm of eiβk , im-
plying β̃k ∈ (−π, π]. The Hamiltonian which we will force
to support quantum scars is the strictly local Hamilto-
nian

H = A+B (7)

with A =
∑L/4
j=1 h0,4j−3 and B =

∑L/4
j=1 h0,4j−1. A can

thus be understood as the logarithm of the second layer of
UF and B as the logarithm of the first layer; see Fig. 1(a).

D. Distinction between UF and e−i(A+B)

So far nothing guarantees that the extracted Hamil-
tonian A + B mimics the underlying quantum cellular
automaton in any meaningful way. This is because the
original Floquet unitary UF = e−iAe−iB and the time
evolution operator associated with the A + B Hamilto-
nian e−i(A+B) at t = 1 are not equal in general. The
reason for this discrepancy can be understood once we
interpret the automaton UF as the result of a periodic
driving of the system. Indeed, successive applications of
the Floquet unitary UF to a quantum state |ψ〉 is equiv-
alent to the time evolution at even integer times result-
ing from the stroboscopic driving of the quantum system
with the Hamiltonians H = A, H = B for equal times.
The floquet unitary UF can alternatively be captured
by a Floquet Hamiltonian HF such that UF = e−iHF ;
HF is formally given by the Floquet-Magnus expansion.
In particular, this expansion reduces to the well known
Baker-Campbell-Hausdorff (BCH) expansion in the case
of the driving described above.

The first few terms of the BCH expansion are given by

HF = A+B − i

2
[A,B]−

1

12
([A, [A,B]]− [B, [A,B]]) + ... .

(8)

The ith BCH term is denoted by Ci, where the 0th order
term is A+B. For instance,

C0 = A+B C1 =
−i
2

[A,B]

C2 = − 1

12
([A, [A,B]]− [B, [A,B]]), ... .

(9)

Importantly, the amplitude of terms in this series quickly
diverges, owing to the proliferation of the number of non-
zero commutators of local terms. This implies that HF

cannot generally be approximated by its first order term
A+ B and thus e−i(A+B) |ψ〉 6= e−iAe−iB |ψ〉 in general.
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However, as we will show in the next sections, it is pos-
sible to obtain sets of rules which, if all or part of them
are satisfied, ensure that some of the subspaces associ-
ated with cycles of UF are preserved or approximately
preserved by H = A + B. One useful set of local rules
can be obtained by realizing that the local Hamiltonians
h0,j assume a special decomposition in terms of powers
of U0,j as we discuss next.

III. RULES THAT GUARANTEE THE
PRESENCE OF QUANTUM SCARS

A. Writing H as a linear superposition of powers of
simple unitary gates

The local unitary gates considered in this work are cho-
sen such that there exists an integer n for which Un0,j = 1.
Provided Un0,j = 1, along with the definition of h0,j spec-
ified in Eq. 6, one can show that

h0,j = i logU0,j =

m−1∑
k=0

ckU
k
0,j (10)

for some set of coefficients ck. An exact recipe for obtain-
ing the coefficients ck is given in App. C; we note here
that in Eq. (10), the integer m ≤ n (where Un0,j = 1).
In other words, it is possible that not all powers of U0,j

up to n are required to construct h0,j . This is the case
for the PXP model for which U4

0,j = 1, but 1, U0,j , U
2
0,j

are sufficient to obtain h0,j = PXPj ; see Tab. II for a
definition of U0,j and h0,j in the PXP model.

B. Global rules

Eq. (10) can be leveraged to construct a set of rules
that will ensure that some chosen area law entanglement
states are common eigenstates of A and B. Indeed, pro-
vided a decomposition of h0,j in terms of powers of U0,i,
one can rewrite A and B as

A =

L/4∑
j=1

n∑
k=1

ckU
k
0,4j−3, (11)

B =

L/4∑
j=1

n∑
k=1

ckU
k
0,4j−1. (12)

Next, consider the subspace spawned by a specific cycle
of UF that has length l and define the projector Po to be
the projector onto the computational basis states that
compose the cycle

P0 =

l∑
k=1

|σk(q)〉 〈σk(q)| . (13)

The states that appear in this cycle are the area-law en-
tanglement states chosen here to be embedded as a linear
superposition of common eigenstates of A and B. A suf-
ficient condition to embed the subspace spawned by P0

is to enforce that e−i(A+B)P0 yields the same result as
e−iAe−iBP0. For this to be true, it is sufficient to require
that

[Aa, Bb]Po = 0 ∀a, b (14)

where a, b are positive integers. This set of rules is a
necessary and sufficient condition for the existence of a
set of common eigenstates48 of A and B denoted here by
S which will spawn the computational basis states that
appear in P0. Such rules are dubbed global rules, see
Fig. 1(c). Satisfaction of all such global rules ensures
QMBS phenomenology since the dynamical evolution of
the computational basis states that appear in P0 undergo
a periodic cycle in accordance with the dynamical evolu-
tion prescribed by the underlying Floquet automaton in-
stead of quickly thermalizing. Furthermore, provided the
dimension of the common eigenstate subspace S grows at
most polynomially with system size, then the common
eigenstates of A and B will necessarily have low entan-
glement since linear combinations of such states must
spawn the low entanglement states that appear in P0.
As a consequence, the common eigenstates of A and B
appear as scar eigenstates of H = A + B and form scar
towers.

Since A and B are sums of spatially decoupled unitary
gates, powers of A and B are given by

Aa =

L/4∑
j=1

n∑
k=1

ckU
k
0,4j−3

a

Bb =

L/4∑
j=1

n∑
k=1

ckU
k
0,4j−1

b (15)

and generic terms in AaBbP0 take the form

L/4∏
j=1

U
α4j−3

0,4j−3

L/4∏
j=1

U
α4j−1

0,4j−1Po (16)

up to a multiplicative constant, for some set of positive
integers αj including 0. Thus, in order to satisfy the
identity [Bb, Aa]Po = 0 for arbitrary integers a and b, it
is sufficient to require that the expression

L/4∏
j=1

U
α4j−3

0,4j−3

L/4∏
j=1

U
α4j−1

0,4j−1Po =

L/4∏
j=1

U
α4j−1

0,4j−1

L/4∏
j=1

U
α4j−3

0,4j−3Po

(17)
is satisfied for all possible set of αj . Note that a distinct
condition can be obtained by considering the alternate
representation

Aa =

L/4∑
j=1

h0,4j−3

a

Ba =

L/4∑
j=1

h0,4j−1

b

(18)
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FIG. 4. a) Half the gates from the second layer are sent
forward producing a circuit with three layers. b) Within each
triangle (focusing on the red one), gates from the second layer
are sent forward. c) Within the resulting configuration, the
middle gate of the second layer is sent to the first layer d)
The side gates are sent from the third layer to the first layer
(Note that this is a 2 step operation for each side gate). The
resulting arrangement of gates shows that by making use of
the commutation rules, it is possible to send gate Uα7

0 from the
third layer to the first layer in b). Repeating this procedure on
each triangle proves that satisfying the local unitary rules is
sufficient to ensure that [Aa, Bb]P0 = 0 for arbitrary integers
a and b

which leads to the condition

L/4∏
j=1

h
α4j−3

0,4j−3

L/4∏
j=1

h
α4j−1

0,4j−1Po =

L/4∏
j=1

h
α4j−1

0,4j−1

L/4∏
j=1

h
α4j−3

0,4j−3Po.

(19)
As will be discussed next, conditions (17) and (19) lead
to distinct sets of local rules, dubbed rules of type I and
II respectively.

