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The low energy spectrum of a zigzag graphene ribbon contains two gapless bands with highly
non-linear dispersion, ε(k) = ±|π − k|W , where W is the width of the ribbon. The corresponding
states are located at the two opposite zigzag edges. Their presence reflects the fact that the clean
ribbon is a quasi one dimensional system naturally fine-tuned to the topological multicritical point.
This quantum critical point separates a topologically trivial phase from the topological one with the
index W . Here we investigate the influence of the (chiral) symmetry-preserving disorder on such a
multicritical point. We show that the system harbors delocalized states with the localization length
diverging at zero energy in a manner consistent with the W = 1 critical point. The same is true
regarding the density of states (DOS), which exhibits the universal Dyson singularity, despite the
clean DOS being substantially dependent on W . On the other hand, the zero-energy localization
length critical exponent, associated with the lattice staggering, is not universal and depends on the
topological index W .

I. INTRODUCTION

Disorder is generically relevant in low-dimensional sys-
tems, leading to localization and a lack of transport even
for arbitrarily weak disorder. In two dimensions, disor-
der is marginally relevant, and perturbations such as the
addition of spin-orbit coupling allow for the possibility of
a metal-insulator transition at a finite disorder strength
[1–4]. In one dimension, however, the scaling theory of
localization predicts that disorder is relevant[5, 6], and
localization is always expected in the presence of disor-
der.

If the conditions are just right, it is possible to ob-
serve a critically delocalized state in quasi-1D, similar to
the state at a 2D metal-insulator transition. This state
is present precisely at the transition between topologi-
cally distinct phases. The simplest example of this phe-
nomenon is the 1D chain with random nearest neighbor
hopping, first studied by Dyson [7]. In the absence of
disorder, if the nearest neighbor hoppings are staggered
uniformly, say due to Peierls instability, the system is in
an insulating phase with a winding number (topological
invariant) either 0 or 1 [8, 9]. When all the hoppings
are identical, there is a linearly dispersing gapless mode
near zero energy and the system is at the critical point
between two topologically distinct phases. This critical
point survives in the presence of hopping disorder, pro-
vided that all bonds are identical on average: even in the
presence of disorder, there must be a critically delocal-
ized state at zero energy at the boundary between phases
with different average band structure topology.

The mechanism for the formation of the delocalized
state is deeply rooted in topology [10]. Adding disor-
der creates domains between the topologically distinct
phases, with low-energy bound states localized on these
domain walls. The interactions of the low-energy bound
states is what gives rise to the critical state at zero en-
ergy, which is known to have multifractal characteristics
[11–13]. This mechanism also leads to critical zero-energy

states in 1D Dirac Hamiltonians with random mass, and
in random XY spin chains [11, 14, 15].

While the localization length of the state at zero en-
ergy is formally infinite, it is not a perfectly conducting
delocalized state, but one with a broad transport dis-
tribution that is dominated by rare-region effects. The
associated transport statistics at zero energy have tradi-
tionally been studied using the Fokker-Planck approach,
which describes the evolution of the probability distribu-
tions of transport with the length [16–19]. For Hamilto-
nians in symmetry class BDI (AIII), which describes the
1D chain with random nearest neighbor hopping when
time-reversal symmetry is present (absent), this approach
predicts that at zero energy, in 1D systems with an odd
number of channels, the average conductance does not
decay exponentially, but instead falls off as a power of
the system size [20, 21].

In addition to BDI and AIII, the 10-fold classification
scheme for topological insulators and superconductors
[22–25] identifies several other symmetry classes that ad-
mit multiple topologically distinct phases in 1D. These
classes admit gapped phases with an integer (BDI, AIII,
and CII) or Z2 (D and DIII) valued topological invariant
in 1D, and thus also contain Hamiltonians describing the
critical point separating these. All of them correspond-
ingly harbor a disordered critical point at zero energy,
whose transport can be studied using the Fokker-Plank
approach [26]. This predicts a power-law in system size
average conductance at zero energy in classes BDI, AIII,
and CII for an odd number of channels, and in classes D
and DIII for any number of channels [27].

In reality, for all of these symmetry classes accessing
the true critical point requires fine-tuning [10, 28], and
in general, it is possible to add symmetry allowed terms
that move the system away from criticality [29]. Inter-
estingly, however, sufficiently close to the critical point
the transport statistics are found to be universal across
all symmetry classes in 1D [28].

The present work focuses on zigzag graphene ribbons
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with nearest neighbor hopping. Although these belong
to the same symmetry class (BDI) as armchair ribbons
and the random hopping chain, in the clean limit they
have very different properties near zero energy [30, 31]:
they have a higher-order band crossing at zero energy,

with a dispersion of the form |π − k|W for momenta k
close to π (the band crossing point), where W is the
width of the ribbon. Therefore the lowest energy sub-
band gets increasingly flat as the width, W , increases.
This reflects the fact (see section II B) that a clean zigzag
ribbon is at a multicritical point, i.e. it is at the transition
point between topological phases whose winding numbers
differs by W . Our goal is to study the fate of this multi-
critical point in the presence of hopping disorder.

Because of the higher-order band crossing, transport
strictly at zero energy is not accessible, since the veloc-
ity of 0-energy particles incident from a clean lead is 0.
Instead, we focus on the system’s behavior as the energy
ε→ 0. For typical disordered critical points, this exhibits
many features indicative of the nature of the underlying
criticality. The density of states has a characteristic di-
vergence, of the form 1/(

∣∣ε ln3(ε)
∣∣) [7, 26, 32]. The typical

localization length diverges logarithmically with energy
[15, 33–37]. Rare-region effects play an increasing role
closer to the critical point [13], and the average prop-
erties start to differ dramatically from the typical ones.
For instance, the average localization length diverges as
ln2(ε) [11]. We will show that these divergences also
describe the low-energy regime of the disordered multi-
critical point relevant to zig-zag graphene ribbons.

