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We show that localization in quasiperiodically modulated, two-dimensional systems is stable to
the presence of a finite density of ergodic grains. This contrasts with the case of randomly modu-
lated systems, where such grains seed thermalizing avalanches. These results are obtained within a
quantitatively accurate, self-consistent entanglement mean field theory which analytically describes
two level systems connected to a central ergodic grain. The theory predicts the distribution of
entanglement entropies of each two level system across eigenstates, and the late time values of dy-
namical observables. In addition to recovering the known phenomenology of avalanches, the theory
reproduces exact diagonalization data, and predicts the spatial profile of the thermalized region
when the avalanche fails.

In the presence of sufficiently strong disorder, an inter-
acting many-body quantum system may become many-
body localized (MBL) [1–15]. Local subsystems of an
MBL system do not thermalize, and instead retain mem-
ory of their initial conditions indefinitely. MBL systems
thus provide remarkable counterexamples to the ergodic
hypothesis, and are outside the scope of quantum statis-
tical mechanics [14, 16]. Instead, the phenomenology of
these systems is dictated by an extensive set of emergent
and exponentially localized conserved operators, known
as local integrals of motion or l-bits [17–22].

Even when typical regions appear strongly localized,
thermalizing avalanches seeded by rare ergodic inclusions
may destabilize MBL [23]. This instability places re-
strictions on the existence of MBL. Consider an ergodic
grain—a microscopically small spatial region which lo-
cally thermalizes. The grain can serve as a bath, thermal-
izing nearby l-bits. These thermalized l-bits are absorbed
into the bath, forming a thermal bubble. The density of
states of the thermal bubble is enhanced, increasing ex-
ponentially in the number n of l-bits absorbed. However,
the coupling strength of an l-bit to the bubble decays
exponentially in its spatial separation r from the grain.
In dimension D the separation of the nth most strongly
coupled l-bit scales as r ∼ n1/D. Which of these two
effects dominates depends on D.

InD = 1 the enhancement to the bubble and the small-
ness of the couplings are both exponential in n, leading to
a competition [23–31]. If the exponential decay constant
of the couplings is slower than a critical rate, the enhance-
ment prevails, and an avalanche occurs in which all l-bits
are absorbed into the thermal bubble. In contrast, if the
decay of the couplings is sufficiently fast, MBL is sta-
ble as the avalanche halts after absorbing finitely many
l-bits. If, in the thermodynamic limit, the number of
thermalized l-bits is large, but sub-extensive, the grain
may be regarded as having induced a failed avalanche.

In D > 1 the enhancement of the bubble always pre-
vails asymptotically [23, 32, 33]. Whether avalanches
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occur instead depends only on whether the microscopic
environment of the grain allows the avalanche to reach
this asymptotic regime. However, such effects of the mi-
croscopic environment may be overcome by larger initial
grains. For thermodynamic systems with uncorrelated
random disorder, arbitrarily large ergodic grains occur in
the system. Thus, grains large enough to seed avalanches
necessarily exist with a finite density, destabilizing the
putative MBL phase. In contrast, it is believed that if
the localizing spatial potential is highly correlated (e.g.
with quasiperiodic modulation), there may be no ergodic
grains of sufficient size to start an avalanche. That is, the
correlated potential can cause all putative avalanches to
fail at a finite size, allowing for stable MBL in D > 1.

However, a quantitative theory of how avalanches fail
is lacking. For example, it is not known how strongly
coupled to the bubble an l-bit must be to thermalize;
how to treat groups of l-bits with comparable couplings
to the bubble; or how to account for l-bits that are only
partially thermalized. Moreover, the presence of a collar
of partially thermalized l-bits blurs the bubble’s bound-
aries, making it unclear how to quantify its size [29].

In this manuscript, we develop a quantitative theory of
failed avalanches in a toy model. Specifically, we develop
an entanglement mean field theory of l-bits coupled to a
central thermalizing grain (Fig 1a). This theory captures
the enhancement of the bubble due to partially thermal-
ized l-bits. Quantitatively, it predicts the distribution of
l-bit entanglement entropies across eigenstates, and late
time values of l-bit observables in dynamical experiments.
We apply this theory to study avalanches in D = 1 and
D = 2. In D = 1, the theory exhibits quantitative agree-
ment with exact diagonalization. In D = 2, for a single
finite grain and sufficiently strong quasiperiodic modu-
lation, avalanches always fail, and the number of l-bits
in the thermal bubble is bounded. Using this bound we
establish that a finite density of regularly spaced grains
does not induce an avalanche. In contrast, for arbitrarily
strong random modulation, we find that a single grain
has a non-zero probability of inducing an avalanche.

Central grain model: We consider l-bits, here
spins-1/2, which are coupled to a central few level sys-
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tem, or grain (Fig. 1a)

H = Hg +

N∑
n=1

hnσ
z
n +

N∑
n=1

Vn (1)

where Hg is the grain Hamiltonian, hn sets the split-
ting of the nth l-bit, and the coupling operator Vn both
flips the nth spin, and acts non-trivially on the grain
[Vn, Hg] 6= 0, e.g.

Vn = Jn(σxgσ
x
n + σygσ

y
n). (2)

Here σαg acts on the grain, and the Jn are coupling con-
stants. In toy models of the localized phase, the Jn are
typically exponentially decaying in n. We assume the
grain has a density of states at maximum entropy ρg and
is ergodic. In technical terms: physical operators on the
grain satisfy the off-diagonal eigenstate thermalization
hypothesis (ETH) in the eigenbasis of Hg, see Refs. [34–
41]. For simplicity we restrict to the case where the split-
tings hn are below the bandwidth of the grain hn � |Hg|,
but above its energy level spacing hnρg � 1. Central
grain models have been previously studied, both in their
own right [42–44], and as toy models for ergodic inclu-
sions in the MBL phase [23, 25, 29, 33].

Single spin case: We begin with the simplest case,
that of N = 1, where we recap the relevant parts of
Ref. [45] in which this problem was analysed in detail.
The strength of the spin-grain coupling is characterised
by a single dimensionless quantity: the reduced coupling
g1. The reduced coupling is defined as the mean off-
diagonal matrix element of the coupling operator V1 mea-
sured in units of the level spacing

g1 := ρ [|V1,ab|], V1,ab = 〈Ea|V1|Eb〉 (3)

where [·] denotes the mean over the indices a 6= b, ρ and
|Ea〉 are respectively the density of states at maximum
entropy and eigenbasis of H, both evaluated for V1 = 0.
The reduced coupling is given in terms of macroscopic
quantities by

g1 = g1,0 :=
√

2ρgv1(h1)/π (4)

where v1(ω) is the infinite temperature spectral function
of V1 when evolved under H|V1=0 [46].

