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Abstract:  20 

Bragg coherent diffractive imaging (BCDI) is a non-invasive microscopy technique that can visualize 21 
the shape and internal lattice deviations of crystals with nanoscale spatial resolution and picometer 22 
deformation sensitivity. Its strain imaging capability relies on Fourier transform based iterative phase 23 
retrieval algorithms, which are mostly developed under the kinematical approximation. Such 24 
approximation prohibits the application of BCDI on larger crystals, which are commonly seen in most 25 
emerging functional materials. Understanding the dynamical effect in BCDI, as well as developing a 26 
validated method for modeling BCDI at the dynamical diffraction limit, is crucial for applying BCDI to 27 
hierarchical systems that contain micron-sized crystals and grains. Here we report a comparative study 28 
on the impact of dynamical diffraction effects by comparing the reconstruction results from two 29 
measurements of the same crystal. Forward simulation is implemented to show subtle changes of 30 
interference fringes in the diffraction pattern due to the dynamical diffraction, and is compared directly 31 
with the experimental data.  32 

I. Introduction 33 

Strain can strongly influence the mechanical, chemical, and electronic properties of materials. Thus, 34 
precision measurement of crystal strain is a key challenge for characterizing and optimizing emergent 35 
functional materials. Hard x-ray Bragg coherent diffractive imaging (BCDI) has been demonstrated to 36 
be a very powerful tool for imaging lattice deformation in crystalline materials [1–6]. It provides a full-37 
field type imaging capability to map three-dimensional strain distribution in a micron-sized field of view 38 
with nanometer-scale spatial resolution and picometer-scale deformation sensitivity. In a typical BCDI 39 
measurement, a finite crystal is illuminated by a coherent x-ray beam, and the far-field 3D diffraction 40 
pattern in the vicinity of a single Bragg reflection is recorded with a spatial sampling rate beyond the 41 
Nyquist limit. The acquired 3D diffraction pattern is inverted to a complex object function using phase 42 
retrieval algorithms. Traditionally, the amplitude of the reconstructed object function indicates the 43 

scattering density distribution of the crystal, while the phase represents a projection of the 44 
deformation field to the momentum transfer vector of the measured Bragg peak. 45 

Most BCDI phase retrieval algorithms [7–9] are developed under the kinematical approximation, in 46 

which the dynamical effects––namely multiple scattering and extinction––are neglected. With 47 

such simplification, the far-field diffraction intensity from a finite crystal is the modulus square of 48 

the 3D Fourier transform (FT) of its effective electron density and deformation field, while the 49 

inverse FT of the far-field intensity provides an autocorrelation of the object. Therefore, the phase 50 

problem can be efficiently solved via FT-based iterative optimization algorithms, using a priori 51 

knowledge that the object being imaged is isolated. Such phase retrieval algorithms have been 52 
successfully applied to various systems, where sizes of measured crystals are typically in the range from 53 
a few hundreds of nanometers to approximately 1 micron. For larger crystals, those algorithms do not 54 
provide a simple map of the electron density, since the kinematical approximation is not valid anymore. 55 
Applying established FT-based algorithms on Bragg diffraction patterns from lager crystals will cause 56 
significant artefacts in both amplitude and phase of the reconstructed complex object functions [10].  57 

Theoretically, the dynamical effects can be neglected if the size of a crystal is smaller than the x-58 

ray extinction length [11,12]. However, in practice, it is difficult to predict whether a crystal can be 59 

treated under the kinematical approximation, since the extinction length of x-ray photons in a 60 

particular crystal could change significantly due to the lattice deformation field. For example, the 61 

extinction length of [111] Bragg diffraction at a photon energy of 9 keV is about 0.25 μm in a 62 

perfectly ordered gold or lead crystal [13]. However, micron-sized gold and lead crystals have been 63 

successfully imaged without any significant artefacts, using BCDI and FT-based phase retrieval 64 



 

 

algorithms [2,3,14]. The kinematical approximation is still valid in those large crystals, because of 65 

residual lattice deformations associated with the sample preparation. Without knowing the 66 

ground truth, one could easily confuse the artefacts from dynamical effects with actual features 67 

in a crystal far from equilibrium with its environment. Therefore, developing a wave propagation 68 

method that accommodates dynamical effects, as well as the corresponding phase retrieval 69 

approach, is crucial for applying BCDI on large crystals.  70 

Dynamical effects can be described in the frame of x-ray dynamical diffraction theory, which has 71 
been extensively developed for decades [11,15–17]. Works have been done to investigate the impact 72 
of dynamical diffraction effect on transmitted beam [18,19] and extended samples [20]. More recently, 73 
Yan et al. [21] and Shabalin et al. [22] have applied the theory on finite crystals to simulate the coherent 74 
diffraction patterns. The latter group also simulated BCDI on a hemispherical Pb particle using the same 75 
diffraction geometry and a similar crystal dimension described in Refs. [3]. While both works provide 76 
valuable insight into the impact of dynamical effects on BCDI, none of them has validated the 77 
simulations against experimental data. In this paper, we perform BCDI measurements of the same 78 
crystal at two energy points to illustrate the impact of dynamical diffraction effects in the 79 
reconstruction, and use forward simulation to validate subtle changes observed in the diffraction 80 
pattern associated with different diffraction modes against experimental data.    81 