The traditional Fokker-Planck approach cannot de-
scribe these divergences, as away from zero energy it
ceases to capture the transport statistics of disordered
critical points. To access this regime, the 1-parameter
scaling inherent to the Fokker-Plank equation must be re-
placed by a 2-parameter scaling, describing the crossover
of transport statistics from the critical point at zero en-
ergy (described by the Fokker-Plank equation for class
BDI) to that at high energies (described by a Fokker-
Plank equation for class AI)[38, 39]. This scaling leads
to a universal form of the transport distribution, which
captures the low-energy regime in both the 1D chain with
hopping disorder, and in metallic arm-chair graphene rib-
bons [39], which in the clean limit also have a linearly
dispersing band crossing at zero energy associated with
a critical point separating topologically distinct phases.
Here, we give evidence that the same 2-parameter scal-
ing, and underlying distribution, describe transport at
low energies in the zig-zag case.

An alternative perspective on the higher-order disper-
sion in zig-zag graphene ribbons stems from the fact that
two-dimensional graphene is an example of a topological
semi-metal: the large number of very low energy states
of the zigzag graphene nanoribbon, which are localized
near its edges, are a manifestation of the boundary flat
band in the 2D topological semi-metal. The fate of the
boundary modes in the presence of disorder is also inves-
tigated. These are found to be stable and remain close to

zero energy when hopping disorder is added, indicating
that this feature of the topological semi-metal is robust
to disorder.

There are several works which have studied the effects
on disorder on zigzag graphene ribbons, though not for
the current scenario, where hopping disorder is consid-
ered. A few of these works are highlighted here to pro-
vide a broader perspective. In [40–42], it was found that
there is a perfectly conducting channel in zigzag ribbons
in the presence of long-range on-site disorder. This is be-
cause there is an additional chiral mode in the each valley
that is not affected by long-range impurities. However,
for short-range impurities, localization is still expected,
as was shown in [43–45]. Disorder on the edge has also
been found to strongly affect the transport in graphene
ribbons [46, 47]. In [48], it was shown that the edge states
are stable under the presence of edge roughness.

The rest of this paper is structured as follows. In sec-
tion II, the model of zig-zag graphene with only nearest
neighbor hopping is introduced, followed by the proper-
ties of the spectrum in the absence of disorder. Particular
emphasis is placed on the low-energy band and its dis-
persion. This is followed by a discussion of the generic
symmetries of the model and its topological properties.
In section III, the transport, density of states, and stabil-
ity of the edge states of the disordered zigzag ribbon are
discussed. This is followed by a discussion of the results
in section IV.

II. SPECTRUM, SYMMETRY, AND
TOPOLOGY IN ZIGZAG GRAPHENE

A. Model and spectrum

The present work focuses on zigzag graphene ribbons
with nearest-neighbor hopping, described by the Hamil-
tonian:

H =
∑
i

W∑
j=1

tai,jc
†
i,j,Bci,j,A + h.c.

+
∑
i

W∑
j=1

tbi,jc
†
i+1,j,Aci,j,B + h.c.

+
∑
i

W−1∑
j=1

tci,jc
†
i,j+1,Aci,j,B + h.c. (1)

where the hopping parameters ta,b,ci,j are real. The choice
of unit cell, and conventions for labeling sites, are shown

in Figure 1. Here, c†i,j,α is the creation operator for an
electron on the unit cell labeled by index i along the
horizontal direction, on the vertical chain labeled by j;
the subscript α ∈ {A,B} refers to the A and B sub-
lattices of the 2-site unit cell of the honeycomb lattice
(orange and blue, respectively, in Figure 1). As no spin-
orbit terms are included, it suffices to consider a single
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FIG. 1: Zigzag graphene ribbon of width W = 4 is
shown. Differently colored sites correspond to different
sub-lattices and the dashed box encloses the unit-cell of
the zigzag ribbon which is translation invariant in the
horizontal direction. The labeling convention for the
sites used in this work is also shown here. The inset

shows the hopping parameters.

spin species, and the spin index is therefore suppressed.
The lattice constant has been set to unity.

The model contains three types of hopping parame-
ters, ta, tb, and tc, associated with the three bond ori-
entations of the honeycomb lattice (inset of Figure 1).
With the choice of unit cell shown, ta parameterizes hop-
ping within the unit cell along the horizontal direction, tb

describes hopping to the next unit cell along the horizon-
tal direction, and tc represents hopping along the vertical
direction within the unit cell. In general we will not re-
quire any lattice symmetries, such that all three types
of hopping parameters depend explicitly on the indices i
and j.

The clean limit of the zigzag ribbon is obtained by
setting tαi,j ≡ t. The resulting band structure for W = 4
and t = 1 is shown in figure 2. For a general width
W , the clean system has 2(W − 1) fully gapped bands,
and one pair of gapless bands, which cross at k = π.
Near this degeneracy point (approximately in the region
2π/3 < k < 4π/3 spanning the projection of the bulk
Dirac cones), the dispersion is very flat, and the wave-
function is localized near the ribbon’s zigzag edges, as
indicated by the coloring of the bands in figure 2. In
contrast, the wavefunctions of the fully gapped bands, as
well as of the gapless band far from the degeneracy point,
are delocalized throughout the bulk. The Dirac points of
2D graphene (located at k = 2π/3 and 4π/3 in the limit
W →∞) are separated from zero energy by a finite-size
gap that scales as 1/W . Hereafter we always focus on
energies smaller than this 1/W gap, where only the two
flat sub-bands are present.