The reduced coupling determines the sensitivity of the
eigenstates to switching on V1. Specifically, let g1a denote
the L2 norm of the first order term in perturbation theory
when the eigenstate |Ea〉 is expanded about V1 = 0

g1a =

√√√√∑
b6=a

∣∣∣∣ V1,ab

Ea − Eb

∣∣∣∣2 . (5)

The norm g1a follows a distribution pg1a(g1a) which may
be exactly calculated. Typical values drawn from this
distribution are on the scale of the reduced coupling

a)a) a)

Energy
σ = ↓ :

σ = ↑ :

b) ≈ product states

≈ maximally entangled states

FIG. 1. Non ergodicity in central grain models: a) The
central grain model (1) consists of two level systems coupled to
a grain. The coupling operators Vn may vary independently.
b) For Vn = 0 the spectrum can be divide into two sectors:
σn =↑ / ↓. When Vn 6= 0 is in the intermediate regime, most
eigenstates remain close to product states of the l-bit and
grain (blue). However, a minority of the Vn = 0 eigenstates
are close to a state in the opposite sector, and consequently
form resonances when Vn is introduced (red). The relevant
scale of closeness is set by the matrix elements (purple collars).
c) In the intermediate regime the distribution of eigenstate
entanglement entropies of σn over eigenstates, pSna(S), is bi-
modal: approximate product states contribute the mode at
S = 0, and resonances contribute the mode at S = log 2. d)
The formation of resonances with σn enhances the entropy of
the grain by η(gn), where gn is the reduced coupling (3).

[g1a]typ. = cg1 (for an O(1) numerical constant c), how-
ever, the heavy power law tail

pg1a ∼ 2g1/g
2
1a (6)

implies the frequent occurrence of much larger values.
This tail is a generic and robust feature which is due to
resonances: pairs of states which are accidentally close
in energy, and so strongly hybridize upon even very weak
perturbations (Fig. 1b).

The reduced coupling dictates three distinct regimes
of eigenstate structure, which manifest in corresponding
regimes of late time dynamical behaviour. We discuss
these regimes in turn:
Strong coupling (g1 & 1): In this regime, typical

eigenstates are non-perturbatively corrected by the cou-
pling. This results in strong mixing between eigenstates,
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and the eigenstates of the combined system of spin and
grain satisfy ETH. Specifically: the entanglement en-
tropy of the spin S1a in the state |Ea〉, is close to maximal
value of log 2 for all states close to maximum entropy,
and the spin has no infinite time memory of its initial
condition, as characterised by the infinite temperature
time-averaged spin-spin correlator Czz1 = 〈σz1(t)σz1(0)〉:

[S1a] = log 2, Czz1 = 0, (strong coupling). (7a)

where here [·] denotes the average over states at maxi-
mum entropy. For brevity, we here neglect corrections
in g−1

1 , and throughout we neglect finite size corrections
which are small in 1/dg where dg := dim(Hg) is the grain
dimension.
Weak coupling (g1 � 1/dg): For weak coupling, in a

typical realization maxa g1a � 1, so that all the eigen-
states, including those in the tail of pg1a experience only
perturbative corrections from the zero coupling (V1 = 0)
limit of [Sa] = 0 and Czz1 = 1.
Intermediate coupling (1 � g1 & 1/dg): In the in-

tervening regime typical eigenstates are only pertur-
batively corrected (as for weak coupling), whereas an
O(g1) fraction of states are rare resonances, which have
g1a > 1. The resonant eigenstates are non-perturbatively
corrected, and consequently attain large spin entangle-
ment entropies S ≈ log 2. In the intermediate regime,
the distribution of eigenstate entanglement entropies is
bi-modal (Fig. 1c), with the resonances forming the dom-
inant contribution to the mean

[S1a] = 2πg1 log 2, Czz1 = 1− kg1, (int. coupling),
(7b)

where we have neglected subleading O(g2
1) corrections,

and the constant k may be calculated. We emphasise:
though resonances are identified using g1a, a quantity
that is perturbative in nature, the subsequent treatment
is non-perturbative. Consequently, (7b) remains accurate
throughout the intermediate regime, up to the crossover
to strong coupling g1 & 1. See App. A 1 for precise forms
of [S1a], Czz1 and the distribution of entanglement en-
tropies over eigenstates pS1a

(S1a) accurate for all g1, and
Ref. [45] for an explanation of these results.

Two spin case: We now consider the N = 2 case.
Suppose first, that the second spin is in the weak cou-
pling regime irrespective of the value of g1. The coupling
strength of the second spin is characterised by a reduced
coupling g2, defined analogously to g1 (3). However, as
the second spin sees an effective thermal bath compris-
ing the first spin and central grain, g2 must be defined
using the eigenbasis and density of states calculated for
the combined system of the first spin and central grain.
When g1 is in the weak coupling regime, we thus obtain

g2 = g2,0 :=
√

2ρgv2(h2)/π , (g1 weak). (8a)

in direct correspondence with (4). In contrast, if g1 is
strongly coupled, g2 is enhanced [23, 45]

g2 =
√

2 g2,0, (g1 strong). (8b)

In the intermediate regime, the reduced coupling g2 is in-
termediately enhanced. This intermediate enhancement
to [|V2,ab|] may be calculated by accounting for reso-
nances (see App. A)

g2 = g2,0eη(g1)/2, 0 ≤ η(g1) ≤ log 2 (8c)

Here η(g1) is the entropic enhancement to the central
grain due to the resonances formed upon coupling to the
first spin. This function smoothly interpolates between
the small and large limits of η(g) ∼ −8g log g and η(g) =
log 2 + O(g−4). An analytic form for η(g) is calculated
and verified in Ref. [45], quoted in App. A, and plotted
in Fig. 1d.

We briefly comment on how (8c) should be quantita-
tively understood. As before, we may characterise the
effect of coupling to the second spin by calculating pg2a ,
the distribution of g2a. Here g2a is the L2 norm of the first
order correction in perturbation theory to the eigenstate
|Ea〉 upon introducing the coupling V2, but with V1 fi-
nite. For the g1 intermediate regime, pg2a will differ from
pg1a in details, however it has an identical power-law tail
of non-perturbatively corrected states, i.e. resonances,
pg2a ∼ 2g2/g

2
2a, with g2 given by (8c) (see App. A). As

before, this tail of resonances dictates eigenstate entan-
glement entropy, and long time memory, via (7b) (with
the index changed as appropriate).

When the first and second spins are in the intermedi-
ate regime, the second spin sees an effective bath which is
enhanced as compared to the bare grain due to hybridiza-
tion with the first spin, and vice versa. As a result the
entropic enhancement must be solved self-consistently

g1 = g1,0eη(g2)/2, g2 = g2,0eη(g1)/2. (9)

This results in a pair of solutions whose reduced couplings
are enhanced over the bare seed properties g1 ≥ g1,0,
g2 ≥ g2,0. We note that the second spin sees an effective
bath which is enhanced to a greater degree than might
naively be expected by hybridization between the first
spin and grain alone g2 ≥ g2,0eη(g1,0)/2. Physically, this
additional enhancement originates with the formation of
resonances involving both spins in addition to the reso-
nances involving the grain and one or other of the spins.