C. Local rules of type I

Conditions (17) and (19) can be further reduced to
simple local rules that only involve a small set of unitary
gates. The set of local rules associated with condition
(17) is given by

Us10,jU
s3
0,j+4U

s2
0,j+2 |σ

k(q)〉 = Us20,j+2U
s1
0,jU

s3
0,j+4 |σ

k(q)〉
∀si ∈ {0, 1, 2, ..., n− 1}, ∀j ∈ {1, 3, 5, ..., L− 1}

Un0,j = 1 ∀k ∈ {1, 2, ..., l}
(20)

where |σk(q)〉 are the states that appear in P0. These
rules are denoted rules of type I [see Fig. 1(b)] and a
graphical proof that they indeed ensure that Eq. (17) is
satisfied is provided in Fig. 4. A remarkable property
of type I rules is that they are finite and independent of
the system size if the states |σk(q)〉 are translationally in-
variant. More precisely, given the smallest integer m such
that S2m |σk(q)〉 = |σk(q)〉 where S is the operator trans-
lating all sites by one to the right, then the total number
of sites j one needs to check for the rules associated with
the state |σk(q)〉 is reduced to j ∈ {1, 3, ..., 2m− 1}.

D. Local rules of type II

If condition (19) is considered instead of condition (17),
one obtains a different set of local rules given by

hs10,jh
s3
0,j+4h

s2
0,j+2 |σ

k(q)〉 = hs20,j+2h
s1
0,jh

s3
0,j+4 |σ

k(q)〉
∀si ∈ {0, 1, 2, ..., n− 1} ∀j ∈ {1, 3, 5, ..., L− 1}

Un0,j = 1 ∀k ∈ {1, 2, ..., l}
(21)

which are denoted rules of type II, see Fig. 1(d). A key
distinction with rules of type II is that nothing ensures
the existence of an integer n such that hn0,j = 1. However,
it is easy to see from the decomposition (10) that hn0,j can
always be written as a linear superposition of smaller
powers of h0,j ; this restricts si to be less than n; see
App. G for more details. As discussed in Sec. III A, there
is a possibility that not all powers of U0,j up to n are
actually required to build h0,j . This is also the case when
considering a decomposition of h0,j in terms of smaller
powers of itself. Indeed, there can exist an integer m
smaller then n such that hm0,j can be written as a linear
superposition of smaller powers of h0,j which can further
reduce the set of integers si one actually needs to check.
For instance, this is true in the PXP model for which

h3
0,j = π2

4 h0,j . See Tab. II for the definition of the h0,j

associated with the PXP model.
Another key distinction between rules of type I and

rules of type II is that whenever a rule of type I is broken,
BCH terms at all orders become non-vanishing. While
since the BCH expansion is organised in terms of com-
mutators of h0,j , higher powers of h0,j in commutators
only emerge at higher order in the BCH expansion. Thus,
satisfying lower powers of the type II rules may be impor-
tant in enforcing prethermal behavior and stabilising scar
phenomenology in the truncated Hamiltonian (although
there is no distinction between the two set of rules when
all of them are satisfied).

A final reason to consider type II rules is that one
could in principle completely ditch any reference to
automata and try to find Hamiltonians which satisfy
these local rules to yield common eigenstates with low
entanglement—the real purpose of the connection to
an underlying automaton is to ensure scar phenomenol-
ogy and to restrict the search for h0,j to Hamiltonians
which yield a finite set of distinct operators hi0,j with
i ∈ {0, ..., n− 1}

IV. BUILDING MODELS THAT SATISFY
LOCAL RULES

It was shown in Sec. III that satisfying all local rules
is sufficient to ensure the protection of the subspace
spawned by the states that appear in P0.

We note that the rules rely on two choices: i) the uni-
tary U0 which is determined, in the case we consider, by
the permutation it generates over computational basis
states, along with the phases accrued, and ii) the set of
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computational basis states |σk(q)〉, k = 1, ..., l, we choose
to embed in the putative scar subspace, the projector to
which is given by P0. Now, given the above structure,
we note that the rules of type I, given in Eq. (20), are
either exactly satisfied (for a given choice of s1, s2, s3 and
|σk(q)〉, or the left and right hand side of Eq. (20) pro-
duce entirely different computational basis states and/or
phases. Thus, we can simply count the number of rules
that are satisfied. The situation is trickier for the set of
local rules given in Eq. (21), in that the local Hamilto-
nians h0,j will generically produce entangled states upon
acting on computational basis states in P0, and it may be
useful to quantify the violation of the rules using a suit-
able inner product between the left and right hand sides
of Eq. (21). For simplicity, for a search of model Hamil-
tonians with scar subspaces which we perform next, we
restrict ourselves to rules of type I and simply enumerate
the number of rules (out of a maximum determined by
enumerating the allowed values of s1, s2, s3, k).

A. Explicit model search

There is a total of 16! permutations of the set of com-
putational basis states that spawn the 4 qubits Hilbert
space on which U0,j acts and if phase is allowed, the
space of possibilities is effectively infinite. The size of
the search space makes it prohibitively hard to study
exhaustively. To remedy this problem, we choose to re-
strict U0 to act trivially on the rightmost qubit while
also preventing phase from being acquired. This pro-
duces a set of 8! possible unitary gates which can be
studied exhaustively. The search space was further re-
duced by considering unitary gates such that U6

0,j = 1.
The chosen subspace to protect is given by the two Néel
states |q〉 = |1, 0, 1, ...〉, |σ(q)〉 = |0, 1, 0, ...〉, such that
UF |q〉 = |σ(q)〉 , UF |σ(q)〉 = |q〉. This constrained search
results in three models presented in Tab. I which satisfy
70/350, 246/350 and 350/350 of the applicable type I
rules, respectively. The unitary gates are represented in
Tab. I by a permutation and a phase map (in this case
trivial) which are defined in App. A. The total number
of relevant rules for each model is discussed in App. B

B. PXP model

Outside of this search, the PXP model is also stud-
ied in association with an underlying automaton. The
circuit geometry is different due to the fact that the
PXP model has a unit cell composed of one qubit, i.e

UF =
∏L/2
j U0,2j−1

∏L/2
j U0,2j and U0 in this case is a

Toffoli gate which acts on three qubits. Note also that
adjacent gates U0,j , U0,j+2 commute in the PXP model,
so the first and second layer can be seen as a prod-
uct of decoupled gates and the formalism developed in
Sec. III applies. Finally, for this model, the protected cy-
cle is composed of three states instead of two and given

QMBS-A

Permutation
((3, 13, 11, 7, 9, 5),

(4, 14, 12, 8, 10, 6))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j+

π

12
U3

0,j −
π

12
U0

0,j + h.c

Un0,j = I n = 6
Orbit |q〉 = |1, 0, 1, 0, ...〉 , |σ(q)〉 = |0, 1, 0, 1, ...〉
Rule ratio
type I

70/350

QMBS-B

Permuation
((1, 15), (2, 16), (3, 9, 5),

(4, 10, 6), (7, 13, 11), (8, 14, 12))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j

+
π

12
U3

0,j −
π

12
U0

0,j + h.c

Un0,j = 1 n = 6
Orbit |q〉 = |1, 0, 1, 0, ...〉 , |σ(q)〉 = |0, 1, 0, 1, ...〉
Rule ratio
type I

246/350

QMBS-C

Permuation
((3, 5), (4, 6), (7, 15, 9),

(8, 16, 10), (11, 13), (12, 14))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j+

π

12
U3

0,j −
π

12
U0

0,j + h.c

Un0,j = 1 n = 6
Orbit |q〉 = |1, 0, 1, 0, ...〉 , |σ(q)〉 = |0, 1, 0, 1, ...〉
Rule ratio
type I

350/350

PXP

Permuation ((11, 15), (12, 16))
Phase (1,1,1,1,1,1,1,1,1,1,i,i,1,1,i,i)
h0,j

decomposition
(π

4
+ iπ

4
)U0,j − π

8
U2

0,j − π
8
I+ h.c

Un0 = 1 n = 4

Orbit
|q〉 = |1, 1, 1, 1, ...〉 , |σ(q)〉 = |0, 1, 0, 1, ...〉 ,

|σ2(q)〉 = |1, 0, 1, 0, ...〉
Rule ratio
type II

38/48

TABLE I. Characteristics of the models

by |q〉 = |1, 1, 1, 1, ...〉 , |σ(q)〉 = |0, 1, 0, 1, ...〉 , |σ2(q)〉 =
|1, 0, 1, 0...〉.
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PR[ℤ2 (t)] QMBS-C
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PR[ℤ4 (t)]

PR[ℤ4 (t)]

PR[ℤ5 (t)]

PR[ℤ4 (t)]

1/Neff

FIG. 5. Revivals of the Néel state (solid line) and of a generic
state (dashed line) showed on a log scale as seen from the
PR of the time-evolved state for the various models studied.
L = 10, 12, 12, 16 and Neff = 1024, 1366, 64, 2207 for QMBS-
A, QMBS-B, QMBS-C and PXP respectively.