The analytical solutions for the energies and wave func-
tions of clean zigzag ribbons can be found in Appendix
B of Ref. [31]. A notable feature of the wave functions of
the edge states that make up the lowest energy band is
that they are sub-lattice polarized, with support only on
sub-lattice A (B) of the honeycomb lattice at the lower
(upper) edge. Upon expanding the dispersion of this
band near the band crossing at k = π, one finds that:

ε(k) ≈ ±|π − k|W . (2)
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FIG. 2: Band structure of the zigzag ribbon of width
W = 4 is shown. The bands are colored by the

probability of the corresponding wavefunctions to be
localized on the A(B) sub-lattice on the bottom (top) of

the zigzag ribbon, denoted by Pedge.
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FIG. 3: The low energy band as a function of
momentum close to the degeneracy point. The axes are
rescaled so that all the curves fall on the same dashed

gray line, in agreement with Eq. 2.

At energies below the finite-size gap, this is in a good
agreement with the dispersion obtained via numerical di-
agonalization, as shown in figure 3.

B. Symmetry and topology

1. Generic symmetries of zigzag graphene

Before discussing disordered ribbons, it is crucial to
understand the symmetries of the Hamiltonian (1), as
well as the band structure topology of the clean zigzag
ribbons discussed above.



4

Systems of non-interacting fermions can be classified
into 10 distinct symmetry classes based on the existence
of three generic symmetries [22, 23]: time-reversal (T ),
particle-hole (C), and chiral or sub-lattice (S). These are
best understood by examining the so-called first quan-
tized Hamiltonian H, where H =

∑
α,β c

†
αcβHα,β , and

α, β label individual sites in the system. Time-reversal
symmetry requires that:

U†TH
∗UT = H, (3)

where UT is a unitary operator. In the case at hand, the
fermions are effectively spinless, and UT is the identity
matrix, as it maps a site to itself. It follows that the
Hamiltonian (1) has time-reversal symmetry, since all the
hoppings are restricted to real values, and that T 2 = 1.

Chiral symmetry is present if there exists a unitary
matrix US such that

U†SHUS = −H. (4)

When µ = 0, any free fermion Hamiltonian on a bipartite
lattice for which hopping terms connect only the A and
B sublattices has chiral symmetry. Explicitly,

(US)α,β =


0, α 6= β

1, α = β belongs to sub-lattice A

−1, α = β belongs to sub-lattice B

. (5)

Thus, because we take all tαij to be real, the Hamilto-
nian (1) has both time reversal and chiral symmetries.
Since S = TC, particle-hole symmetry is also present
and squares to +1. As a result, the zig-zag nanoribbons
studied here, for which µ = 0 and there is no chemical
potential disorder, belong to symmetry class BDI.

2. Zigzag graphene as a multi-critical point

In one dimension, symmetry class BDI admits topo-
logically non-trivial gapped phases, characterized by an
integer-valued topological invariant, the winding num-
ber [23–25]. For the hopping models studied here, such
gapped phases can be obtained by introducing staggered
hopping parameters. For a single chain (W = 1), taking
taij ≡ ta, tbij ≡ tb in Eq. (1) gives the Su-Schrieffer-Heeger
(SSH) model [8, 9], which describes a 1D topological in-
sulator in symmetry class BDI with winding 1 (tb > ta)
or 0 (tb < ta). The limit ta = tb corresponds to a critical
point separating these two phases.

For W = 2, with translation invariance there are 5 dis-
tinct hopping parameters taj , t

b
j (j = 1, 2), and tc1. (Here

the index i labeling the horizontal unit-cell is omitted
due to translation invariance). The Hamiltonian can be
written in momentum-space as:

H =
∑
k

Ψ†kH(k)Ψk, (6)

where Ψ†k =
(
c†k,1,A c†k,2,A c†k,1,B c†k,2,B

)
. This choice

of basis is most convenient to find the winding number,
since the Hamiltonian in momentum space is block off-
diagonal [23, 49], i.e.:

H(k) =

(
0 D(k)

D†(k) 0

)
, (7)

where:

D(k) =

(
ta1 + tb1e

−ik 0
tc1 ta2 + tb2e

−ik

)
. (8)

The winding number is given by [23, 49]:

ν =
i

2π

∫ 2π

0

dkTr
[
D−1k ∂kDk

]
. (9)

One then finds:

ν = θ
(∣∣tb1/ta1∣∣− 1

)
+ θ

(∣∣tb2/ta2∣∣− 1
)
, (10)

where θ is the step function. This is simply the sum
of the winding numbers of the individual horizontal 1D
chains. Notably, the vertical hopping between the chains
does not play a role in the topology of the W = 2 zigzag
ribbon. Taking tα1 = tα2 = tα yields a winding number of
2 (tb > ta) or 0 (tb < ta). As before, the gapless model
corresponding to uniform hopping parameters ta = tb =
tc describes the critical point separating the two phases
with winding numbers 0 and 2. The other possibilities
for the topology of the W = 2 ribbon are summarized in
figure 4.

This finding can be generalized for larger widths. In
general, a translationally invariant ribbon of width W
can be viewed as an array of W chains coupled via the
vertical hoppings tcj , j = 1...W − 1, each with two intra-

chain hopping parameters taj , t
b
j . When taj = tbj for all j,

the system is gapless, with a dispersion near the band-

crossing that goes as |π − k|W . If all the chains have
tai 6= tbi , the spectrum is fully gapped with a winding
number ranging anywhere from 0 to W , given by

ν =

W∑
j=1

θ(mj), (11)

where mj = |tbj | − |taj | is the SSH staggering along the
j-th chain. Thus the clean limit discussed above corre-
sponds to a multicritical point separating gapped topo-
logical phases of windings 0 and W .