Generic (N-spin) case: We now introduce a third
spin which is weakly coupled, and thus does not enhance
the effective bath. Its coupling to the grain is charac-
terised by the reduced coupling g3. Remarkably, the en-
tropic enhancement to the grain due to hybridizing with
the first and second spin takes a simple additive form (see
App. A)

g3 = g3,0e(η(g1)+η(g2))/2. (10)

This may be further generalized to a self-consistency
equation for the many-spin case

gn = gn,0 exp

(
1
2

∑
m 6=n

η(gm)

)
. (11)
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Several comments are in order. Firstly we emphasise that
the self-consistency equations constitute a mean-field-like
approximation: specifically we characterise the distribu-
tion pgn of the L2 norms gna between each spin and the
enhanced grain by a single value, gn, which characterises
the heavy tail pgn ∼ 2gn/g

2
na. Secondly, we note that

we do not assume that the effective bath (comprising the
central grain and spins with which it is entangled) sat-
isfies ETH. On the contrary, whenever spins are in the
intermediate coupling regime, the effective bath compris-
ing the central grain and spins exhibits marked deviation
from ETH. This deviation from ETH may be regarded as
an accurate accounting of the “back action” of the inter-
mediately coupled spins onto the bubble. This is shown
for the case N = 1 in Ref. [45], where the distribution of
off diagonal elements of a local operator on the grain is
shown to be highly non-Gaussian. The same result may
be obtained for N > 1 by direct generalization. Thus,
our technique goes beyond approximations standard in
the literature [23, 29], and quantifies the formation of
entanglement in non-ETH central grain systems which
are too large to be studied directly using exact diagonal-
ization.

Avalanches in 1D: The De Roeck and Huveneers
(DRH) model [23, 25] is a minimal model of the avalanche
instability of the MBL phase in D = 1. Specifically, it
corresponds to the model (1) with exponentially decay-
ing couplings between the grain and l-bits. We use the
couplings (2) with

Jn = J1α
n−1 (12)

corresponding to a grain coupled to one end of a lo-
calized chain [25]. The DRH model avalanches when
the couplings decay slower than the critical value α >
αc = 1/

√
2 and J1 not pathologically large or small.

For α < αc, the avalanche fails, and the thermal bubble
absorbs a finite number n? of l-bits. Close to the criti-
cal point this number diverges as n? ∼ |α − αc|−ν with
ν = 1 [23, 25, 29, 47].

We compare the predictions of mean-field theory (11)
with exact diagonalization (ED) data from the DRH
model. We show the theory provides a quantitatively
accurate description of failed avalanches, including their
spatial extent, and both the infinite time memory and
eigenstate entanglement entropies of the putative l-bits.

The ED results are obtained for the DRH model,
with the hn drawn uniformly from the interval hn ∈
h+ [−δh, δh] and Hg a GOE matrix. We use parameters
h = 1, δh = 0.1, J1 = 0.41, and dg = dim(Hg) = 8. The
N = 1 DRH model is numerically found to exhibit good
thermalization of the single l-bit for these parameter val-
ues, indicating that the avalanche will initiate easily, and
is not prevented by a poor choice of parameters (e.g. J1

so small that g1 � 1 or so large that it exceeds the band-
width of Hg). The bandwidth of Hg is determined by
the root-mean-square eigenvalue ([tr(H2

g )]/dg)1/2 = 1.5.
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FIG. 2. Comparison between the mean field equations (11)
and exact diagonalization (ED) in the DRH model: a) the
state and sample averaged eigenstate entanglement entropy
of the end l-bit [Send] calculated via exact diagonalization
for the DRH model is plotted (points with error bars), num-
ber of l-bits N given in legend. The solid lines show the
analytic mean field calculation. Inset: same data shown
on a log scale. ED data for N = 6, 7, 8, 9, 10 is averaged
over M = 250, 250, 250, 100, 12 realisations of the H respec-
tively b): the sample averaged distribution over eigenstates
p(Send) is shown for ED (‘+’ symbols) and mean field cal-
culation (solid) for different values of α (values of [Send]
given in legend to 2.d.p, and corresponding respectively to
α = 0.45, 0.55, 0.65). Other parameters in text.

The mean field equations are solved by iteration

gn = lim
k→∞

gn,k, gn,k+1 = gn,0 exp

(
1
2

∑
m 6=n

η(gm,k)

)
(13)

for parameters gn,0 = g1,0α
n−1. The mean and distribu-

tion of entanglement entropies are then extracted from
the gn using the forms in App. A 1, from Ref. [45]. As we
are interested in verifying the mean field equations, and
not the accuracy of our calculation of g1,0, we fit g1,0 so
that the mean field and ED results agree at α = αc.

The mean field equations quantitatively reproduce the
ED results on the localized side. In Fig. 2a we plot the
eigenstate and sample averaged entanglement entropy of
the end (i.e. n = N) l-bit [Send] as a function of the tun-
ing parameter α extracted both from ED (points) and
the mean field equations (solid curves). The mean field
and ED data both display the same key features: for
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FIG. 3. Failed avalanches in the DRH model: a) The mean
entanglement entropy [Sn] vs site index n, for small, negative
δα calculated using the mean field equations. The putative
avalanche absorbs many (n? = |δα|−1) l-bits before failing.
Parameters: δα = −0.07, N = 50, g1,0 = 1/2. b) The total
entropic enhancement of the bubble ηtot ∼ n? log 2 is shown
for different system sizes N (legend inset). For localized sys-
tems ηtot = O(N0), for thermal systems ηtot = O(N1). For
sufficiently small |δα|, and sufficiently large N , the critical
scaling ηtot ∝ |δα|−1 (black dashed) emerges, corresponding
to very large failed avalanches.

α > αc the system avalanches thermalizing all N l-bits,
yielding [Send] = log 2 up to finite size corrections. On
the localized side, the avalanche fails before reaching the
final l-bit yielding [Send] = 0, again up to finite size cor-
rections. The crossover between these two limits extends
over a range of α values of width O(N−1), sharpening to
a step at large N .

For α < αc, and for all system sizes N , the mean field
theory shows good quantitative agreement with ED. This
may be contrasted with the noticeable discrepancy found
on the thermal side for small N . Discrepancy on the
thermal side may be expected, as the two-level resonance
picture underlying the mean field equations becomes in-
accurate in this regime.

In the lower panel, Fig 2b, we compare distributions
of entanglement entropies over eigenstates: the ED data
(points) is calculated for parameters N = 10, α =
0.45, 0.55, 0.65 where [Send] = 0.10, 0.50, 0.90 (2 d.p.),
and may be compared with the mean field theory (solid
lines) corresponding to the same values of [Send] (these
correspond to slightly different values of α due to small
discrepancies between theory and numerics in Fig 2a).
We again find the mean field equations show excellent
agreement on the localized side (i.e. for [Send] = 0.1)
with visible discrepancies when [Send] is larger.