V. NUMERICAL SIGNATURE OF QUANTUM
SCARS

A. Revival strength and signs of quantum scarring

As intuitively expected, the number of type I rules that
are satisfied is correlated with the strength of the revivals.
For instance, QMBS-B shows stronger, longer lasting and
more coherent revivals compared to QMBS-A as can be
seen in Fig. 5 where the revivals are studied by consider-
ing the participation ratio (PR) of the time-evolved state
e−i(A+B)t |Z2〉 where |Zk〉 = | 0, 1, 1, . . . 1︸ ︷︷ ︸

k

, 0, 1, 1, . . . 1︸ ︷︷ ︸
k

. . .〉.

The PR is evaluated in the basis of computational ba-

sis states |q〉 and is defined as PR
[
|ψ〉
]

=
∑2L

q=1

∣∣〈q|ψ〉∣∣4
where |ψ〉 is assumed to be normalized. A PR close to 1
indicates that the system is largely in one computational
basis state while a PR ∼ 1/Neff, where the effective di-
mension Neff is defined here as the number of computa-
tional basis states connected to the Néel state by a matrix
elements of some given power of H (for the exact value
of Neff in all the models studied, see App. E), implies re-
laxation For comparison, the revival of a computational
basis state that is not a Néel state is showed in Fig. 5, in
which case it can be seen that the state quickly thermal-
izes. The exact scar model QMBS-C supports a spectrum
generating algebra like many other exact QMBS models,
and can also be viewed as an exact embedding which is
discussed in App. D.

Max PR[ℤ2 (t)]

Min PR[ℤ2 (t)]

1/Neff

QMBS-B
QMBS-A
PXP

5 10 50 100 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

Neff

FIG. 6. The maximum and minimum PR of the time evolved
Néel states in the time range t ∈ (10, 300) versus the effective
Hilbert space dimension Neff. The minimum closely follows
the inverse effective Hilbert space dimension (red line) for all
models. Satisfaction of more rules of type II/I appears to
produce revivals that scale better with system size.

The presence of quantum scars in the models QMBS-
A/B/C can also be seen from distribution plots of the
inverse participation ratio IPR[|ψ〉] = 1/PR[|ψ〉] of the
eigenstates of the Hamiltonian H = A+B for each model
against their eigenenergies, as shown in Fig. 7 which re-
veals the presence of low IPR states that are exactly
equidistant in energy for the QMBS-C model and approx-
imately equidistant in energy for the PXP, QMBS-B and
QMBS-A model. Furthermore, we also identify states
which have a large overlap with the Néel states; these
appear to coincide with the low IPR eigenstates (indi-
cated by black x in the figure). This strongly indicates a
correlation between the number of rules of type I/II sat-
isfied in the models and the presence of low IPR states
(scar eigenstates) in the spectrum. Finally, a finite-size
scaling of the revivals in the PR of the time-evolved Néel
states is shown in Fig. 6. The minima appears to coincide
well with the inverse effective Hilbert space dimension
∼ 1/Neff, indicating near complete relaxation at interme-
diate times. The maxima corresponding to revivals, on
the other hand, decreases with increasing system size but
only as −log(N) suggesting that the phenomena should
be robust in the large L limit.

B. R-statistic and effective Hilbert space dimension

The level repulsion statistic, obtained as the
ratio of the minimum to the maximum energy
differences between successive eigenstates, rn =
min(∆En+1/∆En,∆En/∆En+1) where ∆En = En −
En−1, En ≤ En+1, can be used as a metric to deter-
mine if a given model is integrable or not, which is key
to showing that the approximate scars presented here are
not due to integrability. By computing all the rn values
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x |ℤ2 En
2 > 0.02

FIG. 7. Scatter plot of IPR vs. eigenstate energy in the 4
models studied in the main text. The states marked by an
x are eigenstates that have an overlap amplitude with |Z2〉
larger than 0.02. Such states appear to be approximately
equally separated in energy for all the models QMBS-A/B/C
which is a hallmark of quantum scarring. Similar behavior is
observed in the PXP model as well noted in Ref17. The scar
signatures appear to be more pronounced provided a larger
number of rules are satisfied. The Hamiltonians used to com-
pute the eigenstates are restricted to the computational basis
states appearing in the Kyrlov subspace associated with the
Néel states, except for QMBS-C for which the full Hamilto-
nian is used to illustrate the embedding. Red dots in the
QMBS-C panel show the IPR vs. energy of the eigenstates
outside the Kyrlov subspace, whilst the orange dots show
the IPR vs. energy of the eigenstates inside the Kyrlov sub-
space. Neff = 2207, 1024, 1366, 64, L = 16, 12, 10, 12 for PXP,
QMBS-A, QMBS-B, QMBS-C respectively. See Sec. V B for
a precise definition of Neff

for a given set of eigenvalues (extracted from a given sym-
metry sector of H) and constructing the associated prob-
ability density P (r), one expects P (r) to be Poissonian if
the model is integrable, and charateristic of GOE/GUE
ensembles if the model is non-integrable49. The most
prominent feature of P (r) for non-integrable models is
suppression of P (r) at r values near 0 which indicates
level repulsion, a characteristic feature of non-integrable
models. One can see in Fig. 8 that the models QMBS-A
and QMBS-B show strong level repulsion and appear to
closely follow GOE predictions indicating that they are
non-integrable which rules out integrability as the rea-
son for the presence of quantum scars in the models. For
a detailed discussion of the symmetry sector (containing
the scar states) studied, see App. E.

QMBS-B
QMBS-A

POI
GOE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

r

P
(r
)

FIG. 8. Non-integrability of model QMBS-A and QMBS-
B can be seen in the suppression of P(r) at small r values.
Eigenvalues for QMBS-A and B are computed in the basis of
computational basis states that appear in the Kyrlov subspace
associated with the Néel states. Furthermore, the Hamilto-
nian is restricted to the common +1 eigenspace of S2 and
USM for L = 16, 18 which yields 4115 and 4863 eigenvalues
for QMBS-A, QMBS-B respectively.

VI. BCH EXPANSION AND REVIVALS

An important natural question in our construction is
how accurately the truncated Hamiltonian H = A + B
captures the dynamics we expect from the associated au-
tomaton unitary UF = e−iAe−iB . In particular, of key
interest to us is ensuring that the truncated Hamiltonian
captures the dynamics of the automaton in the scar sub-
space. It is clear that this is the case if all terms in the
BCH expansion, Cn, vanish on the scar subspace. Since
we do not know what this subspace is exactly in our con-
struction, instead we examine the action of Cn on the
subspace of orbit states that our construction is designed
to embed on to the scar subspace—recall the projector
onto this subspace is denoted by P0.

In what follows, we will examine the typical matrix ele-
ment of Cn as a function of the order of the BCH exansion
n, connecting i) orbit states to other orbit states, ii) or-
bit states to generic states, and iii) generic states to other
generic states. We will examine these terms by numeri-
cally computing‖P0CnP0‖ /l,

∥∥(1− P0)CnP0

∥∥ /(lNeff)1/2

and
∥∥(1− P0)Cn(1− P0)

∥∥ /Neff, respectively. Here, ‖X‖
denotes the Frobenius norm of the matrix X, and we
divide this norm by Neff − l ≈ Neff (the Hilbert space
dimension of generic states), or l (the Hilbert space di-
mension of orbit states) or a composite of the two to
obtain the value of the typical matrix element.