A continuum low energy theory of the edge mode can
be represented by an effective 1D Hamiltonian of the
form:

H =

(
0 (∂x +m1) . . . (∂x +mW )

(−∂x +mW ) . . . (−∂x +m1) 0

)
(12)
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FIG. 4: Phase diagram for the W = 2 zigzag ribbon as
a function of the hopping parameters, when there is no
disorder. ν is the winding number at half-filling. The
vertical hopping parameter tc1 is not relevant to the

topology, in accordance with Eq. 10.

where the 2 × 2 structure is associated with A/B sub-
lattices. For x-independent staggerings mj , the corre-
sponding spectrum is given by:

ε(p) = ±
W∏
j=1

√
p2 +m2

j , (13)

where p = π − k. This leads to the spectrum (2) in the
uniform hopping limit, mj = 0. Moreover, it is clear from
here that to open a gap in the spectrum, all chains must
be staggered. If there are w < W non-staggered chains,
the low energy spectrum is gapless and scales as ε(p) ∝
|p|w. It is also clear from Eq. 12 that the corresponding
winding number is given by Eq. 11.

If one of the staggerings changes sign over the system’s
length, e.g. mi(x) = |mi|sign(x), while all others remain
finite everywhere, there is a zero energy in-gap state lo-
calized to the B sub-lattice and given by the solution of:

(∂x +mi(x))(∂x +mi+1) . . . (∂x +mW )ψB = 0. (14)

This leads to an homogeneous equation for the unnor-
malized wavefunction (∂x + mi+1) . . . (∂x + mW )ψB =
e−|mi||x|, which for constant mi+1, . . .mW may be eas-
ily solved by e.g. the Fourier transform. On the other
hand, if mi(x) = −|mi|sign(x) the zero energy state,
found from (−∂x + mi−1) . . . (−∂x + m1)ψA = e−|mi||x|,
is localized to the A sub-lattice.

3. Zigzag graphene as a topological semi-metal

In addition to this, two-dimensional graphene can be
thought of as a gapless topological material [49]. The
bulk band structure contains a pair of Dirac nodes lo-
cated at the two distinct corners of the Brillouin zone.
Through a bulk-boundary correspondence, the topolog-
ical nature of the Dirac nodes arising from their non-
trivial Berry phase of ±π gives rise to low-energy states
localized on the boundaries. This is a 2-dimensional ana-
log of the Fermi arcs that exist at the surface of a 3D Weyl
semi-metal [50–52].

To see how the bulk-boundary correspondence plays
out in the quasi-1D system, one can consider the
momentum-dependent Hamiltonian H(k) of a ribbon,
where k is momentum along the translationally invari-
ant direction. In the case of a zigzag ribbon, this is given
by the W ×W matrix:

0 1 + e−ik

1 + eik 0 1
1 0 1 + e−ik

1 + eik 0 1
. . .

1 + eik 0


. (15)

At fixed k, one can view this as a Hamiltonian of a W -
site 1D system. In the case at hand, H(k) is identical to
the Hamiltonian of an SSH chain without time-reversal
symmetry (class AIII), with ta = 1 + e−ik, and tb = 1.
This chain is topological when:∣∣1 + e−ik

∣∣ < 1, (16)

i.e when 2π/3 < k < 4π/3. The endpoints of the topo-
logical region are exactly where the Dirac points occur in
the limit W →∞. For the values of momenta where the
chain is topological, there are states close to zero energy
that are localized on the boundaries of this auxiliary1D
system at fixed k (i.e. at the zigzag edges). These are
the edge states seen in the dispersion of figure 2. The ex-
istence and dispersion of the edge states depends on the
boundary condition of the ribbons [31, 48]. For instance,
in the arm-chair ribbons, the Dirac points with opposite
Berry phase are crossed simultaneously and thus no edge
states occur.

Because the topology in this case is explicitly related
to the existence of the translation-invariant Hamiltonian
H(k), it is not clear if the edge states persists at a fi-
nite disorder strength. (This is in contrast to gapped
topological phases, where boundary states are known to
be robust provided that all relevant symmetries are pre-
served). It is thus interesting study the stability of edge
states in the presence of disorder that preserves the chi-
ral symmetry (which is required for the existence of the
edge states in the SSH chain).
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III. OFF-DIAGONAL DISORDER IN ZIGZAG
GRAPHENE

A. Disordered critical point in the 1D chain: A
Review

To provide context for understanding transport and
density of states in disordered zigzag graphene ribbons,
it is helpful to review the properties of the disordered 1D
random hopping chain at the critical point. When there
is a single conducting channel, it is often convenient to
write the dimensionless conductance g (using the Lan-
dauer paradigm of transport) as:

g =
1

cosh2(x)
. (17)

A body of work [10, 20, 28] has established that the crit-
ical point separating phases of different winding persists
to finite disorder strength. If the distribution of hopping
parameters is the same on each bond, adding disorder in
the un-staggered chain leads to an unconventional type of
Anderson localization, in which the average conductance
at zero energy decays as a power of the system size, rather
than exponentially. The corresponding transport behav-
ior is described by the Fokker-Planck equation in symme-
try class BDI [20, 38, 53], which for a single propagating
channel leads to the following transport distribution :

P (x; s) =

√
2

πs
e−

x2

2s ; x ≥ 0 (18)

Here s = L/l, where L is the system size, l is the mean
free path.