II. BCDI data collection and phasing 82 

A. BCDI sample preparation and data collection 83 

The gold crystal sample was prepared by dewetting evaporated gold films at a temperature just 84 
below melting [1]. The target crystal was selected based on its dimension and the estimated x-ray 85 
extinction length. According to the database [13], the extinction length in a perfectly ordered gold 86 
crystal is about 0.25 µm for [002] reflection and approximately 0.70 µm for [004] reflection. The 87 
extinction length is calculated assuming a sigma-polarized incident wave. Details about estimation of 88 
the extinction length are discussed in Appendix A. Considering the presence of deformation, these 89 
numbers could be larger in a real crystal. Therefore, we selected a crystal that has a size of 90 
approximately 700 nm in diameter and 350 nm in height. Given its dimensions, the [004] diffraction 91 
patterns measured from this crystal should be inverted correctly using algorithms developed under the 92 
kinematical approximation, while reconstructions from [002] datasets are expected to show significant 93 
artefacts due to dynamical diffraction effects. In the later section of this paper, the reconstruction from 94 
[004] reflection serves as the model of crystal to perform forward simulation, while the [002] reflection 95 
is used as the reference to validate the simulation results.  96 

The BCDI experiment was conducted at beamline 34-ID-C of the Advanced Photon Source, Argonne 97 
National Laboratory. The dataset of [002] reflection was collected at a photon energy of 7.5 keV, and 98 
[004] reflection was collected at 15 keV. The two reflections were measured using identical diffraction 99 
geometry, where a pixelated detector with 55 µm × 55 µm pixels was orientated at δ = 41.40° and γ = 100 
26.55° (as shown in Fig 1). The crystal was rotated around y-axis during rocking scans, using a rocking 101 
step of 6 mdeg for [002] reflection and 3 mdeg for [004] reflection. The sample-detector distance was 102 
fixed at 1.5 m. As a result, the sampling rate of [004] reflection is slightly below the ideal condition, 103 
while the spatial resolution of reconstructions from [002] reflection is reduced due to the limitation in 104 
the largest scattering angle.  105 

B. BCDI Phase retrieval 106 

The collected diffraction datasets were inverted using the established error reduction (ER) and 107 
hybrid input-output (HIO) algorithms [7]. All the phasing processes were initialized using random seeds 108 
and a support size of 80% of the input array. 4500 iterations were carried out for each phasing trial. 109 



 

 

The first 3600 iterations were switched between 50 iterations of ER and 250 iterations of HIO to 110 
approach the global minimum. The following 900 iterations were performed with ER only to refine the 111 
converged solution. Considering the large crystal size and limited beam coherence length, an iterative 112 
blind-deconvolution method, namely the Richardson-Lucy (RL) algorithm [23,24],  was adopted to 113 
separate the beam coherence function from estimate of the diffracted wavefield [25]. The coherence 114 
function was updated every 50 iterations starting from the 1200th iteration, with RL algorithm runs for 115 
20 iterations per update. The final object is obtained by averaging over the estimated objects resulting 116 
from every other iteration in the last 100 iterations.  117 

Due to the absorption and extinction effects, part of the reconstructed complex object may have 118 
much weaker amplitude, which has been discussed in previous theoretical studies [10,22]. Therefore, 119 
the regular shrink-wrap [26] method often cannot constrain the support correctly, resulting in a cavity- 120 
or pit-like artefact in the final reconstruction. To avoid this problem, we used an alternative approach 121 
to shrink the support at a controlled speed. In this approach, the 3D dimensions of support are reduced 122 
by a certain number of voxels with a specified interval of iterations, and the shrinking stops where the 123 
boundary of the support touches the boundary of the estimated object, determined by a pre-defined 124 
threshold. This method allows the algorithms to find the correct solution before stagnating around a 125 
local minimum due to an overtightened support.  126 