We note apriori that ultimately, we would like the trun-
cated Hamiltonian H = A + B to mimic the dynamics
of the Floquet automaton on a putative scar subspace
on which the selected orbit states have significant over-
lap. Although this is true when all matrix elements of
BCH terms Cn connecting scar states to generic states
vanish, it is not obvious that examining the magnitude
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of terms in the BCH expansion is always the correct way
of probing this aspect of the dynamics. For one, it may
be the case that the BCH expansion may be reorganized
in a way that appropriate linear combinations of Cn have
small matrix elements connecting orbit states to generic
states even though individually the Cn themselves have
fairly large matrix elements. Second, here we attempt
to examine the matrix elements between orbit states and
generic computational basis states—even if these matrix
elements are significant, it does not preclude the possibil-
ity that matrix elements of Cn between scar eigenstates
of H = A + B and other generic states have small am-
plitude. The latter depends on how well the scar eigen-
states actually embed the intended orbit states. We will
see that in the PXP model, where rules of type II are
satisfied, the BCH expansion does indeed show suppres-
sion of matrix elements between orbit states and generic
states, order by order. With this clarification, we can
now discuss our numerical findings.

A. Amplitude of BCH terms and possible
prethermal behavior in the PXP model

In Fig. 9, we plot the typical amplitude of the ma-
trix elements of the nth order BCH term Cn connecting
various states in the Hilbert space. The following ob-
servations can be made—i) BCH terms connecting orbit
states are heavily suppressed in the perfect scar model
QMBS-C, and the PXP model, while they are suppressed
only at certain specific orders in QMBS-A and QMBS-
B, ii) matrix elements connecting orbit states to generic
states decrease with n at first for the PXP model, be-
fore eventually increasing again, iii) in the PXP model,
even matrix elements connecting generic states to other
generic states surprisingly show this phenomenology, iv)
for QMBS-A/B, matrix elements connecting the scar sub-
space to generic states are smaller but of a similar mag-
nitude to matrix elements between generic states, and v)
in QMBS-C, the matrix elements connecting orbit states
to generic states vanish exactly; this is to be expected as
this is an exact scar model.

Even though QMBS-A/B states show strong revivals
only in the chosen orbit states, an order by order ex-
amination of terms in the BCH expansion does not re-
flect this fact—indeed, the matrix elements between or-
bit states and generic states is of the same order as those
connecting generic states. As alluded to above, it may
be possible to reorganize the BCH expansion in terms
of linear combinations of various Cn, such that we do
see suppression of matrix elements (between orbit states
and generic states). We have not attempted this, but
note that a natural reason for the failure of BCH expan-
sion to capture this phenomena may be because these
models were designed to strongly obey rules of type I—
breaking this rules implies that for some set of powers,
the local unitaries corresponding to the automata do not
commute; see Eq. (20). Since the local Hamiltonian is

constructed as a linear combination of all powers of these
local unitaries [Eq. (10)], the BCH terms will be non-zero
at all orders as soon as any of the type I rules (defined by
the set of powers of the local unitaries) are broken. Note
that in QMBS-C, all rules of type I are satisfied, it is an
exact scar model, and it is thus not surprising that BCH
terms at all orders have no matrix element connecting
the scar states and generic states.

The PXP model is different in that rules of type II can
be enumerated naturally for this model, given the rather
simple form of the local Hamiltonian term, and most of
these rules are satisfied. As a result, we expect the BCH
expansion to be more useful in this case. Specifically, in
the PXP model, the norm of BCH terms first decreases
with n before eventually increasing. This is characteristic
of the FM expansion for systems driven at high frequen-
cies and which concomitantly possess a prethermal win-
dow over which an effective Floquet Hamiltonian can be
obtained by truncating the FM expansion. We explore
this in more detail next.

B. Prethermal behavior in the PXP model

An interesting phenomenon that can occur whenever a
quantum system is driven is Floquet prethermalization,
which describes a prethermal time window inside which
the driven quantum system reaches a prethermal quasi-
steady state before slowly drifting towards true equilib-
rium. In particular, the length of that prethermal time
window goes as e1/τ where τ is the driving period. Such a
prethermal window is normally accompanied by the norm
of BCH expansion terms‖Cn‖ first decreasing with n, up
to some order n0, before increasing with n. The duration
of the prethermal window is then O(e1/n0). Such a pat-
tern is naturally obtained in the case of high frequency
driving, for instance when UF = e−iAτe−iBτ for small τ ,
such that the lowest BCH terms largely decrease in n as
nτn. In a many-body setting, eventually, the number of
terms in the commutator in Cn blows up as n!, which
ultimately supresses the decays from τn at n0 ≈ O(1/τ).
As a corollary, one can truncate the BCH expansion to
order n0 and expect the truncated Hamiltonian to mimic
the Floquet unitary dyamics up to times ≈ en0 . In this
case, τ = 1, and one cannot expect a prethermal regime
on account of the frequency of the drive. However, by en-
forcing the commutator of A,B to vanish on a subspace,
one may expect a similar decrease of the norm of BCH
terms before an eventual increase.

Indeed, as seen in Fig. 9, we do see that the ampli-
tude of matrix elements connecting scar states to generic
states decreases with the order of expansion n before
again increasing. Thus, there is an effective, emergent,
time period Teff < 1 which we may attribute to the fact
that BCH terms Cn, which are composed of nested com-
mutators of A and B, are suppressed on the orbit sub-
space. Perhaps what is surprising is that the same be-
havior is in fact even seen for matrix elements between
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FIG. 9. Leakage from orbit states, characterized by∥∥(I − P0)CnP0

∥∥ (green) and norm of the neglected terms Cn
projected to the subspace of generic-states (blue) and orbit
states (black). The amplitude of the BCH terms is normal-
ized by the square-root of the number of matrix elements in
the considered subspace, where l is the length of the orbit to
preserve and Neff is the number of computational basis states
connected to the Néel state by a matrix elements of some
given power of H. The Cn are computed from the Hamil-
tonian terms A and B in the basis of computational basis
states that appear in the Kyrlov subspace except for QMBS-
C for which the calculation was performed on the full Hilbert
space for illustrating the embedding. Neff = 2207, 4096, 1366,
64, L = 16, 12, 12, 12 for the PXP, QMBS-A, QMBS-B and
QMBS-C model respectively. For the blue curve in QMBS-C,
Neff = 4096− 64 is used.

generic states in the computational subspace.

The latter suggests that the prethermal dynamics may
be applicable to not just the scar subspace, but to the
full Hilbert space of the PXP model. To verify this, we
examine the local autocorrelator, | 〈Zi(t)〉 − 〈Zi〉m.c |2,
where 〈Zi〉m.c indicates the microcanonical average over
a fixed energy window ∆E = 0.4 centered around the
average energy E = 〈ψ|H |ψ〉 and Zi is the Pauli σz
operator acting on a particular spin i of the system, which
we choose arbitrarily.

Although many-body revivals of generic states decay
rapidly, particularly in the PXP model, autocorrelations
of local Zi continue to have long time revivals in any
state. One may attribute this to the presence of a
prethermal window—the dynamics of spins due to the
underlying Floquet automaton show revivals, and within
the prethermal window, this behavior is mimicked by the
truncated, strictly local, Floquet Hamiltonian which in
this case is the PXP model.

To give further credence to this picture, we study the
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FIG. 10. PR of generic states evolved in time and time
evolution of | 〈Zi(t)〉 − 〈Zi〉m.c |

2 where 〈Zi〉m.c is the micro-
canonical average computed with an energy window ∆E of 0.4
centred around the average energy of the considered generic
state. QMBS-A and PXP show signs of prethermalization
which manisfest themselves as a slow decay of 〈Zi(t)〉 towards
the micro-canonical average.

effect of adding the first few decreasing BCH terms to
Heff = A+B = HPXP. We find that adding these terms
in fact improves many-body revivals (both the revival
strength and the regularity). Thus, one can think of
the absence of such terms in the truncated Hamiltonian
A + B as a perturbation away from the quasi-local
Floquet Hamiltonian which captures the dynamics of
the ideal Floquet automaton most faithfully; these terms
lead to decay of revivals; see Fig. 11.