To see that this distribution describes unconventional
localization, one can define the typical and average local-
ization lengths:

ξtyp ≡ −
2L

〈ln (g)〉
, ξavg ≡ −

2L

ln (〈g〉)
. (19)

For the distribution (18), one finds ξtyp ∼
√
Ll and

ξavg ∼ L/ ln s, indicating that both typical and average
localization lengths diverge with the system size. In con-
trast, for conventional Anderson insulators, say in class
AI, one finds that ξtyp = 2l and ξavg = 8l.

Since the clean zigzag ribbon with homogeneous hop-
pings is at the multicritical point, one expects that this
criticality will persist in the presence of hopping disorder.
This suggests that adding disorder will lead to unconven-
tional localization, much like in the disordered hopping
chain. However, the precise nature of this unconventional
localization could be very different.

For ribbons of width W > 1, an additional subtlety
arises in trying to determine the nature of the underly-
ing critical point. For W = 1 (or in the case of armchair
nanoribbons [39]), one can deduce the presence of the
critical point by considering the conductance of a disor-
dered segment connecting two disorder-free leads, when

the incident particle has energy ε = 0. For W ≥ 2, how-
ever, the transport at zero energy cannot be accessed
directly, because the velocity of the band goes to zero at
ε = 0. Therefore the injected particle does not propagate
through the disordered region. Instead, the nature of the
critical point at zero energy must be inferred by studying
transport at small but finite energies.

This difference is significant because the distribution
(18) characteristic of critical transport in symmetry class
BDI is valid only when the energy is exactly zero, where
chiral symmetry imposes additional constraints on the
allowed scattering processes. From the transport point
of view, moving away from zero energy is therefore anal-
ogous to tuning away from the critical point. For a fixed
energy and disorder strength, this leads to a crossover
between transport reminiscent of the chiral distribution
(18) at shorter length-scales, to more conventional lo-
calization and exponentially suppressed conductance at
long distances. For W ≥ 2, the nature of the underlying
critical point must be inferred by studying transport in
this crossover regime.

The study of this crossover dates back to work by
Dyson[7]. A key observation is that when the clean sys-
tem is at a critical point between phases of different wind-
ing, disorder creates domains of each of the correspond-
ing phases. The resulting domains walls harbor bound
states, whose energy is exponentially small in the domain
size. These low-energy states are thus resonant and can
hybridize, leading to delocalization [10]. When the disor-
der distribution is uniform (i.e. no net staggering), such
domains form on all length scales, and the eigenstates
of the disordered system are not exponentially localized
even at the longest length scales, as indicated by the di-
vergence of both typical and average localization lengths.

This intuitive picture explains several of the unusual
features seen in disordered 1D systems proximate to a
topological phase transition. First, as pointed out by
Dyson [7, 26, 32], the density of states diverges at low
energies according to:

ρ(ε) ∝ 1

|ε(ln ε)3|
. (20)

When the system is perturbed away from the critical
point by, say, introducing staggering of the bonds on av-
erage, this divergence becomes a power-law ε−1+δ with a
non-universal exponent δ [10].

Second, as the energy decreases towards zero, the typ-
ical localization length defined in Eq. 19 has a charac-
teristic logarithmic divergence: [15, 33–37]

ξtyp = l|ln(r)|. (21)

Here r = ετ is a dimensionless measure of the energy, ε
is the energy of the injected electron, and τ the scatter-
ing time, and the formula is valid for r � 1. Moreover,
as zero energy is approached, transport becomes increas-
ingly dominated by rare-region effects and one finds that
the average localization length diverges as log2(r) [11].
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Evidently, for finite L, both divergences are cut off at
sufficiently low energies by the L-dependent localization
lengths of the zero-energy BDI case.

Finally, the full transport statistics of the disordered
W = 1 chain near zero-energy were studied in Ref. [39].
In that case, the distribution of conductance values, and
therefore all transport properties, is determined by the
two dimensionless parameters s = L/l, and r = ετ .
When s � 1, or r � 1, the transport distribution was
found to be of the form:

P (x) =
2

γ Γ(δ/2)

(
x

γ

)δ−1
exp

[
−
(
x

γ

)2
]
, x ≥ 0 (22)

where δ and γ are functions of s, r. The parameter δ
dictates the shape of the distribution: While the chiral
distribution 18 is obtained for δ = 1, a Gaussian distribu-
tion corresponding to exponential localization is obtained
as δ →∞. For r � 1, one finds

δ ≈ 3

2

s

| ln2 r|
, (23)

indicating that the overall shape of the distribution is
controlled by the ratio of ξ2typ/l ∼ ξav to the system size
L.

B. Disordered zig-zag graphene nanoribbons:
theoretical expectations

In the remainder of this section, numerical evidence
is presented to indicate that for a range of widths W ,
disordered zigzag ribbons exhibit the same 2-parameter
scaling with s and r as the 1D chain, with an underlying
distribution of the same form. Because the dispersion of
the disorder-free critical point depends strongly on W ,
this nevertheless describes a family of disordered models
with quantitatively very different transport properties.

To set the stage for the numerical results that follow, it
is instructive to consider how the relaxation time τ and
the mean-free-path l might depend on the width W and
energy ε. This can be done analytically when the disor-
der is sufficiently weak, such that the scattering rate can
be calculated perturbatively using Fermi’s golden rule,
which gives:

τ−1(ε) = 2πρ0(ε)|〈ψL|Himp |ψR〉|2. (24)

Here ρ0 is the unperturbed density-of-states, |ψL〉 (|ψR〉)
is the wavefunction for the left (right) moving mode, and
Himp is the impurity Hamiltonian.