Fig. 1 demonstrate the reconstruction and the corresponding error metrics of 7.5 keV data. To avoid 127 
the potential risk of overtightening the support, the threshold for determining the edge of crystal was 128 
set to approximately 5% in the 1st trial of phase retrieval. The resultant amplitude and phase of the 129 
retrieved object function are shown in Fig. 1a. Although the boundary of the crystal can be easily 130 
distinguished by eye, the region between the edge of the intentionally loosed support and the edge of 131 
the crystal contains voxels with relatively large amplitudes. To get a clean morphology of the crystal, 132 
we conducted a second trial of phase retrieval, using a fixed support that was obtained by thresholding 133 
the first reconstruction followed by manual modification. The fixed-support phase retrieval gave a 134 
reconstruction with well-defined crystal boundary. Fig. 1b shows slices of amplitude of the retrieved 135 
object function along the three axes of lab frame Cartesian coordinate, respectively. As the x-ray wave 136 
was incident along +z axis and diffracted in the outboard-upward direction, the downstream part of 137 
the crystal has lower amplitude compared to the remaining part. The corresponding slices of phase 138 
demonstrate unphysical artefacts that are spatially correlated to the low-amplitude part, suggesting 139 
that they are originated from the absorption and extinction effects of the x-rays. It is also worth noting 140 
that the phase artefacts are not linearly proportional to the optical path of x-ray inside the crystal, 141 
indicating the presence of the extinction effect [10]. Two error metrics were used to monitor the 142 
convergence of the phase retrieval algorithm. Besides the traditional reciprocal-space χ-squared error 143 
metric, an η-squared error metric was used to measure the iteration-to-iteration variation. η2 is defined 144 
as:  145 

𝜂2 =
|ℱ(𝑜𝑛) − ℱ(𝑜𝑛−1)|2

|ℱ(𝑜𝑛−1)|2
 152 

where 𝑜𝑛 is the estimate of the complex object on 𝑛th iteration. Fig. 1d demonstrates the error metrics 146 
during two phase retrieval trials. Both trials have final χ2 values below 10-2, suggesting a reliable phase 147 
retrieval result. The 2nd trial ends at a slightly higher χ2 value, which is likely due to fixing the support. 148 
As for the η2 values, the 1st trial stagnates around 10-3 during the last 900 iterations of ER, indicating 149 
the algorithm was trapped in a local minimum due to the intentionally loosed support. As a comparison, 150 
the 2nd trial was able to converge to a consistent result, with a final η2 value below 10-8.  151 

Same phase retrieval procedure was used for the 15 keV dataset, i.e., a loose-support phase retrieval 153 
followed by a fixed-support one. As mentioned previously, the extinction length of [004] diffraction 154 
from a perfectly ordered Au crystal is about 0.70 µm, similar to or larger than the dimensions of the 155 
crystal we measured. Therefore, we estimated that kinematical approximation is still valid for the 15 156 
keV dataset. The result of phase retrieval confirmed this estimation. Fig. 2a shows only the amplitude 157 
and phase of object reconstructed using a fixed support. Comparing with the 7.5 keV dataset, the 158 



 

 

reconstruction from 15 keV dataset has an almost identical morphology, with a relatively smooth 159 
amplitude distribution inside the crystal boundary, as expected. The corresponding phase maps show 160 
a smooth distribution in the center part of the crystal, while the region near the boundary has an 161 
approximately 1.2 radian phase ramp relative to the center. This indicates the presence of lattice 162 
displacement in the surface layers of the crystal, which has been discussed in previous studies [2,14]. 163 
The corresponding χ2 and η2 error metrics (see Fig. 2b) have final values below 10-2 and 10-8, 164 
respectively, which are as good as the 2nd trial of 7.5 keV case.  165 

III. Forward simulation of dynamical diffraction 166 

In the first part of this section, we briefly describe the formulism used for propagating the x-ray 167 
wave field through a crystal in the dynamical diffraction regime. Then, the crystal model reconstructed 168 
from the 15 keV dataset is used as the ground truth to simulate the far field diffraction patterns of two 169 
Bragg peaks at corresponding photon energies. The simulation results are validated by a direct 170 
comparison with the experimental data.  171 

A. Dynamical diffraction formulism 172 

The simulation method used in this work is developed based on the study conducted by Yan et 173 
al. [21], with some modifications inspired by Ref. [22]. The propagation and interaction of wavefields 174 
inside a crystal, as well as the absorption and refraction effects, are described by the Takagi-Taupin 175 
equations (TTE) [15,16]. Following Ref. [21,22,27], the crystal wave with two-beam approximation can 176 
be written as:  177 

𝜕𝐷0

𝜕𝑠0
=

𝑖𝑘

2
(𝜒0𝐷0 + 𝜒ℎ𝐷ℎ)

𝜕𝐷ℎ

𝜕𝑠ℎ
=

𝑖𝑘

2
{𝜒ℎ𝐷0 + [1 + 𝜒0 −

𝑘ℎ
2

𝑘2
+

2

𝑘

𝜕(𝒉 ∙ 𝒖)

𝜕𝑠ℎ
] 𝐷ℎ}

(1) 182 

where �̂�0 and �̂�ℎ are the unit vectors along the transmitted wave, 𝐷0(𝒓) exp(𝑖𝒌0 ∙ 𝒓), and diffracted 178 

wave, 𝐷ℎ(𝒓) exp(𝑖𝒌ℎ ∙ 𝒓 − 𝑖𝒉 ∙ 𝒖) , respectively; 𝑘 =
2𝜋

𝜆
  is the wavevector of x-ray, and 𝒌0 = 𝑘�̂�0 , 179 

𝒌ℎ = 𝒌0 + 𝒉 = 𝑘ℎ�̂�ℎ;  𝒉 is the reciprocal lattice vector of the unstrained crystal; 𝒖 is the displacement 180 
vector; 𝜒0, 𝜒ℎ, and 𝜒ℎ are Fourier coefficients of the susceptibility function of the crystal.  181 