Continuing with the analogy with Floquet systems
driven at a high frequency and which exhibit a prether-
malization window, we note the absence of terms
C1, C2, ..., Cn0=6 in our truncated Hamitonian Heff =
A + B can lead to decay of many-body revivals. We es-
timate this revival time by computing a Fermi’s Golden
Rule rate of decay of a scar eigenstate of Heff = A + B
into non-scarred states. This rate is given by the typi-
cal matrix element Γ in C2 (which provides the largest
coupling in the case of the PXP model; see Fig. 9) cou-
pling this state to other states in the Hilbert space, multi-
plied by the number of states within an energy window Γ
around this chosen scar state ∼ Γ/δ, were δ is the many-

body level spacing. The term
∥∥(1− P0)C2P0

∥∥2
/(Neffl)

yields the norm squared of a typical matrix element of
the operator C2. To estimate the many-body level spac-
ing, we note that the scar eigenstate does not couple to
all states in the Hilbert space. Some of the Ci terms
break full transnational symmetry and parity, but S2,
translation by two qubits, remains a conserved operator
for all Ci. Thus, we can estimate the density of states
1/δ within a given symmetry sector by 2Neff/(L∆EPXP

)
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FIG. 11. Revivals seen in models with additional BCH terms
Cn added to A + B. Revivals improve when adding up to
fifth order of BCH terms in the PXP model but worsen
upon adding further higher orders. In contrast, revivals
only decrease when adding further terms in QMBS-A/B.
L = 12, 12, 16 for QMBS-A, QMBS-B and PXP respectively.

where ∆EPXP ≈ 30 is the bandwidth of the PXP model
for L = 16. The approximate decay rate is then given by

1/τ ≈ 2π(2Neff/(L∆EPXP
))
∥∥(1− P0)C2P0

∥∥2
/(Neffl) ≈

0.1. This agrees approximately with an extrapolation
of the numerical stimulated peak of many-body revivals
to large times.

(Note that for the PXP model, the terms within the
Néel subspace are also small for reasons of locality, which
prevents Cn from leading to transitions between the Néel
states) and symmetry (which prevents an energy offset
between the Néel states due to particle-hole symmetry
and translational symmetry in PXP). The latter likely
aids stronger revivals and could be useful ingredients23,47

in searching for other approximate QMBS models using
the methods outlined here.

C. BCH terms in the PXP model

We now examine these BCH terms for the PXP model
in more detail. In particular, the first few orders are

given by

C0 + C1 + C2 = (−π
2

+
π3

96
)
∑
j

PjXj+1Pj+2

+i
π2

8

∑
j

(−1)j+1(PjS
+
j+1S

−
j+2Pj+3 − PjS−j+1S

+
j+2Pj+3)−

π3

192

∑
j

(PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3)+

π3

48

∑
j

(PjS
+
j+1S

−
j+2S

+
j+3Pj+4 + PjS

−
j+1S

+
j+2S

−
j+3Pj+4)

(22)
, see App. F for a detailed derivation of this result.

Note that up to support over 4 qubits, these correc-
tions correspond to two terms, one which acts trivially
on the orbit subspace, and the other, (PjXj+1Pj+2Zj+3+
ZjPj+1Xj+2Pj+3), was identified in both Refs.23,47 as a
term that leads to better revivals and/or integrability
of the model. This term was added to the PXP model
with a variable amplitude which was optimized to im-
prove integrability in Ref.47 and revivals in Ref.23. Here
the magnitude of these terms is obtained without numer-
ical optimization, and is given by that obtained from the
BCH expansion. The ratio of the amplitude of this term
to the PXP term is ≈ 0.129, which is about 6 times larger
than that obtained in Ref.47 and 2 times larger than that
obtained in Ref.23.

Finally, it is observed numerically that revivals in the
PXP model improve upon adding BCH terms to an even
order, while usually degrading upon adding terms to one
additional order. This trend continues up to n = 6 after
which revivals degrade with every successive order, see
Fig. 11. This can be attributed to renewed divergence of
the BCH terms in the scar subspace beyond n = 6.

D. PXP with and without phase

The phase that states accrue as they evolve under
the Floquet automata can play a very important role.
Fig. 12 highlights the stark difference in revival strength
from automata with unitaries enforcing the same per-
mutation but one in which the phase is trivial, and the
second in which it is non-trivial. The second one cor-
responds to the usual PXP Hamiltonian. One can see
that the former model exhibits smaller revivals which
further corroborates the intuition that the amplitude of∥∥(1− Po)Cn(Po)

∥∥ is correlated with the strength of the
revivals. For instance, the first leakage term fully vanish
in the PXP model, but it dosen’t in the related model.
(Note that a continuum of models between these two ex-
tremes was studied in50,51.)
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FIG. 12. Overlap amplitude squared of |Z2〉 with

e−i(A+B)t |Z2〉 for models where phase is trivial vs non-trivial.
Insets show how the effective leakage changes between models
with trivial and non-trivial phase.

VII. DISCUSSION AND OUTLOOK

In this work, we show a method for engineering quan-
tum many-body scar Hamiltonians by establishing a
connection between quantum cellular automata UF =
e−iAe−iB and the Hamiltonian H = A + B obtained
by carefully taking the matrix logarithm of each layer
of UF . Generally, the dynamics generated by UF and
H are unrelated. In particular, one can view H as a
Hamiltonian obtained by truncating the BCH expansion
UF = e−i(A+B)−iC1−iC2... to zeroth order. Although for
a generic interacting system, these terms Cn rapidly di-
verge, we devise two sets of rules, dubbed rules of type I
and type II, that force these terms to vanish on a small
subspace of states that are part of a cycle of UF of finite
length l.

We then construct models QMBS-A/B/C that succes-
sively satisfy more of the local rules of type I, which en-
force that certain local commutators of the unitaries in
UF vanish on a cycle composed of the two Néel states.
The PXP model is more naturally interpreted as satisfy-
ing a large number of rules of type II; these rules enforce
that local commutators of the Hamiltonian vanish on a
cycle of length 3 composed of the two Néel states and
a vacuum state. The models QMBS-A/B/C satisfy suc-
cessively more rules and exhibit concomitantly stronger
revivals, with QMBS-C being an exact scar model.

We also examined, order by order, the typical matrix
element in Cn connecting scar states to generic states.
The amplitude of these terms is ideally heavily sup-
pressed as it causes leakage from the scar subspace to
generic states. We find that these terms decrease with
increasing n in the PXP model, before again begininning
to diverge at order n0 = 6. This behavior is character-
istic of prethermalization phenomena in Floquet systems
driven at high frequencies. Although in this case the
drive frequency is putatively 1, the observed behavior of
the BCH terms suggests an emergent timescale Teff < 1

and a prethermal window τp ∼ e1/Teff . In fact, even ma-
trix elements of BCH terms connecting different generic
states in the PXP model appear to show the same be-
havior. We find evidence of prethermal behavior in the
PXP model by looking at autocorrelators of local spin
Zi. This operator shows revivals even in generic states,
and long after many-body revivals of this generic state
have decayed. We can also recover a timescale for decay
of many-body revivals by computing a Fermi’s Golden
rule rate of decay based on the amplitude of matrix el-
ements connecting orbit states to generic states in the
BCH terms neglected.

The BCH expansion does not appear to be the cor-
rect way to understand leakage out of the scar subspace
(and thus, many-body revivals) in the case of QMBS-
A/B. Here, order by order, matrix elements connecting
scar states to generic states can be of the same order
as those connecting different generic states. This seems
to contradict the fact that the orbit states are special
and distinct from generic states because only these states
show many-body revivals. A natural explanation is that
the BCH expansion may be reorganized in a way such
that linear combinations of various Cn may have a small
matrix element connecting orbit states to generic states
even though individually the Cn have sizeable matrix el-
ements. This requires further exploration.

We note that we may interpret the results of our
work without directly appealing to Floquet automata.
The rules devised effectively ensure that a putative scar
HamiltonianH can be decomposed into a partition A+B,
where scar states are common eigenstates of A and B.
If A and B are composed of physically disjoint terms,
they naturally possess eigenstates of low entanglement.
If einA = einB = 1, for some integer n, the eigenvalues
of A and B are equidistant. Ensuring that commutators
of A,B vanish on a certain (scar) subspace ensures that
there exist a limited number (scaling at most polynomi-
ally in the system size L) of common eigenstates of A,B
that are equidistant in energy. If we can somehow embed
further low-entanglement states in this subspace, as we
do, then one obtains a scar subspace of low-entanglement
eigenstates.