By accurately accounting for the partial entropic en-
hancement to the central grain from l-bits in the interme-

diate coupling regime, the mean field equations describe
the physics of failed avalanches. An example is shown
in Fig. 3a where the mean field equations are solved for
N = 50 and δα := α − αc = −0.07. The avalanche
thermalizes the first n? ≈ 30 l-bits, before failing. This
leaves the subsequent N − n? ≈ 20 l-bits with entan-
glement entropies which are exponentially decaying in n.
The avalanche proceeds to this extent despite the modest
scale of the initial reduced coupling g1,0 = 1/2. In gen-
eral, as the critical point αc is approached, the avalanche
fails after thermalizing a number n? = O(|δα|−1) l-bits.
This behaviour can be seen by analysing the total en-
tropic enhancement of the effective thermal bubble

ηtot =
∑
n

η(gn). (14)

Unlike [Send], ηtot provides information on the spatial
extent of a failed avalanche: on the localized side ηtot

grows proportional to the number of thermalized l-bits
ηtot ∼ n? log 2 = O(|δα|−1), whereas for avalanched sys-
tems ηtot = N log 2. This ν = 1 scaling is visible in
Fig 3b where the mean field values of ηtot are plotted for
different system sizes N .

Avalanches in 2D: We apply the mean field equa-
tions to understand failed avalanches in 2D systems, re-
vealing the marked stability of quasiperiodically modu-
lated systems in higher dimensions to avalanches.

MBL due to uncorrelated random disorder is not stable
in dimensions D > 1 as thermal grains sufficiently large
to cause avalanches always occur [23, 33]. Instead, MBL
is stable only if the localizing potential is sufficiently cor-
related that all putative avalanches deterministically fail
at small sizes, before the feedback argument would allow
them to self sustain. It is believed that this may occur
in systems with quasiperiodic (QP) modulation.

As a model for avalanches in higher dimensions we con-
sider a grain coupled to a system of free fermions on a
2D square lattice

H = Hg +H2D + c†gc~0 + c†~0cg,

H2D =
∑
NN

c†~nc~m +
∑
~n

V (θ~n)c†~nc~n,
(15)

where the hopping is nearest neighbour only, and c†g
acts on the grain, which is coupled only to the ~n = ~0
lattice site. We compare two cases in which the po-
tential is obtained by sampling the periodic function
V (θ) = V (θ + 2π) either (i) quasi-periodically, in which
case θ~n = ~q ·~n+θ0 with ~q = (q1, q2) = π(1+

√
5 , 1+

√
3 )

or (ii) randomly, in which case the θ~n are drawn inde-
pendently and uniformly from the circle θ~n ∈ [0, 2π]. For
the periodic function V (θ) we use an asymmetric trian-
gular wave of amplitude W obtained by linearly interpo-
lating between the points V (0) = W , V (2π/q1) = −W ,
V (2π) = W . This model has desirable simplicity: in the
random case the on-site potentials are uncorrelated and
follow a box distribution. In the QP case, the modula-
tion ensemble has a single parameter, θ0, and, as V (θ)
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does not have an inversion centre, the resulting lattice
does not have points of ‘almost inversion symmetry’ as
present in e.g. the Aubry-Andre model [48].

The model (15) may be brought to the central
grain form (1) by working in the diagonal basis f~n =∑

~m φ~n~mc~m of H2D

H = Hg +
∑
~n

ε~nf
†
~nf~n +

∑
~n

φ~n~0(c†gf~n + f†~ncg). (16)

The diagonal orbitals f~n are labelled with the index cor-
responding to the physical site c~n with greatest overlap.
Specifically, we maximise the quantity

∏
~n |φ~n~n| over per-

mutations of the rows of φ~m~n [49]. We extract the di-
agonal orbitals numerically, for which it is necessary to
use a finite lattice. We truncate to a finite lattice ra-
dius R around the site ~n = ~0 (i.e. we keep only sites
~n = (n1, n2) satisfying |n1|+ |n2| ≤ R), yielding a num-
ber of l-bits N = 2R2 + 2R + 1. We note that in this
model the two level systems are fermionic orbitals, dif-
fering from (1) where we considered spins, however this
detail is unimportant and both the mean field equations,
and avalanche phenomenology are unaltered.

For sufficiently strong potential strength W , for both
QP and random potentials, the avalanche may fail. To
see why, consider an avalanche which has thermalized
(n− 1)-l-bits, we thus approximate η(gm) ≈ 0 (log 2) for
m ≥ n (m < n) where we have ordered the l-bits by
coupling strength. The coupling Jn ≈ J0e−rn/ζ to the
next most strongly coupled l-bit is exponentially small
in the distance rn ∼

√
n , yielding a reduced coupling to

the nth spin of

gn ∝ Jn exp
(

1
2

∑
m 6=n

η(gm)
)
≈ J0e−

√
n /ζ+(n−1) log 2/2.

(17)
Asymptotically the quantity (17) is increasing in n, im-
plying that gn & 1 for all n sufficiently large, leading to
a self-sustaining avalanche. However, at smaller n, the
avalanche must pass through a bottleneck correspond-
ing to the minimum of (17) over n. If, at this mini-
mum, the reduced coupling to the next l-bit is not strong
minn gn � 1 then the naive avalanche argument indi-
cates the avalanche ceases at (or before) reaching this
size. This is the basic picture of avalanche failure. The
mean field analysis here refines this argument in two
ways. First, it quantitatively describes the avalanche.
Second, it includes the previously missing physics, that
sufficiently many l-bits with comparable weak coupling
gn may provide the entropic enhancement necessary for
the avalanche to continue.

In Fig. 4 we plot the l-bit entanglement entropies in
a system of radius R = 15 for two cases. In Fig. 4a
the avalanche fails and only orbitals close to the ergodic
grain thermalize. In Fig. 4b the avalanche thermalizes all
orbitals. These plots are obtained by solving the mean
field equations with bare reduced couplings correspond-
ing to (16)

gn,0 = g0|φ~n~0|, (18)

a)W > Wth (no avalanche) b)W < Wth (avalanche) [Sn ] / log2

0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Avalanches and failed avalanches in 2D: Orbitals on
a square lattice (lattice vectors at ±45◦ from vertical) within
lattice radius R = 15 of the origin are shown. An ergodic
grain is coupled at the origin. Orbital coloring denotes the
state averaged entanglement entropy [S~n] (legend on right).
In (a) the sample does not avalanche, and only orbitals close
to the ergodic grain become thermal. In (b) the avalanche
thermalizes all orbitals. Parameters: W = 45(20) left (right),
R = 15, g0 = 1, each plot corresponds to a single realization
with θ0 = 2.954 (no θ0 averaging).

where g0 characterises the properties of the central grain.
The mean field analysis exhibits a striking difference

between QP and random potentials that has been fre-
quently conjectured: for QP modulation the poten-
tial can be sufficiently strong that the system never
avalanches. We see this in Figs. 5a, 5b where the en-
semble averaged (i.e. average over θ0 for QP and θ~n for
random) total entropic enhancement ηtot (14), calculated
for bare reduced couplings (18) for g0 = 1. The enhance-
ment satisfies the asymptotic equality