Eq. 1 are coupled partial-differential equations and can only be solved analytically in some particular 183 
cases [12]. For a general case, it is necessary to integrate the equations numerically. An iterative 184 
process is developed to numerically solve Eq. 1. For an incident wave 𝜓0(𝒓) exp(𝑖𝒌0 ∙ 𝒓) , at nth 185 
iteration, the transmitted and diffracted waves at an arbitrary point (𝑠0, 𝑠ℎ) on an �̂�0, �̂�ℎ slice of the 186 
crystal (see Fig. 3a) can be obtained:  187 

𝐷0
(𝑛)

(𝑠0, 𝑠ℎ) = 𝐷0(𝑠0
Γ, 𝑠ℎ) exp[𝑖𝑐0(𝑠0 − 𝑠0

Γ)] + 𝑖𝑐ℎ ∫ 𝐷ℎ
(𝑛−1)

(𝑠0
′ , 𝑠ℎ) exp[𝑖𝑐0(𝑠0 − 𝑠0

′ )] 𝑑𝑠0
′

𝑠0

𝑠0
Γ

(2) 194 

𝐷ℎ
(𝑛)

(𝑠0, 𝑠ℎ) = 𝑖𝑐ℎ ∫ 𝐷0
(𝑛)

(𝑠0, 𝑠ℎ
′ ) exp{𝑖𝒉 ∙ [𝒖(𝑠0, 𝑠ℎ) − 𝒖(𝑠0, 𝑠ℎ

′ )] + 𝑖𝑐𝑤(𝑠ℎ − 𝑠ℎ
′ )} 𝑑𝑠ℎ

′
𝑠ℎ

𝑠ℎ
Ω

(3) 195 

where 𝑐0,ℎ,ℎ =
1

2
𝑘𝜒0,ℎ,ℎ  and 𝑐𝑤 =

1

2
𝑘 (1 + 𝜒0 −

𝑘ℎ
2

𝑘2⁄ ) . The integrations use boundary conditions 188 

𝐷0(𝑠0
Γ, 𝑠ℎ) = 𝜓0(𝑠0

Γ, 𝑠ℎ) and 𝐷ℎ(𝑠0, 𝑠ℎ
Ω) = 0, where 𝜓0 is the incident x-ray wave. As shown in Fig. 3a, 189 

Γ and Ω are the upstream crystal boundaries of the transmitted and diffracted waves, respectively; 𝑠0
Γ 190 

is the 𝑠0 coordinate of Γ at 𝑠ℎ, and 𝑠ℎ
Ω is the 𝑠ℎ coordinate of Ω at 𝑠0. The iteration starts by assuming 191 

𝐷ℎ
(0)

= 0, and continues until a converged solution emerges. The mathematical proof of convergence 192 

is detailed in Ref. [22].  193 
For a specific diffraction geometry, Eq. 2,3 are numerically solved for each �̂�0, �̂�ℎ slice of the crystal 196 

to obtain 𝐷ℎ at the exit boundary of the crystal, yielding a 2D wavefront at the exit crystal surface of 197 



 

 

the diffracted beam. Such exit wavefront is propagated to far-field using 2D FT, and the resultant 198 
modulus represents the diffraction pattern recorded by a pixelated detector. To simulate a rocking 199 
curve scan, the process described above is repeated at each rocking angle.  200 

It is worth mentioning that Eq. 2,3 can also accommodate diffraction with only the absorption and 201 
refraction effects—i.e., ignoring the extinction effect—and the situation at the kinematic limit. One 202 
could easily see that the extinction effect is described by the second term on the right-hand side of Eq. 203 
2: the 𝐷0 propagated from the incident surface Γ to a point (𝑠0, 𝑠ℎ) is further attenuated due to the 204 
presence of non-zero 𝐷ℎ on the propagation path. To neglect this effect, we can simply take the 𝐷ℎ 205 
obtained from the first iteration and propagate it to the far-field. As for the situation at the kinematic 206 
limit, not only is the extinction effect neglected, but also the susceptibilities 𝜒0,ℎ,ℎ are set to very small 207 

non-zero values. In this case, 𝐷ℎ in Eq. 3 is simply a function of ∫ 𝐷0(𝒓) exp[𝑖𝒉 ∙ 𝒖(𝒓)] 𝑑𝒓, which is the 208 
well-known formula of kinematical diffraction. 209 

B. Forward simulation of [004] peak 210 

As mentioned earlier in this paper, the [004] diffraction should not see significant dynamical effect, 211 
since the estimate extinction length is comparable to or even larger than the dimension of the crystal. 212 
Therefore, we start with the simulation of [004] diffraction at 15 keV to establish the baseline.  213 