In many ways, this work is a first step in leveraging the
properties of non-thermal quantum cellular automata to
construct quantum many-body scars. Some questions
emerge naturally from this work. For instance, the choice
of partitioning of the Hamiltonian into two parts A and
B where A concerns the ‘even’ gates, and B the ‘odd’
gates is rather arbitrary. Nothing prevents one from
choosing a different decomposition of H which would
ultimately lead to a distinct automaton being associated
with H. Provided this new automaton satisfies all or
a large number of local rules for some specific states
|ψ〉, it might be possible to identify additional quantum
scar towers in the same model. We note here that in
related work, we show that the mid-spectrum scar states
in the AKLT model for instance can be obtained by
considering various partitions of this model. Another
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interesting avenue for future work would be to study
local unitary gates U0,j that are not simple permutation
gates with phase. The construction presented here in
principle applies to any unitary gate U0,j that satisfies
the property Un0,j = 1 for some integer n regardless of
the internal structure of U0,j . Such an approach might
lead to quantum scars with more complex structures.
An interesting avenue for doing so would be to consider
Clifford gates as the local unitary gates U0,j which,
despite generating entanglement are entirely described
by an underlying classical automaton which acts as a
permutation of the set of products of Pauli matrices
rather than the computational basis states themselves.
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Appendix A: Permutation and phase map
representation

In order to characterize the unitary matrices U0,j and
their properties, it is convenient to introduce a compact
way of representing them. Since the U0,j act as a permu-
tation on the computational basis states on which they
act as well as multiplying them by a phase, they can
be represented using the cycle notation of a permutation
as well as a phase map. One can associate the compu-
tational basis states with integers between 1 and 16 by
converting their base 2 bit string representation to an
integer, +1. Explicitly,

|0000〉 → |1〉 |0001〉 → |2〉 . . . |1111〉 → |16〉 . (A1)

The state |0〉 is understood to be the +1 eigenstate of
2Sz and the |1〉 state is the −1 eigenstate of 2Sz where
Sz is the standard z spin operator for a spin 1/2 parti-
cle. The phase map is represented by an array of length
16 (ph1,ph2, ...,ph16) with the understanding that the
qth component phq of this array is the complex num-

ber by which the qth computational basis state is multi-
plied when acted upon by U0,j , i.e U0,j |q〉 = phq |σ(q)〉,
see Fig. 2. The transitions between computational basis
states are represented with the cycle notation of a per-
mutation, e.g if the permutation matrix U0,j generates

the transitions (1→ 3→ 8→ 1), (2→ 4→ 2) and sends
all other states to themselves (possibly with a phase),
then one can compactly represent the above transitions
by ((1, 3, 8), (2, 4)) where it is understood that consecu-
tive integers ni, ni+1 in a cycle (n1, n2, ..., nl) represent a
transition from ni to ni+1. The cycle is periodic in the
sense that the last integer that appears in the cycle de-
noted above by nl is mapped to n1. Any computational
basis state that do not appear in a cycle is assumed to
be mapped to itself.

Appendix B: Total number of relevant rules

Some of the rules that appear in Eq. 20 are trivially
satisfied. Indeed, for the rules to be non-trivial, it must
be the case that s2 is non zero, and that at least one of
s1 or s3 is non-zero. Most generally, this yields a total of
l(n − 1)(n2 − 1)(L/2) rules where l is the length of the
cycle to be preserved and L is the system size. If the
states |σn(q)〉 spawning the subspace to be protected are
such that S2 |σn(q)〉 = |σn(q)〉 where S is the operator
translating all sites by one to the right, then the number
of relevant rules is reduced to l(n− 1)(n2 − 1) and is in-
dependent of system size. In the remainder of this work,
for a given system, the number of satisfied rules is pre-
sented as a fraction of the total number of relevant rules,
i.e. it will be presented as (Number of satisfied rules)
/(Total number of relevant rules).

In the geometry where UF =∏L/4
i U0,4j−3

∏L/4
j U0,4j−1 and with P0 composed of the

two Néel states, one has a total number of relevant rules
given by l(n−1)(n2−1) where n = 6, l = 2, so a total of
350 relevant rules. The PXP model is special since the

local Hamiltonian has the property that h3
0,j = π2

4 h0,j ,
so it is worth considering rules of type II instead. The
total number of relevant rules of type II for the PXP
model is given by (n− 1)(n2− 1) + (n− 1)(n2− 1)2 with
n = 3, so a total of 48 rules. The first term counts the
rules associated with the fully polarized state |1111...〉,
the second term counts all the rules associated with
the state |1010...〉. Note that since the Néel states are
such that |1010...〉 = S |0101...〉, one directly obtains
that satisfying all the rules for one of the two Néel
states (taking into account that the Néel states are
not translationally invariant) ensures that the rules are
satisfied for the other Néel state as well, so no additional
rules need to be taken into account.

Appendix C: Decomposing Hamiltonian’s in terms
of powers of simple unitary matrices

The coefficients ck that appear in Eq. 10 can be found
by writing Eq. 10 with a set of orthonormal eigenvectors.
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Doing so, one obtains

24∑
s=1

−β̃s |βs〉 〈βs| =
24∑
s=1

(

n∑
k=1

eikβsck) |βs〉 〈βs| (C1)

where |βs〉 is an eigenstate of UF with eigenvalue βs. This
yields the matrix equation

M~c = −~β, Ms,k = eikβs ,

s ∈ {1, 2, ..., 24}, k ∈ {1, 2, ..., n}
(C2)

with ~c = (c1, c2, ..., cn) and ~β = (β̃1, β̃2, ..., β̃24) In this
form, it is not obvious that Eq. C2 always admits a solu-
tion, but it turns out that a solution does indeed always
exist.

To construct it, consider the following set of states

n−1∑
k=0

eiαkUk0,j |q〉 (C3)

for some set of real numbers αk. Note that since n is
such that Un0,j = 1, this sequence of states is a closed
loop upon successive applications of UF . It is easy to
see that the choice αk = −kγ, where γ is one of the n
roots of unity, yields an eigenstate of UF with eigenvalue
eiγ . Note that all the generated eigenstates produced
by Eq. C3 for a given |q〉 have distinct eigenvalues and
are thus orthogonal, but Eq. 2 suggests that one should
only be finding l eigenstates where l is the length of the
cycle. Furthermore, eigenstates built from different cy-
cles are necessarily orthogonal to each other since they
contain different computational basis states. For this to
be possible, it must be the case that some of the eigen-
states produced with C3 are equal to the vector ~0. One
can deduce from the previous sections that the only non-
zero eigenstates will be the ones for which γ is given by
γ = Φ+2πm

l , see Eq. 3. The redundant eigenstates can
safely be added to the eigenstate decomposition of U0,j

and i logU0,j just like if they were non-zero vectors which
is key to solving for the vector ~c. Doing so yields

nNCycles∑
s=1

−γ̃s |γs〉 〈γs| =

nNCycles∑
s=1

(

n∑
k=1

eikγsck) |γs〉 〈γs|

(C4)

where |γs〉 are eigenstates of U0,j with eigenvalue eiγs

now also including the redundant eigenstates. γ̃s is equal
to −i times the principal logarithm of eiγs and NCycles

is the total number of cycles composing U0,j . From this,
one obtains the matrix equation

Γ~c = −~γ Γs,k = eikγs

s ∈ {1, 2, ..., nNCycles} k ∈ {1, 2, ..., n}
(C5)

with ~c = (c1, c2, ..., cn), ~γ = (γ̃1, γ̃2, ..., γ̃nNCycles
). Re-

markably, Γ†

nNcycles
is an inverse of Γ

(Γ†Γ)k,m
nNcycles

=

nNcycles∑
s=1

Γ∗s,kΓs,m

nNCycles

=

nNcycles∑
s=1

e−iγs(k−m)

nNCycles
= δk,m

(C6)