[ηtot]θ ∼ Nfaval. log 2, (19)

where faval. is the fraction of samples in the QP/random
ensemble which avalanche. For QP potentials (Fig. 5a)
there are three regimes. At the smallest W , we find
[ηtot]θ = N log 2, indicating that the system avalanches
for all realizations of the potential, i.e. faval. = 1. At
stronger modulation there is a regime where [ηtot]θ =
O(N) < N log 2, indicating the system avalanches for a
finite fraction of realizations 0 < faval. < 1. Finally, at
disorders above a finite (g0 dependent) threshold value
W > Wth. ≈ 45, we find [ηtot]θ = O(N0) indicating that
the system does not avalanche for any realizations [50].
These three regimes faval. = 1, 0 < faval. < 1 and
faval. = 0 are demarcated in Fig. 5 by the vertical dashed
grey lines. In contrast, for random potentials (Fig. 5b),
we find the data consistent with avalanching at all disor-
der strengths (i.e. faval. > 0) for a fraction faval. which
is monotonically decreasing in W (indeed, for all W , L
analysed, we encountered avalanching samples). Indeed,
simple arguments tell us this must be the case: uncorre-
lated random disorder always yields a finite probability of
the disorder being uncharacteristically low in the vicinity
of the grain, allowing the avalanche to reach the asymp-
totic regime where it may self sustain. This contrasts
with the QP case, where varying the ensemble realiza-
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a) QP

f av.=1 0< f aval<1 f aval=0

lattice radius R (number of sites N)
10 (221)

12 (313)

15 (481)

18 (685)

22 (1013)

27 (1513)

33 (2245)

41 (3445)

50 (5101)

101

102

103

104
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to
t]
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g
2

b) random

0< f aval<1
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d) QP, avalanches (W = 35)
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FIG. 5. Avalanches in QP and random 2D systems: Up-
per panels: the ensemble averaged total enhancement to
the bubble entropy [ηtot]θ is plotted as a function of the
potential strength W for systems of different lattice radius
(legend inset; number in brackets is N , the total number
of sites) for (a) quasiperiodic and (b) iid random disorder.
For the data for radius R = 10, 12, 15, 18, 22, 27, 33, 41, 50
we average over M hamiltonian realizations with M/103 =
27, 26, 15, 10, 20, 40, 10, 5, 3 respectively. Lower panels: For
the quasiperiodic case ηtot may be resolved as a function of
θ0. For strong QP disorder (c) ηtot is continuous and con-
verges in the limit of large N . For weaker QP disorder (d)
the system avalanches for some values of θ0, for which ηtot
scales as N , and does not avalanche for other values. Regions
of avalanching/non-avalanching are demarcated by the grey
dashed lines. Fixed parameters: g0 = 1.

tion, i.e. θ0 (or equivalently the site to which the grain
is coupled) does not lead to significant variation in the

apparent potential strength.
In Figs. 5c, 5d we resolve ηtot as a function of θ0 for

W < Wth and W > Wth respectively. Fig. 5c shows
that for W > Wth., for all system sizes, and for all θ0

the avalanche fails. Specifically, we find ηtot converges in
the limit of N →∞ where the failed avalanche becomes
insensitive to the system’s boundary. The form of ηtot is
continuous, though not smooth, at points the variation
is so rapid that finite sampling leads to apparent discon-
tinuities. In contrast, for W < Wth., shown in Fig. 5d,
different values of θ0 lead to different behaviours. For cer-
tain ranges of θ0 (corresponding approximately to regions
of smaller ηtot in Fig. 5c) the system does not avalanche
and ηtot = O(N0). For other ranges, the avalanche ther-
malizes the entire system, and ηtot = N log 2.

Fig. 5d further highlights a distinction between
avalanches in D = 1 and D > 1. In QP systems, in
D > 1, avalanches cannot fail at arbitrarily large sizes.
Specifically, for the parameters shown, we see that either
avalanches succeed, yielding ηtot = N log 2, or fail, yield-
ing shown ηtot . 14 log 2, with no possibility of failure
at intermediate values. This observation justifies (19).
We contrast this with the D = 1 case (Fig. 3) where
the avalanche may fail at an arbitrarily large size in the
vicinity of the critical point [29].

Stability of QP-MBL to avalanches in 2D: In
this section, we consider the effect of a finite density of
thermal grains, and argue that this picture implies the
stability of localization in both models with and without
the presence of many-body interactions.

Consider introducing a finite density of grains into the
QP system (15). Each grain has a slightly different lo-
cal environment, parameterized by θ0. The failure of
avalanches for all θ0 in Fig. 5c suggests that this density
of grains may not destabilize localization if the density
is sufficiently small. Precisely, localization is stable pro-
vided (i) each grain does not exceed a bounded initial
size, and (ii) each grain is sufficiently far from the others
that the thermal bubbles do not merge—both conditions
are natural for a quasiperiodic model.

The mean field theory allows us to construct a con-
servative, but quantitative, estimate for the necessary
spacing between grains. Specifically, we calculate the
radius R beyond which all l-bits experience only pertur-
bative corrections, in all eigenstates, due to the failed
avalanche. If all grains are separated by at least 2R,
the collars of non-perturbative influence do not over-
lap, and the failure of each avalanche is described by
the mean field theory (11). Consider a failed avalanche
in which the total entropic enhancement of the grain is
ηtot. The thermal bubble has a dimension d = dgeηtot ,
and the reduced coupling of the ~nth l-bit to the bubble
is g~n = g~n,0eηtot/2. The nth l-bit is resonant in O(g~nd)
states, and only perturbatively corrected in others. Thus,
in the weak coupling regime g~n � 1/d, the ~nth l-bit is
perturbatively corrected in all eigenstates for a typical
disorder realization. By extension, the total number of
resonances involving any l-bits outside the radius R is
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O(
∑
~n:R<|~n| g~nd). Hence, within a typical disorder real-

ization [51], all such l-bits experience only perturbative
corrections in all eigenstates if∑

~n:R<|~n|

g~n � 1/d. (20)

Eq. (20) may be used to define R. As g~n is exponentially
small in |~n|, solutions are generic.

In the model (15), we have considered the effect of in-
teractions only within the ergodic grains. In contrast,
generic models of MBL have interactions everywhere.
Nevertheless, at strong modulation, the effect of inter-
actions is typically perturbative. If one identifies spa-
tial regions where the effects of interactions are non-
perturbative with the ergodic grains, then (15) provides
a toy model for their influence on surrounding l-bits. We
then expect that avalanches do not destabilize generic
QP-MBL.

However, we note that the toy model does not ac-
count for two features numerically observed in generic
MBL. Consider first the “Hartree shifts” to the ener-
gies of the orbital configurations, e.g. terms of the form
f†~nf~nf

†
~mf~m. These shifts result in small changes to the

decoupled many-body energies, and thus de-tune cer-
tain resonances, whilst bringing other pairs of states into
resonance. Overall, the statistics of resonances across
eigenstates (in particular the reduced coupling gn) is
unchanged. Second, the toy model (15) neglects cou-
plings that act on the grain and multiple orbitals si-
multaneously, e.g. c†gf

†
~nf~mf~p. A particular class cou-

ple specific pairs of distinct orbital configurations, e.g.
(|Ea〉〈Eb| + h.c). For rare pairs, such terms are unchar-
acteristically large, corresponding to when |Ea〉, |Eb〉 are
many-body resonances in the lattice basis [31, 52–54].
Nevertheless, we expect multi-orbital terms which in-
volve rearrangements in a large radius are sufficiently
suppressed so that only the collar region of the failed
avalanche is quantitatively modified.