The reconstruction from the 15 keV dataset was used as the model for forward simulation. As shown 214 
in Fig. 2a, the amplitude of the reconstructed object contains obvious modulations. These modulations 215 
are commonly seen in BCDI and usually attributed to numerical errors induced by the FT-based iterative 216 
phase retrieval. To remove such unphysical features, the amplitude inside the crystal was set to 1, 217 
where the crystal boundary was determined by an iso-surface level of 20%.  218 

Three types of far-field diffraction patterns were calculated: a dynamical diffraction model (DM), a 219 
kinematical diffraction model with absorption and refraction effects (AR), and a pure kinematical 220 
diffraction model (KA). The simulations were normalized using integrated intensity of the experimental 221 
data. All simulated diffraction patterns were aligned to the data by minimizing the cross-correlation 222 
coefficient between each pair of 3D diffraction patterns.  223 

Fig. 3 demonstrates the experimental data and results of all three models. Logarithmic-scale line 224 
intensity variations across the center of the Bragg peak are plotted along the three axes of diffraction 225 
patterns in detector frame, as shown in Fig. 3c. As expected, simulations from three models show very 226 
similar intensity profiles, since the effects of absorption, refraction, and extinction are negligible for 227 
this particular reflection. Compared to the data, all three models correctly reproduce the measured 228 
intensity distribution down to the order of 10-4, with well-matched interference fringes. The 229 
simulations slightly differ from the data in the high-q region, especially for where the relative intensity 230 
is less than 10-4 of the center of Bragg peak. This phenomenon will be discussed later.  231 

Besides the inconsistency in high-q region, simulations also show better fringes visibility when 232 
compared with the data. This is likely an effect of the limited coherence of incident x-ray beam, since 233 
the simulations were conducted assuming the crystal is illuminated by fully coherent beam. Although 234 
this partial coherence effect has been separated from the reconstructed object via blind deconvolution 235 
during the phase retrieval process, it cannot be added back by a simple convolution in the forward 236 
simulation. Technically, the diffraction with a partially-coherent beam should be simulated by 237 
considering all major coherent modes of the beam [28,29]. However, understanding the coherence 238 
property of source at 34-ID-C, as well as performing and validating the decomposition of coherent 239 
modes, is out of the scope of this work. Therefore, partial coherent effect is not accommodated in 240 
forward simulations presented in this paper.  241 

C. Forward simulation of [002] peak 242 

Simulation of [002] diffraction at 7.5 keV was conducted using the same method described above. 243 
Similarly, three diffraction models were calculated. It is important to note that the crystal model is 244 



 

 

retrieved from the [004] dataset since it is more error-free and closer to the ground-truth. The phase 245 
of the reconstructed complex object function represents 𝒉[004] ∙ 𝒖. When simulating [002] diffraction, 246 

the phase needs to be divided by 2 to match the momentum transfer vector 𝒉[002].  247 

Simulations were normalized and aligned to the experimental data using the procedure described 248 
in the previous section. In Fig. 4, logarithmic-scale line intensity variations of the simulated diffraction 249 
patterns are plotted against the measured diffraction data. Unlike [004], the KA model result of [002] 250 
is significantly different from ones of DM and AR models. Such differences suggest that absorption, 251 
refraction, and extinction effects play an important role for this reflection.  252 

Compared to the data, all models accurately reproduce the height and width of the center peak, but 253 
show different performances in the side lobes. Along the horizontal axis of detector (Fig. 4b), results 254 
from all three models show interference fringes with periodicities and relative intensities similar to the 255 
data. The DM model shows a slightly better consistency, especially on the +Δq side of the center peak. 256 
Like the [004] case, the fringe visibilities of simulated results are better than the data, which can be 257 
attributed to the effect of partial coherence. Along the vertical axis of detector (Fig. 4a), different levels 258 
of consistency are observed on the +Δq side and -Δq side. On the +Δq side, the relative intensities of 259 
side lobes from DM and KA models are very similar to those of data, except for the 2nd and 5th orders. 260 
For AR model, the 1st order side lobe has a relative intensity 30% lower than the one of experimental 261 
data, indicating it cannot reproduce the relative intensity accurately. On the -Δq side, relative 262 
intensities of side lobes calculated from KA model are significantly weaker than those of data by a 263 
factor of 50% or more. The first two side lobes from AR model have similar relative intensities as the 264 
ones of data, but the 3rd order is as weak as the one from KA model. As a comparison, DM model 265 
correctly reproduces the intensities of the first three orders of side lobes, down to a relative intensity 266 
as low as 10-4. Higher order side lobes of DM simulation do not match the data very well, which will be 267 
discussed in next section.  268 