The right-hand side of Eq. (24) contains two terms
that depend on the width of the ribbon. First, the dis-
persion of the clean system leads to the density of states

ρ0(ε) =
1

πW
ε−1+1/W , (25)

which for W > 1 has a power-law divergence as ε → 0.
Second, the matrix elements 〈ψL|Himp |ψR〉 also depend
on W . To see why, consider a single impurity located on
unit-cell 0 and chain m with a strength of V , i.e.:

Himp = V c†0,m,Ac0,m,B + h.c. (26)

Using the analytical form of the wavefunctions of the
edge states in Ref. [31], and expanding about ε = 0,
gives a scattering amplitude 〈ψL|Himp |ψR〉 ∼ V ε1−1/W

which vanishes as ε → 0. There are some typos/errors
in the wavefunctions of ref. [31]. For a more correct
result, one can refer to [54]. This strong suppression of
back-scattering results from the fact that the edge states
are well localized on the A sub-lattice near the bottom
edge and the B sub-lattice near the top edge (see section
II A), such that backscattering between the left and right
moving states is highly suppressed in the presence of off-
diagonal disorder.

The exact matrix elements can be easily computed
using the right and left-moving wavefunctions obtained
through numerical diagonalization. After averaging over
all possible values of m, the relaxation rate scales as:

τ−1 ∝ V 2ε1−1/W , (27)

in accordance with the analytical estimate described
above. This is confirmed by the scaling plot in figure
5. The mean-free-path is given by l = τv(ε) where
v(ε) ∼ Wε1−1/W is the velocity. Because of the non-
linear dispersion, the Fermi velocity rapidly approaches
zero as ε vanishes, giving:

l ∝ W

V 2
. (28)

Thus the energy-dependence of the velocity exactly can-
cels that of the relaxation rate, and the mean-free-path l
is roughly independent of energy, and increases linearly
with the width W . Note that these scaling laws for l, τ
are only valid in the weak-disorder limit when the disper-
sion can be approximated by Eq. 2. The energy scale for
this dependent on the finite-size gap and goes as 1/W .

C. Numerical Results for transport in zigzag
graphene

In order to study transport in zigzag ribbons, a finite
size tight binding system of length L and width W is
created with the Hamiltonian given by Eq. 1. In the
absence of disorder, all the hoppings are set to 1. To
add disorder, a random term from the uniform distribu-
tion spanning [−V, V ] is independently added to every
hopping. The quantity V is a measure of the disorder
strength. Semi-infinite, disorder-free leads of the same
width are attached on either side of the disordered strip.
One can then send in electrons at a certain energy and
compute the S-matrix, which relates the amplitudes of
the incoming waves to the outgoing waves. From this
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FIG. 5: The relaxation rate calculated numerically
using the Fermi’s golden rule is plotted as a function of
the energy for several widths. The axes are chosen in

such a way that all the curves collapse onto a single line
according to Eq. 27. Inset shows a zoomed in version at
higher energies where one starts to see deviations from
Eq. 27 as the low energy dispersion of Eq. 2 starts to

deviate.

the conductance and other transport properties can be
obtained. All of this is done using methods available
in the package KWANT for python [55], which uses the
MUMPS library to efficiently solve sparse linear equa-
tions [56].

A range of widths W from 2 to 8 are studied, with
lengths L ranging from 100 to 1000 unit cells. The disor-
der strength V is taken to be 0.5 for all the cases, unless
stated otherwise. The energy of the incoming electron ε
ranges from 10−6 to 10−2. Over 104 disorder configura-
tions are generated for each W and L and ε in order to
obtain comprehensive statistics.

As a first step, one can try to compare the numeri-
cally computed transport data of the zigzag chains to the
transport statistics obtained for the 1D chain in Ref. [39].
In fig. 6, it is shown that the probability distribution for
the quantity x = arccosh(1/

√
g) is well described by that

of the 1D chain, Eq. 22. This suggests that the full trans-
port statistics in a zigzag ribbon could be described by
the same two-parameter scaling functions, with the pa-
rameters being s = L/l and r = ετ .

In order to study this scaling further, the values of s
and r for a given zig-zag chain must be obtained. In
principle, this could be done by fitting to the distribu-
tion (22); in practice, however, it is more straightforward
to fit the data of the zig-zag nanoribbons to that of 1d
chain, for which these parameters can be extracted from
the transport statistics at ε = 0. Details of this fitting
procedure are given in appendix A. The resulting energy
and width dependence of the relaxation time τ is shown
in Figure 7, and agrees strongly with both the energy
and width dependence predicted by Eq. 27. Similarly,
the mean-free-path l is also found to scale linearly with
the width W as predicted by Eq. 28 (this is not shown).

0 20 40 60
x

0.00

0.02

0.04

0.06

0.08

P

W= 2

W= 3

W= 4

W= 5

FIG. 6: Probability distribution for x = arccosh(1/
√
g)

is shown for a range of widths for L = 1000 and
ε = 10−2. The solid lines are the histograms obtained

from numerics while the dashed lines are fits to Eq. 22.
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W= 3

W= 4

W= 5
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FIG. 7: The scattering time τ , obtained from fits of
〈ln(g)〉 vs L, is shown as a function of energy for several
widths. Based on Eq. 27, the dashed lines show fits to
τ = cε−1+1/W , where the only free parameter is c. In

general, c depends on the disorder strength. In this case
it is around 1.5 for all the lines. The fits show good
agreement with the scaling relationship predicted by

perturbation theory.

To summarize, fits of the transport data of the zigzag rib-
bon to those of 1D chain, obtained by assuming the same
two-parameter scaling of transport, show good agreement
with perturbation theory.