Discussion: We have developed a self-consistent en-
tanglement mean-field theory of central grain models. In
this theory, the coupling between l-bits and the cen-
tral grain leads to many-body resonances between the
eigenstates as calculated for zero coupling. We quan-
tify these resonances in terms of the reduced couplings
gn (6). The reduced coupling parameterizes the distribu-
tion of hybridization strengths (5), closely related quan-
tities are studied in Refs [26, 29, 55–57]. At small gn,
the reduced coupling is equal to the fraction of eigen-
states in which the nth l-bit is resonant (i.e. non-
perturbatively hybridized) [45]. We describe how gn may
be self-consistently calculated, and used to determine the
infinite time properties of the system: namely, the dis-
tribution of eigenstate entanglement entropies, and the
infinite time memory of observables.

The mean-field theory describes l-bit properties in
eigenstates at maximum entropy in a central grain model.
We leave to future work the extension of this theory to

different geometries; finite temperature effects; systems
in which the l-bits have more than two levels; and to
include multi-l-bit couplings.

The mean-field theory quantitatively captures how the
process of resonance formation may run away leading to
an avalanche, or conversely how the avalanche may fail,
resulting in l-bits which are partially thermalized, having
a bi-modal distribution of entanglement entropies across
eigenstates (see Fig. 1c and Fig. 2). Beyond the central
spin geometry, several recent works have explored the
role of many-body resonances in many-body delocaliza-
tion [31, 52–54, 58–60].

Correlations in a localizing potential can alter the dy-
namical properties of a system [61–67]. In particular,
while sufficiently small higher dimensional systems may
appear many-body localized [68–75], it is argued that for
random potentials avalanches destabilize MBL [23]. In
contrast, MBL due to quasiperiodic potentials has long
been of interest [76–84], due to the conjecture that QP-
MBL may not suffer from the avalanche stability, alter-
ing the universality class of the 1D MBL-thermal transi-
tion [85], and stabilizing the phase in 2D.

We provide analytic evidence that a grain in a two-
dimensional random potential has a finite probability of
inducing an avalanche at any modulation strength, unlike
in the QP case, where for a sufficiently strong potential,
the system never avalanches. On this basis, we argue for
the stability of QP-MBL to avalanches in 2D. However,
we note that the stability of MBL has recently been a
subject of active debate [30, 31, 53, 54, 57, 86–89].

A further conceptual insight provided by mean field
theory is that a weak coupling to sufficiently many l-
bits, as opposed to a sufficiently strong coupling to a
single l-bit, can sustain an avalanche. This is illustrated
most simply in the central grain model with symmetric
couplings gn,0 = g0, corresponding closely to the models
of Refs. [42–44, 90]. In this case the mean field equations
are correspondingly symmetric, with gn = g given by

g = g0eNη(g)/2. (21)

By straightforward analysis of (21) (using the asymptotic
relation η(g) ∼ −8g log g), the enhancement entropy is
non-extensive, ηtot = Nη(g) ∼ N0, and hence the system
is localized, only for

g0 < gc ∼ (4N logN)−1. (22)

We note this critical value agrees with the breakdown
of localization predicted by Ref. [91] (though the mean
field theory does not produce the non-ergodic delocal-
ized phase reported between gc ∝ (N logN)−1 and g′c ∝
N−1 [42, 91]). Thus, for arbitrarily weak couplings cou-
pling g0, one can always increase N to violate (22) and
thermalize all l-bits.

Acknowledgements: We are grateful to C.R. Lau-
mann and A. Polkovnikov for useful discussions, and to
S. Garratt, D. Huse and V. Oganesyan for useful com-
ments. P.C. is supported by the NSF STC “Center for In-
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Computing Cluster, administered by Boston Universi-
tyâĂŹs Research Computing Services.

Note added: During preparation of this manuscript,
we became aware of Refs. [92] and [93]. Ref. [92] argues

for the stability of 2D QP-MBL phase against avalanches
from a complementary perspective, reaching conclusions
in agreement with this manuscript. Ref. [93] argues for
the stability of 2D QP-MBL even in the presence of in-
finite ergodic regions, a claim which is inconsistent with
our results.
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Appendix A: Enhancement to the bath due to
intermediately coupled spins

In this section, we recap and extend the calculation of
Ref. [45]. We derive the entropic enhancement to the er-
godic grain due to multiple intermediately coupled spins.
For simplicity we assume Hg to be a GOE matrix, how-
ever the results are readily generalizable to the case of
an ETH satisfying system (see Ref. [45]). The results are
obtained using an ansatz for the many body eigenstates
which accounts for the effect of resonances. The main
results of this appendix are:

1. For an N = 2 spin central grain model, where g1,0

and g2,0 are in the intermediate and weak coupling
regimes respectively, the reduced coupling of the
second spin is given by

g2 = g2,0 exp
(

1
2η(g1)

)
(A1)

where g1 = g1,0, and the entropic enhancement η(g)
is given by (A27).

2. For the general case of N intermediately coupled
spins, and a single (N + 1)th spin in the weak cou-
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pling regime, the reduced coupling of the weakly
coupled spin is enhanced by an additive entropic
term

gN+1 = gN+1,0 exp

(
1
2

N∑
n=1

η(gn)

)
. (A2)

where, as before, η(g) is given by (A27).

The form of η(g) derived in this appendix (A27) is used in
numerical calculations throughout this manuscript, and
plotted in Fig 1.

1. Single spin

We begin by recapitulating the properties of the many
body eigenstates in the N = 1 case, studied in detail in
Ref. [45].

When spin is in the intermediate coupling regime, the
infinite time properties (i.e. distribution of entanglement
entropies and time averaged autocorrelators) of the spin
are determined by the distribution of the quantity g1a—
the norm of the first corrections in perturbation theory
as V1 is introduced (5). As in the main text, we de-
note the distribution of this quantity with pg1a(g) so that
the ensemble averaged fraction of the g1a in the interval
[g, g+ dg] is given by pg1a(g)dg. For the GOE grain con-
sidered here pg1a(g) may be calculated

pg1a(g) = p̃(g/g1)/g1

p̃(x) =
2

x2
exp

(
− π3

4x2

)(
1 +

c1
x

+
c2
x2

+O
(
x−3

))
(A3)

where c1 = 5.3 . . ., c2 = 11.2 . . .. However, the main
features are more general: (i) a rapid decay for g . g1

(ii) a unimodal peak around the typical value g ≈ g1 and
(iii) a power law tail at large g given asymptotically by

pg1a(g) ∼ 2g1/g
2. (A4)

Here g1 is defined (as in (3)) by

g1 = ρ[|V1,ab|]. (A5)

where ρ is the many body density of states at maximum
entropy, and V1,ab are the matrix elements of V1 between
the eigenstates |Ea〉 of H evaluated for V1 = 0, and the
square brackets [·] denotes averaging over a 6= b. Each of
these eigenstates is a product state of the first spin and
grain

|Ea〉 = |εα〉|σ〉 (A6)

for a = (α, σ), σ ∈ {↑, ↓}, and |εα〉 an eigenstate of the
grain Hg.

