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Multiple-Q magnetic states, such as a skyrmion crystal, become a source of unusual transport
phenomena and dynamics. Recent theoretical and experimental studies clarify that such multiple-
Q states ubiquitously appear under different crystal structures in metals and insulators. Toward
a systematic understanding of the formation of the multiple-Q states in various crystal systems,
in this theoretical study, we present a low-energy effective spin model with anisotropic exchange
interactions in momentum space. We summarize symmetry rules for nonzero symmetric and anti-
symmetric anisotropic exchange interactions in momentum space, which are regarded as an exten-
sion of Moriya’s rule. According to the rules, we construct the effective spin model for tetragonal,
hexagonal, and trigonal magnets with primitive-lattice and multi-sublattice structures based on the
symmetry of the crystal and wave vector. Furthermore, we describe the microscopic origin of the
effective anisotropic exchange interactions in itinerant magnets by perturbatively analyzing a multi-
band periodic Anderson model with the spin-orbit coupling. We apply the effective spin model to
an itinerant magnet in a P6/mmm crystal and find various multiple-Q states with a spin scalar
chirality in the ground state. Our results provide a foundation of constructing effective phenomeno-
logical spin models for any crystal systems hosting the multiple-Q states, which will stimulate further
exploration of exotic multiple-Q states in materials with the spin-orbit coupling.

I. INTRODUCTION

Topological spin textures have attracted much atten-
tion as a source of unconventional physical phenomena
and a candidate for robust information carriers against
external stimuli [1–5]. Since the first discovery of a
magnetic skyrmion [6–9] in a chiral magnet MnSi [10],
the active searches have revealed its existence in a va-
riety of crystal systems irrespective of spatial inversion
symmetry [11]: cubic [10, 12], hexagonal [13–15], and
tetragonal [16–19] crystal systems. The skyrmion spin
structure is characterized by an integer topological num-
ber (skyrmion number), which gives rise to intriguing
transport phenomena, such as the topological Hall and
Nernst effects [14, 20–25]. In addition, a variety of new
topological spin textures beyond the skyrmions have also
been extensively investigated [5], some of which have
been observed in experiments, such as a hedgehog [26–
28], biskyrmion [29, 30], skyrmionium [31], ferrimagnetic
skyrmion [32], and antiferromagnetic skyrmion [33].

In the crystal systems, such topological spin textures
often appear in a periodic form, which are expressed as
a superposition of multiple spin density waves termed as
a multiple-Q state [34–39]. The multiple-Q spin configu-
ration consisting of n-tuple spin density waves with the
ordering wave vectors {Q1,Q2, · · · ,Qn} is given by

Si =

n∑
ν=1

(
eiQν ·RiSQν

+ e−iQν ·RiS−Qν

)
, (1)
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where Sq is the Fourier transform of the spin at the wave
vector q. A variety of the multiple-Q magnetic structures
are realized depending on the type of the constituent
waves characterized by SQν

. For example, a triple-Q su-
perposition of the proper-screw (cycloidal) spiral waves
leads to a Bloch-type (Néel-type) skyrmion crystal (SkX)
with a skyrmion number of one, while that of the si-
nusoidal waves induces different types of the SkX with
a skyrmion number of two. The multiple-Q spin con-
figuration in Eq. (1) can describe other periodic topo-
logical spin textures, such as a hedgehog lattice [40–46],
meron-antimeron crystal [47–55], and vortex crystal [56–
62]. Furthermore, the sublattice-dependent multiple-Q
states [63–67], such as the antiferromagnetic SkX, are
described by taking into account the sublattice degrees
of freedom in Eq. (1).

The emergence of multiple-Q states largely depends
on the microscopic mechanisms, which have been exten-
sively studied for various systems. The typical mech-
anisms are dipolar interactions [53, 68, 69], competing
exchange interactions in frustrated magnets [45, 66, 70–
72], a biquadratic spin interaction in itinerant mag-
nets [73–77], and symmetric and antisymmetric mag-
netic anisotropy in systems with the spin-orbit coupling
(SOC) [9, 49, 52, 78–89].