The agreement shown in Fig. 7 suggests that the dis-
ordered critical point in graphene nanoribbons exhibits
the same scaling behavior as that of the random hopping
chain. A number of other measures also indicate the uni-
versality of this scaling. Figure 8 shows that the typical
localization length shows good data collapse for multiple
widths when plotted as a function of r. A few features of
this plot are worth emphasizing. For |ln(r)| ≈ 0, the ratio
ξtyp/l approaches 2. This is the value predicted by the
Fokker-Planck equation for symmetry class AI [19, 57],
where chiral symmetry is absent. The logarithmic di-
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FIG. 8: The ratio of typical localization length to mean
free path ξtyp/l is shown vs. |ln(r)|. Excellent data
collapse is observed for several widths. Here ξtyp is

obtained using Eq. 19 and r is obtained from fits to the
data for the 1D chain (see appendix A). The dashed

line shows ξtyp/l = |ln(r)|, which is the behavior
expected for r � 1. Data for W = 1 is included to show

that logarithmic divergence is only attained when
|ln(r)| >∼ 5. An additional disorder strength for a dew

widths are included in (b) to show that the data
collapse is not coincidental.

vergence of Eq. 21 is only reached for |ln(r)| >∼ 5. This
regime becomes increasingly inaccessible for the zigzag
ribbons as the width increases, even though the small-
est energy studied for all the systems is 10−6. This is
because backscattering is suppressed as the width of the
zigzag ribbon increases (see Eq. 27), so that the regime
r � 1 occurs at smaller energies for larger W . In prac-
tice, even for W = 2 much of this regime is numerically
inaccessible.

D. Density of states

To obtain a second probe of critical scaling, the density
of states is computed using the recursive green’s function
technique [58]. This is done completely independent of

the transport calculations. The self-energy of the lead
is added to the initial green’s function to stabilize the
results. Also, an imaginary part of 10−2ε is added to the
energy. The maximum length studied is L = 104, with
energies ranging from 10−10 to 10−1, and V = 0.5. Once
again, around 104 disorder configurations are computed.

In terms of the scaling variables here, the density of
states in the W = 1 chain diverges at low energies ac-
cording to:

ρ(ε) =
πρ0(ε)∣∣r ln3(r)

∣∣ , (29)

where ρ0 is given by Eq. 25. For the zigzag ribbons at
low energies, using τ = cε−1+1/W and the expression for
ρ0 25, one finds:

ρ(ε) =
W 2∣∣2cε ln3(cW ε)

∣∣ . (30)

Thus, up-to an overall pre-factor, the density of states at
any W exhibits the same Dyson singularity as the disor-
dered critical point separating phases whose topological
winding number differs by one.

In the absence of disorder, in contrast, the low-density
of states of the zigzag ribbons depends strongly on
their width, diverging as ε−1+1/W at small energies (see
Eq. (25)). Nevertheless the low energy density of states
of disordered ribbons is completely universal and W -
independent. This feature, in combination with the long
relaxation time of the zigzag ribbons, means that the ex-
cess density of states due to disorder becomes apparent
only at extremely small energies. This is similar to what
was observed with the localization length divergence.

Figure 9 shows the low-energy divergence of the den-
sity of states obtained from numerics. In figure 9a, the
energy-dependent disordered density of states for W = 2
is compared that of the clean system, showing that the
Dyson singularity becomes detectable only at energies
less than approximately 10−5 in this system. Figure 9b
shows the the density of states re-scaled by ρ0 and plot-
ted as a function of r. Excellent data collapse is found
across a range of widths. The observed r dependence
interpolates between the Dyson form of the divergence
given by Eq. 20 for r � 1 and the value at the clean
limit for r ∼ 1. Notably, the scaling parameter τ is ob-
tained from the transport data, completely independent
of the density of states calculations.

With this, there is a sufficient evidence to conclude
that the zigzag graphene ribbons are at a critical point
with a delocalized state at zero energy, upon adding off-
diagonal disorder.

E. Edge State Stability

Lastly, the robustness of the edge states to hopping
disorder is studied. As noted above, when chiral sym-
metry is preserved, the existence of a Dyson singularity
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FIG. 9: The density of the states for disordered zigzag
ribbons obtained using the recursive Green’s function.
Figure 9a shows the density of states as a function of

energy for a chain of width 2, with the dotted line
showing the density of states in the absence of disorder.

The deviation from the dotted line becomes more
pronounced at lower energies. Figure 9b shows the
re-scaled density of states plotted as a function of
r = ετ . The gray dotted line shows the value in the

absence of disorder, while the black dashed line
corresponds to Eq. 20, which is valid for r � 1.

ensures that the density of states of the disordered sys-
tem diverges as ε → 0. The difference between chains
with W = 1 and W ≥ 2 is that in the latter case,
the low-energy density of states is divergent even in the
clean system; this divergent density of states comes from
the flat-band boundary modes. Moreover, since the low-
energy modes of the clean system are localized to the
edge, the matrix elements of the disorder Hamiltonian
with the edge states are highly suppressed due to the
sub-lattice polarized nature of the wave functions. One
might anticipate that these two effects combine to ren-
der the edge states effectively robust up to some finite
disorder strength.

To show that these expectations are indeed borne out,
finite size zigzag ribbons of length L = 100 and sev-
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P
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ge

V= 0

V= 0.1

V= 0.3

V= 0.5

FIG. 10: The probability of a state being localized on
the zigzag edges Pedge is shown as a function of the

energy for a zigzag chain of width 5 and a few disorder
strengths. The persistence of the peak at zero energy

indicates that the edge states are still present near zero
energy.

eral widths are studied. The wave functions are calcu-
lated by exact diagonalization and 103 disorder realiza-
tions are computed for each parameter value. In figure
10, the probability of a state being localized on either
the A sub-lattice on the bottom of the chain, or the B
sub-lattice on the top of the chain, denoted by Pedge, is
shown for several disorder strengths and W = 5. As seen
in the Figure, disorder does not destroy the peak in the
edge state probability at zero energy; rather it pushes
the edge states closer to zero energy. This reflects the
Dyson singularity. Moreover, disorder does not substan-
tially alter the degree to which these low-energy states
are localized to the system’s boundaries, indicating that
the edge states are stable with disorder.