Consider following the eigenstates as the coupling V1

tuned from zero to its finite value. As the spin is in
the intermediate coupling regime, typically eigenstates

are only perturbatively altered. However, a minority of
states |Ea〉 are accidentally close to states from the op-
posite spin sector, and have correspondingly large values
g1a & 1. These states strongly hybridize, forming reso-
nances (depicted in Fig. 1b). Typically, such resonances
involve only a pair of states: the state |Ea〉, and some
other nearby state |Ec〉. We may thus approximate g1a

g1a =

√√√√∑
b6=a

∣∣∣∣ V1,ab

Ea − Eb

∣∣∣∣2 ≈ ∣∣∣∣ V1,ac

Ea − Ec

∣∣∣∣ (A7)

where c is obtained by minimising the denominator |Ea−
Eb|.

An ansatz for the eigenstates is obtained by diagonal-
izing within these two-level resonance sub-spaces. The
effective two-level Hamiltonian is given by

Heff =

(
Ea V1,ac

V1,ac Ec

)
≈ ∆ac

(
1 g1a

g1a 0

)
+ Ec (A8)

where ∆ac = Ea −Ec and we have used (A7) that g1a ≈
|V1,ac/∆ac|. Explicit diagonalization of (A8) yields the
new eigenvectors

|E′a〉 =
√
Qa |Ea〉+

√
Pa |Ec〉

|E′c〉 =
√
Pa |Ea〉 −

√
Qa |Ec〉

(A9)

where Pa = P (g1a), Qa = Q(g1a) are given by

P (g) := 1−Q(g) :=
1

2

(
1− 1√

1 + 4g2

)
. (A10)

Infinite time observables

This eigenstate ansatz (A9) can be used to calculate
the distribution of eigenstate entanglement entropies and
infinite time memory of the spin, and agrees with numer-
ics [45].

Specifically, we have that the entanglement entropy
Sna of the (n = 1)th spin the ath state is given by
Sna = S(gna) with

S(g) = −P (g) logP (g)−Q(g) logQ(g) (A11)

and thus follows a distribution

pSna
(Sn) =

∫
dgδ(Sn − S(g))pgna

(g) (A12)

with mean value

[S] =

∫
dgS(g)pgna

(g). (A13)

By similar arguments the infinite time correlator is given
by

Czzn =

∫
dgpgna

(g)(P (g)−Q(g))2. (A14)



12

In the intermediate regime it is sufficient to write

pgna
(g) = gn/g

2 +O(g2
n/g

3) (A15)

to obtain the limits given in the main text (7b) (details
in Ref. [45]).

2. Two spins

We next consider introducing a second spin. Again,
this case was considered in Ref. [45], and we here recap
the calculation. The ‘effective bath’ seen by the second
spin is composed of the first spin and grain. As a result,
the reduced coupling is enhanced from its bare (V1 = 0)
value

g2 = g2,0 exp
(

1
2η(g1)

)
(A16)

in this section we calculate η(g).
We begin by considering pg2a(g), the distribution of g2a

the norm of the first order term in perturbation theory
when the eigenstate |Ea〉 is expanded about V2 = 0, but
for V1 finite. This distribution has the same qualitative
features as pg1a(g): (i) a rapid decay for g . g2 (ii) a
unimodal peak around the typical value g ≈ g2 and (iii)
a power law tail at large g given asymptotically by

pg2a(g) ∼ 2g2/g
2 (A17)

where

g2 = ρ[|V ′2,ab|]. (A18)

where V ′2,ab are the matrix elements of V2 between the
eigenstates |E′a〉 of H evaluated for V2 = 0 but V1 finite.
Each of these eigenstates is a product state of the second
spin and grain, but in general is an entangled state of
the first spin and grain (A9). From (A16) and (A18) it
follows that

η(g1) = 2 log

(
[|V ′2,ab|]
[|V2,ab|]

)
(A19)

where V2,ab are the matrix elements of V2 between the
eigenstates |Ea〉 of H evaluated for V2 = 0 and V1 = 0.
In the remainder of this section, we evaluate (A19).

Each many body eigenstate may be identified with a
sector of the first spin by following the state adiabatically
as we tune V1 → 0, and measuring the state of the first
spin. Using this labelling scheme, we see that there are
two qualitatively different families of matrix elements:
V ′2,ab is even if |E′a〉 and |E′b〉 correspond to the same
sector, and odd otherwise. Half of the matrix elements
are even, and half odd, so that

[|V ′2,ab|] =
1

2

(
[|V (e)′

2,ab|] + [|V (o)′
2,ab |]

)
. (A20)

where [|V (e)′
2,ab|], [|V (o)′

2,ab |] are the averaged taken over the
odd/even sectors only. We evaluate each of these contri-
butions in turn.

We first evaluate the even sector. We consider two
generic states

|E′a〉 =
√
Qa |Ea〉+

√
Pa |Ec〉

=
√
Qa |εα〉| ↑1〉+

√
Pa |εβ〉| ↓1〉 (A21a)

|E′b〉 =
√
Qb |Eb〉+

√
Pb |Ed〉

=
√
Qb |εγ〉| ↑1〉+

√
Pb |εδ〉| ↓1〉 (A21b)

where in each case in the second line we have denoted the
state of the first spin σ1 explicitly, following (A6). As V2

does not act on the first spin (i.e. [V2, σ
α
1 ] = 0), the

corresponding matrix element contains only two terms

V
(e)′
2,ab =

√
QaQb V

(e)
2,ab +

√
PaPb V

(e)
2,cd

(A22)

where V (e)
2,ab are the even matrix elements of V2 calcu-

lated in the basis |Ea〉, the eigenbasis calculated for both
V2 = 0 and V1 = 0. Note that by this definition the odd
elements are zero V (o)

2,ab = 0.
As the Pa = P (g1a) describe resonances induced by

V1, they are uncorrelated with the matrix elements V2,ab.
Moreover, as the bare grain is ergodic, the matrix ele-
ments V2,ab, V2,cd are iid Gaussian distributed. For iid
Gaussian distributed random variables x, x′ with zero
mean [x] = [x′] = 0, it follows have that [|ax + bx′|] =√
a2 + b2 [|x|]. Using this, we obtain

[|V (e)′
2,ab|] = [|V (e)

2,ab|][
√
PaPb +QaQb ]

= 2[|V2,ab|][
√
PaPb +QaQb ].