To see why Eq. C6 is valid, note that the sum over s
runs over the augmented eigenvalues γs associated with
each cycle composing U0,j . k and m both take values
between 1 and n, so their difference k −m takes values
in the range [−n + 1, n − 1]. γs is one of the n roots
of unity modulo 2π. One can then decide to order the
eigenvalues by choosing γs = 2πs

n , s ∈ {1, 2, ..., nNcycles}
where say the n first eigenvalues are associated with the
first cycle, the n next with the second cycle, so on and
so forth. Eq. C6 then reads

1

nNcycles

nNcycles∑
s=1

e−i
2πs(k−m)

n

=
Ncycles

nNcycles

n∑
s=1

e−i
2πs(k−m)

n

=
1

n
(
1− e2π(k−m)(n+1)/n

1− e2π(k−m)/n
− 1)

(C7)

which always yields 0 provided (k−m) is not a multiple
of n. As seen above, (k −m) takes values in the range
[−n + 1, n − 1], so one obtains an indeterminate result
only when k = m, in which case it can directly be seen
that the result is 1. This implies that the coefficients ck
are given by

~c =
Γ†

nNCycles
~γ (C8)

which provides an explicit method for decomposing
i log(U0,j) as a linear superposition of powers of U0,j .
Remarkably, the vector ~c only depends on the order of
the unitary matrix n, so distinct unitary matrices with
the same order n assume the same decomposition.

Appendix D: QMBS-C as an embedded spectrum
generating algebra

The full Hamiltonian corresponding to the model
QMBS-C is given by

H =

L/2∑
j=1

(
π

2
P2jX2jX2j+1P2j+

(1− P2j)Hext,2j−1(1− P2j)−
π

2
I

) (D1)
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with Pj+1 = (I−Zj+1Zj+2)/2. Hext,j is given in Tab. II,
but the exact form of Hext,j turns out to be irrelevant.
Let’s begin by showing that D1 is an embedded model.
Note first that the set of projectors P2j and the Hamil-
tonian all mutually commute, a state of the system can
thus be an eigenstate of all P2j simultaneously. This fact
allows one to directly connect the model D1 to the em-
bedding method presented in25. The arbitrary Hamilto-
nian terms hj correspond to Hext,j and the Hamiltonian
H ′ is

∑
j
π
2P2jX2jX2j+1P2j . For a state |ψ〉 to be a +1

eigenstate of the P2j , it must be the case that qubits sit-
ting on sites 2j, 2j + 1 have opposite spin. The subspace
spawned by such states has dimension 2L/2 and includes
for instance the two Néel states. The effective Hamilto-
nian acting on this subspace is given by

Heff =

L/2∑
j=1

(
π

2
X2jX2j+1 −

π

2
I

)
(D2)

which is obtained by setting all P2j to I. The full Hamil-
tonian H hosts a spectrum generating algebra, see Ref.22

for an introduction to the topic. Indeed, consider the
operator

Q† =

L/2∑
j=1

Z2j(I −X2jX2j+1) (D3)

and consider the linear subspace W spawned by the 2L/2

states that are in the common +1 eigenspace of the P2j .
This operator can be seen to be responsible for a spec-
trum generating algebra. Indeed one has that

([H,Q†]− εQ†)W = 0 (D4)

which follows from

[H,Q†]W

=

L/2∑
j=1

[
π

2
P2jX2jX2j+1P2j , Z2j(I −X2jX2j+1)]W

= π

L/2∑
j=1

Z2j(I −X2jX2j+1)W = πQ†W

(D5)

where the second equality comes from (I − P2j)W = 0,
P2jW = W and Q†W ⊂W . One can see from the above
that ε = π. This shows that QMBS-C hosts a spectrum
generating algebra. QMBS-C is thus an example of a
model where one observes an embedded spectrum gener-
ating algebra in an otherwise fully thermal Hamiltonian.

Appendix E: Symmetry sectors of QMBS-A/B

The relevant symmetries of the QMBS-B and QMBS-
A model are invariance under S2 and invariance under

the unitary operator

USM =

 L∏
i=1

Xi

SM (E1)

where S is the operator that shifts all sites by one to
the right and M is the mirror operation about the cen-
ter bond. Furthermore, both models posses the anti-
unitary symmetry RSM where R is the complex conju-
gation operation, which implies time reversal symmetry
(which explains why the GOE ensemble is the best fit for
P (r)). In order to compute the R-statistic, one must re-
strict the Hamiltonian to a given symmetry sector, which
is chosen in this case to be the common +1 eigenspace
of S2 and USM , which for instance contains the state
1√
2
(|1010...〉+ |0101...〉). Furthermore, one must also re-

strict the Hamiltonian to the set of computational basis
states that appear in the Kyrlov subspace associated with
the Néel states. For QMBS-B, one can see that the lo-
cal Hamiltonian h0,j can only lower or increase the total
spin Ztot =

∑
i Zi by multiples of three, see Tab. II.

Thus, the total number of accessible computational basis
states starting from the Néel state is given by the set of
all computational basis states that have a total spin Ztot

which is separated from Ztot = 0 by some multiple of 3
(the Néel states are such that Ztot = 0). In QMBS-A,
no such restrictions exists. In QMBS-C, the total num-
ber of accessible states from the Néel states is given by
2L/2, see App. D for a more precise definition. Finally,
the PXP model is restricted to the well known Fibonacci
subspace17. The effective dimension Neff is defined here
as the number of computational basis states connected to
the Néel state by a matrix elements of some given power
of H. It is given here for all the models studied in this
work.

Neff,PXP = FL+1 + FL−1

Neff,QMBS-A = 2L

Neff,QMBS-B =

bL/3c∑
k=−bL/3c

L!

(L2 + 3k)!(L2 − 3k)!

Neff,QMBS-C = 2L/2

(E2)

where Fn is the nth Fibonacci number and L is the system
size. Note that the above is only well defined for even
system sizes, the Néel states do not exist otherwise.

Appendix F: Exact PXP BCH terms

The first order BCH term C1 is given by

− i

2
[A,B] =

∑
j∈odd,k∈even

− i
2

[hj , hk] (F1)
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Note that hj and hk commute unless k = j−1 or k = j+1
which yields

[A,B] = − i
2

∑
j∈odd

([hj , hj−1] + [hj , hj+1]). (F2)

This can be rewritten as

[A,B] = − i
2

∑
j∈odd

[hj , hj+1] +
i

2

∑
j∈even

[hj , hj+1] =

− i
2

∑
j

(−1)i+1[hj , hj+1]

(F3)

which shows that the first order correction [A,B] yields
the same term on even and odd sites, but with an al-
ternating sign. Let’s now compute the matrix form of
[hj , hj+1]. One readily obtains that the only non-zero
matrix elements resulting from this computation are the
following transitions

|1011〉 → −π
2

4
|1101〉

|1101〉 → π2

4
|1011〉

(F4)

all other computational basis states are mapped to 0.
Recall that the class of possible deformations introduced
in47 are ∑

j

Zj
∑
j

ZjZj+2

∑
j

ZjZj+3∑
j

Pj−1XjPj+1

∑
j

Pj−1YjPj+1,∑
j

Pj−1XjPj+1Zj+2

∑
j

Zj−2Pj−1XjPj+1∑
j

Pj−1YjPj+1Zj+2

∑
j

Zj−2Pj−1YjPj+1∑
j

Pj−1S
+
j S
−
j+1Pj+2

∑
j

Pj−1S
−
j S

+
j+1Pj+2

(F5)

The above commutator can be written as

[hj , hj+1] = −π
2

4
(PjS

+
j+1S

−
j+2Pj+3 − h.c) (F6)

which yields for the first order BCH term

C1 =
iπ2

8

∑
j

(−1)j+1(PjS
+
j+1S

−
j+2Pj+3 − h.c) (F7)

Note that the above makes it explicit that the first com-
mutator vanishes when acting on the orbit states and is
a consequence of the first order rules being respected in
PXP. Next, consider higher order terms in the expansion
that act non-trivially on only 4 qubits. Using the nota-

tion αj = −π
2

4 (PjS
+
j+1S

−
j+2Pj+3 − PjS−j+1S

+
j+2Pj+3) one

can write the second order term as

C2 = − 1

12
([A,

∑
j

(−1)j+1αj ]−[B,
∑
j

(−1)j+1αj ]) (F8)