In this paper, we focus on the role of symmetric and
antisymmetric anisotropic exchange interactions origi-
nating from the SOC and dipolar interactions. The
Dzyaloshinskii-Moriya (DM) interaction is the most fa-
miliar anisotropic exchange interaction arising in noncen-
trosymmetric materials [90, 91]. It favors the spiral spin
density wave with a spiral plane perpendicular to the
DM vector in the combination of the ferromagnetic ex-
change interaction, which results in the multiple-Q spiral
states in an external magnetic field [9, 41]. As the DM
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vector is determined by the crystal symmetry, which is
so-called Moriya’s rule [91], one can expect what types
of multiple-Q states appear in the DM-based systems [7].
For example, the DM interaction in P422, P4mm, and
P 4̄m2 crystals tends to favor the Bloch-, Néel-, and anti-
type SkXs, respectively.

In contrast to the early studies based on the antisym-
metric DM interaction, recent discoveries of SkX and
hedgehog lattices in centrosymmetric magnets [14, 15,
18, 28] open up the possibility that various multiple-Q
states can emerge by symmetric anisotropic exchange in-
teractions. In fact, some model calculations have clar-
ified that such a symmetric anisotropic exchange in-
teraction stabilizes the multiple-Q states including the
SkXs in centrosymmetric crystals with the space group
P4/mmm [51–53, 92, 93] P6/mmm [54, 69, 94–96], and
P 3̄m1 [61, 89, 97]. However, there have been few studies
focusing on the symmetric anisotropic exchange inter-
actions in spite of various types of them depending on
the crystal symmetry classified by the space group. To
understand which types of anisotropic exchange interac-
tions play an important role in inducing the multiple-Q
states, it is highly desired to perform a systematic in-
vestigation for various space groups irrespective of the
centrosymmetric and noncentrosymmetric lattice struc-
tures. Furthermore, it is important to clarify relevant
microscopic model parameters for the emergence of the
anisotropic exchange interactions beyond the symmetry
argument.

To systematically investigate the multiple-Q instabil-
ity induced by the anisotropic exchange interactions, we
present how to construct an effective spin model in dis-
crete lattice systems based on the magnetic representa-
tion [98] and perturbation analyses [73, 77, 99]. Our
effective spin model can be applied to magnetic sys-
tems with both a short-range exchange interaction in
insulators and a long-range one in metals irrespective
of classical and quantum spins. Furthermore, our ef-
fective spin model can be used irrespective of whether
the anisotropic form of the interaction originates from
the SOC or dipolar interaction. First, we find general
symmetry rules to specify both symmetric and antisym-
metric exchange interactions in momentum space, which
is an extension of Moriya’s rule. The obtained rules give
a foundation of constructing the effective low-energy spin
model with the momentum-resolved anisotropic exchange
interactions based on the symmetry of the crystal and
wave vector, which are closely related to the neutron
and x-ray experiments. As an example, we demonstrate
how to construct the effective spin model in tetragonal,
hexagonal, and trigonal crystal systems by applying the
rules to 24 space groups with primitive lattices. In ad-
dition, we show an extension of the symmetry rules to
multi-sublattice systems and test our rules on the hon-
eycomb and kagome systems as examples. Next, we
show one of the microscopic origins of the long-range
anisotropic exchange interactions by starting from the
periodic Anderson model (PAM) incorporating the effect

of the SOC [61, 100, 101]. We present important mi-
croscopic model parameters for the anisotropic exchange
interactions based on the perturbation analysis. The
perturbation analysis beyond the symmetry argument
gives a way to quantitatively evaluate the anisotropic
exchange interactions. Finally, we demonstrate that
the anisotropic exchange interactions stabilize various
multiple-Q states with a spin scalar chirality by consid-
ering a specific example in a P6/mmm crystal and by
performing the simulated annealing for the effective spin
model. The present results to construct the effective spin
model with the momentum-resolved interactions provide
both symmetric and microscopic ways of investigating
a plethora of multiple-Q instabilities in various crystal
systems. Especially, the present effective spin model
is useful to identify complicated spin configurations in-
cluding the SkX in materials, such as Gd2PdSi3 [14],
Gd3Ru4Al12 [15, 96], GdRu2Si2 [18, 102, 103], Eu-
PtSi [104–108], and EuAl4 [109–112].