(A23)

where in the second line we have used that [|V2,ab|] =
1
2 ([|V (e)

2,ab|] + [|V (o)
2,ab|]) = 1

2 [|V (e)
2,ab|]. Furthermore, Pa and

Pb are uncorrelated, so we obtain

[|V (e)′
2,ab|] = 2[|V2,ab|]

∫∫
dgdg′pg1a(g)pg1a(g′)K(e)(g, g′)

K(e)(g, g′) =
√
P (g)P (g′) +Q(g)Q(g′)

(A24)
Repeating the same series of arguments for the odd terms
we obtain

[|V (o)′
2,ab |] = 2[|V2,ab|]

∫∫
dgdg′pg1a(g)pg1a(g′)K(o)(g, g′)

K(o)(g, g′) =
√
P (g)Q(g′) +Q(g)P (g′)

(A25)
By substituting (A24) and (A25) into (A20) we have

[|V ′2,ab|] = [|V2,ab|]
∫∫

dgdg′pg1a(g)pg1a(g′)K(g, g′)

K(g, g′) = K(e)(g, g′) +K(o)(g, g′)
(A26)

Substituting (A26) into (A27) we obtain the entropic en-
hancement to the effective bath due to hybridization be-
tween the grain and first spin

η(g) = 2 log

(∫∫
dgdg′pg1a(g)pg1a(g′)K(g, g′)

)
.

(A27)



13

where the right-hand side depends on g1 via its appear-
ance in pg1a (A3).

3. Three spins

We next consider introducing a third spin. To calculate
g3 we require a model for the eigenstates of the central
grain model for finite V1 and finite V2. We generalize the
ansatz (A9) to the two spin case

|E′′a 〉 =
√
QaQ′a |Ea〉+

√
PaQ′a |Eb〉

+
√
QaP ′a |Ec〉+

√
PaP ′a |Ed〉

(A28)

where Pa = 1−Qa = P (g1a) and P ′a = 1−Q′a = P (g2a)
σn ∈ {↑, ↓} and we use a bar notation to denote spin flips
so that ↑̄ =↓, ↓̄ =↑, and the |Ea〉, · · · , |Ed〉 are eigenstates
in the limit V1, V2 → 0, i.e. product states of the two
spins

|Ea〉 = |εα〉|σ1〉|σ2〉, |Eb〉 = |εβ〉|σ̄1〉|σ2〉,
|Ec〉 = |εγ〉|σ1〉|σ̄2〉, |Ed〉 = |εδ〉|σ̄1〉|σ̄2〉.

(A29)

The calculation of [|V ′′3,ab|] then proceeds in direct gen-
eralization of the previous section. However, now there
are more ‘species’ of matrix element. Consider adiabat-
ically following the eigenstates as we take the limit of
g1, g2 → 0: the state (A28) tends to the (σ1, σ2) sector of
the two spins. As before, we use a convention in which

we associate the state (A28) with the (σ1, σ2) sector even
for finite V1, V2. Consequently, there are four species of
matrix element V ′′3,ab depending on whether σ1, σ2, both
or neither must changed to relate the states |E′′a 〉 and
|E′′b 〉, which we refer to as the (odd,even), (even,odd),
(odd,odd) and (even,even) sectors respectively.

The mean matrix element is obtained by averaging
across these sectors

[|V ′′3,ab|] =
1

4

(
[|V (e,e)′′

3,ab |] + [|V (e,o)′′
3,ab |]

+[|V (o,e)′′
3,ab |] + [|V (o,o)′′

3,ab |]
)
.

(A30)

These are calculated following the same prescription of
the previous section. In the (even,even) case we con-
sider the matrix element between two states, e.g. |E′′a 〉
from (A28) and

|E′′e 〉 =
√
QaQ′a |Ee〉+

√
PaQ′a |Ef 〉

+
√
QaP ′a |Eg〉+

√
PaP ′a |Eh〉

(A31)

where similarly

|Ee〉 = |εε〉|σ1〉|σ2〉, |Ef 〉 = |εζ〉|σ̄1〉|σ2〉,
|Eg〉 = |εη〉|σ1〉|σ̄2〉, |Eh〉 = |εθ〉|σ̄1〉|σ̄2〉.

(A32)

Computing the matrix element directly, we use that V3

does not alter the state of the first or second spin, and
obtain

V
(e,e)′′
3,ae =

√
QaQ′aQeQ

′
e 〈Ea|V3|Ee〉+

√
PaQ′aPeQ

′
e 〈Eb|V3|Ef 〉+

√
QaP ′aQeP

′
e 〈Ec|V3|Eg〉+

√
PaP ′aPeP

′
e 〈Ed|V3|Eh〉

(A33)
with a mean size

[|V (e,e)′′
3,ae |] = [|V (e,e)

3,ae |][
√
PaP ′aPeP

′
e +QaP ′aQeP

′
e + PaQ′aPeQ

′
e +QaQ′aQeQ

′
e ]

= [|V (e,e)
3,ae |][

√
PaP ′a +QaQ′a

√
PeP ′e +QeQ′e ]

= 4[|V3,ae|][
√
PaP ′a +QaQ′a ][

√
PeP ′e +QeQ′e ]

= 4[|V3,ae|]
(∫∫

dgdg′ pg1a(g)pg1a(g′)K(e)(g, g′)

)(∫∫
dgdg′ pg2a(g)pg2a(g′)K(e)(g, g′)

)
(A34)

Repeating this calculation for the other sectors we obtain

[|V (s,s′)′′
3,ae |] = 4[|V3,ae|]

(∫∫
dgdg′ pg1a(g)pg1a(g′)K(s)(g, g′)

)(∫∫
dgdg′ pg2a(g)pg2a(g′)K(s′)(g, g′)

)
(A35)

for s, s′ ∈ {o, e} and hence, using (A30).

[|V ′′3,ae|] = [|V3,ae|]
(∫∫

dgdg′ pg1a(g)pg1a(g′)K(g, g′)

)(∫∫
dgdg′ pg2a(g)pg2a(g′)K(g, g′)

)
(A36)

With this result, we determine that the enhancement is given by a sum of the enhancements due to the two spins.

log

(
g3

g3,0

)
= log

(
[|V ′′3,ab|]
[|V3,ab|]

)
= 1

2 (η(g1) + η(g2)) .

(A37)
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4. N spins

The many spin case is found by direct generalization of
the previous section. Here we simply state the eigenstate
ansatz, and the result.

The ansatz for an eigenstate associated to the sector
~σ = (σ1, σ2 · · ·σN ) is given by

|E(n)
a 〉 =

∑
~τ

C~σ,~τ |εα,~τ 〉|τ1〉|τ2〉 · · · |τN 〉 (A38)

where

C~σ,~τ =
∏
n

cσn,τn (A39a)

cσn,τn =

{√
P (gna) if σn = τn√
Q(gna) if σn 6= τn

(A39b)

and |εα,~τ 〉 are a set of distinct eigenvectors of the grain.
The form (A38) can be seen to reduce to the forms (A21a)
and (A28) in the casesN = 1 andN = 2. By generalizing
the above calculation, we obtain

log

(
gN+1

gN+1,0

)
=

1

2

N∑
n=1

η(gn) (A40)

as desired.


	Mean field theory of failed thermalizing avalanches
	Abstract
	References
	Enhancement to the bath due to intermediately coupled spins
	Single spin
	Infinite time observables

	Two spins
	Three spins
	N spins