Besides the visual inspection, we also calculated the χ2 error metric between the data and 269 
simulations. The χ2 values are 0.047 for DM model, 0.064 for AR model, and 0.121 for KA model. Both 270 
DM and AR have significant lower χ2 values than KA, suggesting that most of the subtle changes in side 271 
lobes are caused by the absorption and refraction effects. Meanwhile, DM’s error is slightly better than 272 
AR, indicating that the extinction effect also play an important role in this reflection. As a comparison, 273 
for the [004] reflection at 15 keV, the χ2 values are 0.081, 0.080, and 0.167 for DM, AR, and KA models, 274 
respectively. While the absorption and refraction effects are still important for [004] reflection, the 275 
difference caused by extinction effect is negligible.  276 

IV. Discussion 277 

As mentioned above, simulations using DM model can accurately reproduce the intensity 278 
distribution in the low-q region, but difference in the high-q region is still observed. This is mostly 279 
caused by two factors. First, because of the well-known Q-4 power-law decay of the diffraction 280 
signal [30], the measured diffraction data has many fewer photon counts in the high-q region. Such 281 
low counts result in a much higher uncertainty of measurement—namely the Poisson noise—as 282 
demonstrated by the error bars in Fig 3c and 4. The weak signal is also more susceptible to background 283 
noise like scattering from alien scatterers [31]. Since we did not add any noise to the simulated 284 
diffraction patterns, it is not surprising that the simulations and data are inconsistent in the high-q 285 
region. Second, we do not know the ground truth and the reconstructed crystal from [004] dataset 286 
could still contain artificial fine structures because of the noisy high-q data. Forward simulations from 287 
such an imperfect crystal model would inherently cause inconsistency in the high-q region when 288 
compared with experimental data.  289 

Besides the differences in high-q region, simulations also show mismatch at some specific 290 
momentum transfer values. For example, as shown in Fig. 4a, the 2nd side lobe on the +Δq side always 291 
has a much higher relative intensity when comparing simulations to the data. Although the actual 292 



 

 

cause is unclear, mismatch at a specific momentum transfer value usually indicates the real space 293 
object contains artefacts with the corresponding spatial frequency. Our hypothesis is that the FT-based 294 
phase retrieval process introduces numerical errors with certain spatial frequencies. As shown in Fig. 295 
2a, not only the amplitude of the reconstructed object function contains unphysical modulations, but 296 
the phase term also shows visible modulations that are spatially correlated to those in amplitude. The 297 
modulations in amplitude have been removed before performing forward simulations, based on a 298 
physical assumption that the effective electron density of the crystal is uniform. The phase artefacts, 299 
however, cannot be corrected without knowing the ground truth. A potential solution to this problem 300 
is performing phase retrieval with constrained amplitude variation. Such an additional constraint might 301 
force the algorithm to find a solution with uniform amplitude distribution and eliminate the unphysical 302 
modulations in phase.  303 

From the reconstruction of [002] shown in Fig. 1a,b, as well as the previous theoretical 304 
studies [10,22], we can see that both absorption/refraction effect and extinction effect can cause the 305 
low-intensity region in amplitude map and the corresponding phase artefacts. However, these two 306 
effects have different impacts in practice. Absorption/refraction effect induces artefacts that are 307 
linearly proportional to the optical path of x-ray inside the crystal. Such artefacts can be identified and 308 
numerical corrected after the phasing process since the FT-based mathematical model is still valid [10]. 309 
As a comparison, extinction effects usually induce non-linear artefacts due to the fact that 3D Fourier 310 
transform is no longer sufficient to describe the physical process. Without knowing the ground truth, 311 
it is very difficult or almost impossible to distinguish the extinction-induced artefacts from actual 312 
deformations in the crystal. The forward simulation method described in this paper can serve as a 313 
validation tool to evaluate the severity of the issue. By comparing simulated diffraction patterns from 314 
kinematical and dynamical models with measured ones, as well as the reconstructions from various 315 
models and measured data (as shown in Appendix B), we can verify whether the reconstruction result 316 
is free from dynamical artefacts.  317 

V. Conclusion 318 

In summary, we performed BCDI measurements at two energy points on the same Au crystal to 319 
evaluate the impact of dynamical diffraction in the reconstruction. They correspond to two scenarios: 320 
one where the extinction length is much less than the dimension of crystal, and the other where the 321 
extinction length is comparable to the dimension of crystal. For the former scenario, both dynamical 322 
and kinematical models produce the similar 3D diffraction intensity consistent with measured data, 323 
suggesting that the dynamical effects are negligible. For the latter scenario, simulation using the 324 
dynamical diffraction model reproduces more accurately subtle the subtle changes of the interference 325 
fringes in the experimental data, which cannot be achieved using the kinematical approach. We show 326 
that these subtle changes in the diffraction pattern can lead to erroneous reconstruction result with a 327 
FT-based phase-retrieval algorithm. To alleviate the dynamical artefact, a high-index reflection with 328 
bigger extinction depth would be preferred. The reconstruction-forward simulation method proposed 329 
here can be used as a cross-validation tool to assess the correctness of FT-based model. Although at 330 
the current stage a quantitative correction removing the dynamical artefacts has not been achieved, 331 
the iterative nature of the forward modeling makes it possible to be incorporated into the iterative 332 
optimization algorithm in the future to accommodate dynamical diffraction effects in BCDI phase 333 
retrieval. Such algorithm will enable BCDI on hierarchical systems that contain large crystalline grains 334 
and domains, which are commonly seen in emerging functional materials like additive manufactured 335 
metals, single-crystal cathode materials, and photonic nanostructures. Quantitively mapping strain in 336 
these systems is essential for understanding and optimizing their functional properties. 337 
 338 
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Appendix A: Estimation of extinction length in a finite crystal 347 