This expression can be recast as

− 1

12
[
∑
j

(−1)j+1hj ,
∑
k

(−1)k+1αk] (F9)

Focusing only on terms with support on 4 qubits, one
obtains the terms

− 1

12

∑
j

([hj , αj ]− [hj+1, αj ]) (F10)

Computing first [hj , αj ] one obtains that the non zero
matrix elements produce the transitions

|1111〉 → −π
3

8
|1101〉

|1101〉 → −π
3

8
|1111〉

(F11)

and all other matrix elements vanish. This implies that

[hj , αj ] =
π3

16
(−Pj+1Xj+2Pj+3 + ZjPj+1Xj+2Pj+3)

(F12)
The second term gives

[hj+1, αj ] =
π3

16
(PjXj+1Pj+2 − PjXj+1Pj+2Zj+3)

(F13)
By combining the results, one finds that the terms with
support on 4 qubits for the second order term in the BCH
expansion are

− π3

192

∑
i

(−Pj+1Xj+2Pj+3 + PjXj+1Pj+2Zj+3

−PjXj+1Pj+2 + ZjPj+1Xj+2Pj+3)

(F14)

One can complete the above calculation by also comput-
ing terms that will have support on 5 qubits which are
given by

− 1

12

∑
j

(−[hj−1, αj ] + [hj+2, αj ]) (F15)

It can be seen that first the term [hj−1, αj ] produces the
following transitions

|10101〉 → π3

8
|11011〉

|11011〉 → π3

8
|10101〉

(F16)

The other term [hj+2, αj ] yields the same transitions, but
with an added minus sign on both transition which yields
for the terms with support on 5 qubits

π3

8

1

6

∑
j

(PjS
+
j+1S

−
j+2S

+
j+3Pj+4 + h.c) (F17)
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Up to second order, one thus obtains for the BCH expan-
sion

C0 + C1 + C2 = (−π
2

+
π3

96
)
∑
j

PjXj+1Pj+2

+i
π2

8

∑
j

(−1)j+1(PjS
+
j+1S

−
j+2Pj+3 − PjS−j+1S

+
j+2Pj+3)−

π3

192

∑
j

(PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3)+

π3

48

∑
j

(PjS
+
j+1S

−
j+2S

+
j+3Pj+4 + PjS

−
j+1S

+
j+2S

−
j+3Pj+4)

(F18)

1. Classification of the BCH terms

The BCH terms obtained from the PXP model can be
classified according to which symmetries they respect.
The PXP model has three important symmetries which
are inversion symmetry about the central bound, time
reversal symmetry and a particle-hole like symmetry
due to anti-commutation with the operator P =

∏
i Zi.

The first order BCH term [A,B] yields
i
2
π2

4

∑
j(−1)j+1(PjS

+
j+1S

−
j+2Pj+3 − h.c.) which van-

ishes on the orbit subspace. This term breaks inversion
symmetry, time reversal symmetry and doesn’t anti-
commutes with P.

The second order BCH terms is composed of two
terms. The first one with support on 4 qubits takes the

form − 1
24
π3

8

∑
j(PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3).

Such a term respects all symmetries and was shown
to improve revivals23 and integrability47. The sec-
ond term with support on 5 qubits is given by
1
6
π3

8

∑
i(PjS

+
j+1S

−
j+2S

+
j+3Pj+4 + h.c.). This term also

respects all symmetries. Note that both these terms act
non-trivially on the orbit subspace.

Appendix G: Closing condition for h0,j

Provided the fact that there exist an integer n such
that Un0,j = 1 and given the decomposition of h0,j in
terms of powers of U0,j

h0,j =

n−1∑
k=0

ckU
k
0,j (G1)

it is natural to ask if the local Hamiltonian’s h0,j satisfy a
closing relation similar to the U0,j closing relation. More
precisely, does there exist an integer m such that

hm0,j =

m−1∑
k=0

αkh
k
0,j (G2)

which would restrict the total number of rules of type
II one needs to satisfy in order to obtain QMBS phe-
nomenology. First, consider the decomposition of hm0,j in

terms of powers of Uk0,j

hs0,j =
∑
k=0

c
(s)
k Uk0,j (G3)

where c
(s)
k denotes the coefficients associated with the sth

power of h0,j and h0
0,j ≡ I. It is straightforward to see

that the coefficients c
(s)
k for 1 ≤ s are given explicitly by

Ms−1~c =


c
(s)
0

c
(s)
1
...

c
(s)
n−1

 (G4)

where

M =


c0 cn−1 . . . c2 c1
c1 c0 cn−1 . . . c2
...

. . .
...

cn−1 cn−2 cn−3 . . . c0

 ~c =


c0
c1
...

cn−1

 (G5)

It is a known fact that for any matrix M of size l by l,
then one has that M l can always be written as a linear
superposition of smaller powers of the matrix M . This
has the important implication that there exist a set of
coefficients αk such that

hn0,j = Mn~c =

n−1∑
k=0

αkM
k~c =

n−1∑
k=0

αkh
k
0,j (G6)

which shows that the local Hamiltonian h0,j closes on
itself once the power n is reached.

Appendix H: Spin representation of the models

The spin representation of the model QMBS-A/B/C
and the PXP model is presented in this section using the
convention

Z |1〉 = − |1〉 Z |0〉 = |0〉
S+ |0〉 = |1〉 S− |1〉 = |0〉

(H1)

One has X = 2Sx, Y = 2Sy and Z = 2Sz where Sj are
the standard spin operators acting on a spin 1/2 particle.
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QMBS-A

Permutation
((3, 13, 11, 7, 9, 5),

(4, 14, 12, 8, 10, 6))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j+

π

12
U3

0,j −
π

12
U0

0,j + h.c

U0,j spin
representation

(S+
j S

+
j+1S

−
j+2 + S+

j S
−
j+1S

−
j+2)

+

(
(I − Zj)

2
S−
j+1S

+
j+2 + S−

j S
+
j+1

(I − Zj+2)

2

)
+(S−

j S
+
j+1

(I + Zj+2)

2
+

(I + Zj)

2
S−
j+1S

+
j+2)

+(S+
j S

+
j+1S

+
j+2 + S−

j S
−
j+1S

−
j+2)2

QMBS-B

Permuation
((1, 15), (2, 16), (3, 9, 5),

(4, 10, 6), (7, 13, 11), (8, 14, 12))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j

+
π

12
U3

0,j −
π

12
U0

0,j + h.c

h0,j spin
representation

π

4
(S+
j S

+
j+1S

+
j+2 + S−

j S
−
j+1S

−
j+2)+

i
4π

6
√

3
(S−
j S

+
j+1 + S−

j+1S
+
j+2 + S−

j+2S
+
j )

−πPj
4

+ h.c

Pj = (S+
j S

+
j+1S

+
j+2 + S−

j S
−
j+1S

−
j+2)2

QMBS-C

Permuation
((3, 5), (4, 6), (7, 15, 9),

(8, 16, 10), (11, 13), (12, 14))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0,j

decomposition

(
π

6
+ i

π

2
√

3
)U0,j + (−π

6
− i π

6
√

3
)U2

0,j+

π

12
U3

0,j −
π

12
U0

0,j + h.c

h0,j spin
representation

π

2
Pj+1Xj+1Xj+2Pj+1+

(I − Pj+1)Hext,j(I − Pj+1)− π

2
I,

Hext,j = i
4π

6
√

3
(Kj+1 + (I −Kj+1)Xj)

(Kj + (I −Kj)Xj+1Xj+2) +
π

4
I + h.c

Pj+1 = (I − Zj+1Zj+2)/2, Kj = (I + Zj)/2

PXP

Permuation ((11, 15), (12, 16))
Phase (1,1,1,1,1,1,1,1,1,1,i,i,1,1,i,i)
h0,j

decomposition
(π

4
+ iπ

4
)U0,j − π

8
U2

0,j − π
8
I+ h.c

h0,j spin
representation

−π
2
PjXj+1Pj+2, Pj = (I − Zj)/2

TABLE II. Spin representation of the models
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