The total number of edge states can also be computed,
by setting a threshold for Pedge above which a state is
considered an edge state. Figure 11 plots the resulting
ratio of number of edge states in a disordered system
to those in the clean system, with the threshold value
for Pedge taken to be 0.8. The Figure shows that, for
several different widths, this quantity varies very little as
function of disorder strength, with the ratio of disordered
to clean edge states very close to 1 in all cases. This
indicates that the edge states near zero energy persist
upon increasing the disorder strength.

IV. DISCUSSION

Zigzag graphene with homogeneous nearest neighbor
hopping is at a multicritical point between gapped topo-
logical phases identified by a topological winding number
related to the width W of the ribbon. As a result, it is
particularly interesting to study these models with the
addition of hopping disorder, which preserves the sym-
metry class BDI of the clean system. The resulting width
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FIG. 11: The ratio of number of edge states in a
disordered system to those in the clean system Nedge, is

shown as a function of disorder strength for a few
widths. The number of edge states remains roughly the

same upon increasing the disorder strength.

W zigzag ribbons can be viewed as an extension of the
1D SSH chain at criticality, where the disordered critical
point is associated with the Dyson singularity in the den-
sity of states, and diverging localization length, at zero
energy.

Our work shows that the underlying crossover in trans-
port statistics and the scaling of localization length and
density of states are essentially the same as the criti-
cal 1D chain, after accounting for the difference in scat-
tering time due to the slow velocities of the low-energy
modes. The numerical evidence for this is substantial.
At non-zero energies near the critical point, the trans-
port statistics of the 1D chain were previously found to
obey a two-parameter scaling (Ref. [39]), where the two
parameters s = L/l and r = ετ completely determine
any transport quantity. The transport data obtained for
the zigzag ribbons of all widths studied here fits well
to this two-parameter scaling data, with the relaxation
times and mean-free-paths obtained from the fits in good
agreement with the predictions from perturbative cal-
culations. Other quantities studied, such as the typi-
cal localization length, also show excellent data collapse
across several widths, with evidence of the logarithmic
divergence expected for the W = 1 critical point seen for
r � 1. Moreover, the density of states is computed inde-
pendently of the transport and also shows data collapse
when plotted as a function of r. All of this leads to the
conclusion that there is indeed a disorder induced criti-
cal point at zero energy, obeying the same two-parameter
scaling of transport at non-zero energy.

Though this universal scaling collapse may seem to in-
dicate that the multicritical point belongs to the same
universality class as the ordinary disordered critical point
in class BDI, this is actually not the case. The coinci-
dence of the energy scaling of the localization length and
the density of states is due to the fact that these scal-
ing have a peculiar logarithmic character. This is not

the case when considering other possible deviations from
criticality.

To be specific, let us consider a uniform staggering
in all of the chains along the ribbon’s direction. In the
Hamiltonian 1, this is achieved by choosing the hopping
amplitudes such that mj = |tbj | − |taj |. Eq. 13 suggests
that:

ξtyp ∝
W∏
j=1

1

|mj |α
. (31)

A natural conjecture for the exponent here is that it take
on the value α = 1 [12, 13] of the 1D chain. To jus-
tify this, imagine taking mj 6= 0 in all but one of the
chains. In this case there is a linear band crossing at
zero energy (see Eq. 13), and the resulting critical point
separates phases whose winding numbers differ by one,
exactly as in the 1D SSH chain. It follows that for a uni-
form staggering, mj ≡ m, the localization length scales
as ξtyp ∝ m−W and thus the corresponding critical ex-
ponent is W dependent.

The unusual properties of the low energy band in
zig-zag graphene ribbons follow from the fact that 2D
graphene can be viewed as a topological semi-metal,
which has edge states with zigzag boundary conditions.
These topological properties extend also to finite-width
ribbons, and explain the nature of the low-energy edge
states studied above. These edge states appear numeri-
cally to be stable in the presence of hopping disorder, re-
maining well-localized near the boundary, and very close
to zero energy. However, away from zero energy disorder
does lead to localization in the transport of these wave-
functions; thus at low energies the edge states remain
present in the spectrum, but cease to be conducting.
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Appendix A: Fitting procedure for transport

In order to fit the transport data of the zigzag ribbons
to the two-parameter scaling functions of the 1D random
hopping chain, one could potentially use the distribution
Eq. 22. One could perform maximum likelihood fits to
obtain the parameters δ and γ. However, analytic expres-
sions for these quantities in terms of the relevant scaling
parameters s and r is only known when r � 1. Due to
the suppression of backscattering in the zigzag ribbons,
the majority of transport does not fall in this regime. To
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circumvent this issue, one can use the numerical inter-
polating functions for relevant transport quantities as a
function of s, r that are available for the 1D chain [59].

In this case 〈ln(g)〉 is considered, as it has good self-
averaging properties and is a well-behaved function. Here
〈. . .〉 dentoes averaging over disorder realizations. Given
a zigzag ribbon of certain width W and energy of in-
coming electrons ε, one can fit 〈ln(g)〉 vs L to the data
from the 1D chain. This allows one to extract l and τ .
Note that there is only one free fitting parameter since
l = vF τ , where the velocity vF is known at a given en-
ergy. Figure 12 shows a few fits for W = 4 as the energy
is varied. The quality of the fits is generally good.
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