In this work, the extinction length in a finite crystal is estimated by calculating the extinction depth 348 
in a perfectly ordered crystal, considering the symmetric case of Bragg geometry. The extinction depth 349 
is defined as the depth along the normal direction of the surface at which the transmission intensity 350 
decreased to 1/e. According to Ref. [12], the extinction length in Bragg geometry is  351 

𝐿𝑒𝑥𝑡
𝐵𝑟𝑎𝑔𝑔

=
𝜆√𝛾0|𝛾ℎ|

𝑅𝑒(√𝜒ℎ𝜒ℎ̅)
 360 

where 𝛾0,ℎ are the direction cosines, and 𝜒ℎ,ℎ̅ = 𝜒𝑟ℎ,𝑟ℎ̅ + 𝑖𝜒𝑖ℎ,𝑖ℎ̅ are the Fourier components of the 352 

dielectric susceptibility. Considering the symmetric case, the extinction depth is 353 

𝐿𝑒𝑥𝑡
𝐵𝑟𝑎𝑔𝑔

=
𝜆𝑠𝑖𝑛𝜃𝐵

𝑅𝑒(√𝜒ℎ𝜒ℎ̅)
 361 

where 𝜃𝐵 is the Bragg angle. Also from Ref. [12], there is  354 

𝑅𝑒(√𝜒ℎ𝜒ℎ̅) = |𝜒𝑟ℎ| =
𝑅𝜆2𝐹𝑟ℎ

𝜋𝑉
 362 

where 𝑅  is the classical radius of the electron, 𝐹ℎ = 𝐹𝑟ℎ + 𝑖𝐹𝑖ℎ  is the structure factor, and 𝑉  is the 355 
volume of the unit cell. Combining these two equations, we have  356 

𝐿𝑒𝑥𝑡
𝐵𝑟𝑎𝑔𝑔

=
𝜆𝑠𝑖𝑛𝜃𝐵

𝑅𝑒(√𝜒ℎ𝜒ℎ̅)
=

𝜋𝑉𝑠𝑖𝑛𝜃𝐵

𝜆𝑅𝐹𝑟ℎ
~

1

𝑑
 363 

where the Bragg’s law 𝜆 = 2𝑑𝑠𝑖𝑛𝜃𝐵 is used. From this equation, we can see that for the symmetric 357 
case in Bragg geometry, if the photon energy is not very close to the absorption edge, the extinction 358 
depth has a linear dependence to 1/d.  359 

The extinction depths of [002] and [004] reflections at two photon energies in a perfectly ordered 364 
gold crystal are listed in Table A1. We can see that [002] reflection at 7.5 keV and [004] reflection at 15 365 
keV have the identical diffraction geometry but significantly different extinction depths. Therefore, we 366 
are able to tune the ratio between the extinction depth and the crystal size, without changing the 367 
sample crystal or the diffraction geometry.  368 
 369 

TABLE A1. Extinction depths of [002] and [004] reflections at 7.5 keV and 15 keV, respectively. 370 

Au Reflection 
Symmetric, Bragg geometry extinction depth [µm] 

σ-polarized π-polarized 

7.5 keV 
[002] 0.251 0.374 

[004] 0.706 2.245 

15 keV 
[002] 0.251 0.273 

[004] 0.703 1.047 



 

 

 371 

Appendix B: Phase retrieval of simulated data with different 372 

models 373 

To better understand the impact of absorption, refraction, and extinction effects on a reconstruction 374 
from diffraction data, we performed phase retrieval on diffraction data simulated using three models. 375 
The results are demonstrated in Fig. A1. For all phasing processes, 4500 iterations were carried out, 376 
while the first 3600 iterations alternated between 50 iterations of ER and 250 iterations of HIO, and 377 
the rest 900 iterations were ER only.  378 

Fig. A1a-c demonstrate reconstructed objects from KA, AR, and DM, respectively, using the regular 379 
shrink-wrap approach with a Gaussian blurry function with 1.0 pixel width and 20% cutoff threshold. 380 
As a comparison, results shown in Fig. A1d-f were retrieved using the two-step approach described in 381 
Section II-B. Apparently, both approaches were able to invert the diffraction from KA correctly, resulting 382 
in reconstructions very similar to the crystal model used for forward simulation (as shown in Fig. A1a, 383 
d). However, it is worth noting that both reconstructions contain amplitude modulations, while the 384 
crystal model has a flat amplitude distribution inside the crystal boundary.  385 

Reconstructions from the AR simulation, as shown in Fig. A1b, e, have ununiform amplitude 386 
distribution inside the crystal boundary due to the attenuation of transmitted x-ray beam. The 387 
retrieved crystals are slightly different in shape. Specifically, the XZ cross-section of the crystal inverted 388 
via regular shrink-wrap approach (Fig. A1b middle) has an asymmetrical, hexagonal shape, which is 389 
different from the crystal model used for simulation. This can be attributed to the support that was 390 
overtightened by the shrink-wrap approach. While tweaking the parameters of the Gaussian blurry 391 
function might correct this problem, one could easily overlook such an inconsistency without knowing 392 
the ground truth. As a comparison, the two-step approach correctly retrieved the crystal shape.  393 

For the DM simulation, phasing with the shrink-wrap approach was not able to obtain a reasonable 394 
crystal shape due to stagnation. The two-step approach, however, was still able to get the correct shape. 395 
Meanwhile, compared with the reconstruction of AR simulation which shows a relatively smooth phase, 396 
reconstruction of DM simulation contains significant phase artefacts that are spatially correlated with 397 
the artefacts in amplitude distribution. In practice, such phase artefacts are likely to be interpreted as 398 
localized defects, while the ground truth or complementary information is lacking.  399 

 400 
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Figures 469 

 470 
FIG. 1. Reconstruction from [002] peak at 7.5 keV. The diffraction data was first inverted using an intentionally loosened 471 
support (a) and then using a fixed support (b). The scale bar is 250 nm. For both (a) and (b), slices of amplitude (top row) 472 
and phase (bottom row) are plotted, where the left, middle, and right columns are the slices along x-y, x-z, and y-z planes, 473 
respectively. The definition of diffraction geometry is shown in (c). 𝒌𝑖  and 𝒌𝑓  are the wavevectors of incident and 474 
diffracted X-ray photons, respectively. The laboratory coordinate is right-handed, where y is upward, and z is the 475 
propagation direction of incident x-ray beam. δ and γ are the detector angles. (d) demonstrates error metrics during the 476 
iterative phase retrieval. 𝜒2 of the first (blue line) and second (amber line) trials, as well as the corresponding 𝜂2 (green 477 
dashed-line and red dashed-line, respectively), are plotted in logarithmic scale.  478 
  479 



 

 

 480 
FIG. 2. Reconstruction from [004] peak at 15 keV. The diffraction data was inverted following the same two-step 481 
procedure. The result using fixed support is shown in (a). The scale bar is 250 nm. Slices of amplitude (top row) and 482 
phase (bottom row) are demonstrated, where the left, middle, and right columns are the slices along x-y, x-z, and y-z 483 
planes, respectively. Error metrics—𝜒2  (solid blue) and 𝜂2  (dashed amber)—during the phase retrieval with fixed 484 
support are plotted in logarithmic scale in (b).  485 
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 487 

 488 
FIG. 3. Forward simulation of [004] peak at 15 keV. (a) Schematic of x-ray diffraction from an arbitrary crystal.  𝒔0, 𝒔ℎ 489 
represent the directions of transmitted and diffracted waves, respectively. Boundary conditions must be satisfied on Γ 490 
(blue) for transmitted wave and on Ω (purple) for diffracted wave. The wavefield at an arbitrary voxel P inside the crystal 491 
is integrated from all upstream voxels, as marked by red and green arrows. (b) 3D diffraction intensity of experimental 492 
data (left) and forward simulation from DM model (right), plotted in the detector frame. (c) Line intensity variations 493 
across the center of 3D diffraction intensity—along y-axis (top) and x-axis (middle) of detector—and rocking axis 494 
(bottom). Simulation results from DM (dashed amber), AR (dashed green), and KA (dashed red) are normalized to the 495 
experimental data (solid blue) by integrated intensity, and then aligned together using cross-correlation. Black error bars 496 
represent the Poisson noise of DM model simulation at ±50 and ±70 µm-1, respectively.  497 
  498 



 

 

 499 

 500 
FIG. 4. Forward simulation of [002] peak at 7.5 keV. Line intensity variations from experimental data (solid blue), DM 501 
(dashed amber), AR (dashed green), and KA (dashed red) are plotted across the center of 3D diffraction intensity, along 502 
(a) y-axis and (b) x-axis of detector, and (c) rocking axis. Black error bars represent the Poisson noise of DM model 503 
simulation at ±50 and ±70 µm-1, respectively. (d) Detail of the first few orders of side lobes on the -Δq side, from data 504 
shown in (a) Black error bars represent the Poisson noise of DM model simulation at -20, -30, and -40 µm-1, respectively.  505 
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 507 
FIG. A1. Reconstructions from diffraction data simulated using different models. (a), (d) are retrieved from KA, (b), (e) 508 
are from AR, and (c), (f) are form DM. Traditional shrink-wrap algorithm was used when inverting (a), (b), and (c), while 509 
(d), (e), and (f) were inverted using the two-step approach described in Section II-B.  510 
 511 