This paper is organized as follows. In Sec. II, we show a
way of obtaining the momentum-resolved anisotropic ex-
change interactions under the crystal symmetry based on
the magnetic representation analysis. In Secs. III and IV,
we discuss the origin of momentum-resolved anisotropic
exchange interactions in itinerant electron models and lo-
calized spin models, respectively. In particular, we show
the relationship between the long-range anisotropic ex-
change interaction and microscopic model parameters by
performing the perturbation calculation in the PAM in
Sec. III. In Sec. V, we present how to construct and an-
alyze the effective spin model by taking an example of
the system belonging to the P6/mmm space group. We
summarize the obtained results and discuss a perspective
in Sec. VI.

II. SYMMETRY ANALYSIS OF ANISOTROPIC
EXCHANGE INTERACTIONS

In this section, we show classification of anisotropic
exchange interaction in momentum space in crystal sys-
tems based on the symmetry argument. In Secs. II A 1
and II A 2, we present general rules to give nonzero
momentum-resolved anisotropic exchange interactions in
primitive-lattice systems and multi-sublattice systems,
respectively. Then, we explicitly show the effective spin
model in tetragonal, hexagonal, and trigonal crystal sys-
tems with the primitive lattice in Sec. II B 1. In addi-
tion, we show the effective spin model on the honeycomb
(kagome) structure, as an example of two-sublattice
(three-sublattice) systems in Sec. II B 2. We also dis-
cuss a tendency of single-Q and multiple-Q modulations
in the presence of the anisotropic exchange interactions
in Sec. II C.
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FIG. 1. Symmetry operations for wave vectors q and −q in momentum space: (a) space inversion at the inversion center
denoted as 0, (b) mirror perpendicular to q, (c) twofold rotation perpendicular to q, (d) mirror parallel to q, (e) twofold
rotation around q, and (f) n-fold (n = 3, 4, 6) rotation around q. The nonzero components of Dq, Eq, and Fq are represented
by the orange, yellow, and magenta arrows, respectively. Eq in (a) and Fq in (a)-(e) are arbitrary (arb).

A. General symmetry rules

1. Primitive-lattice case

Let us start by considering a general form of the
momentum-resolved exchange interaction with wave vec-
tor q. We consider an arbitrary bilinear exchange cou-
pling, which is given by

STq XqS−q, (2)

with

Xq =

 F xs
q Ezsq + iDzs

q Eysq − iDys
q

Ezsq − iDzs
q F ysq Exs

q + iDxs
q

Eysq + iDys
q Exs

q − iDxs
q F zsq

 . (3)

In Eq. (2), STq = (Sxs
q , S

ys
q , S

zs
q ) is the Fourier transform

of the spin, (xs, ys, zs) are cartesian spin coordinates, and
T denotes the transpose of the vector. It is noted that
the following results in this section are applicable to both
classical spin and quantum spin operator; the expecta-
tion value of the spin is not necessarily fully polarized.
In addition, we ignore the sublattice structure in the lat-
tice system in Eq. (2) for simplicity; we also discuss the
counterpart to the multi-sublattice systems [see Eqs. (7)
and (8)] in Sec. II A 2. In Eq. (3), Xq stands for the gen-
eral form of the interaction matrix with the real coupling
constants Dq = (Dxs

q , D
ys
q , D

zs
q ), Eq = (Exs

q , E
ys
q , E

zs
q ),

and Fq = (F xs
q , F ysq , F zsq ); Dq corresponds to the anti-

symmetric interaction in spin space, while Eq and Fq

correspond to the symmetric off-diagonal and diagonal

ones, respectively. For instance, the xs components of
Dq, Eq, and Fq are expressed as

iDxs
q

(
Sysq S

zs
−q − Szsq S

ys
−q
)
, (4)

Exs
q

(
Sysq S

zs
−q + Szsq S

ys
−q
)
, (5)

F xs
q

(
Sxs
q S

xs
−q
)
. (6)

The momentum-resolved interactions Dq, Eq, and Fq

show a different transformation by reversing q → −q due
to the time-reversal symmetry; Dq = −D−q, Eq = E−q,
and Fq = F−q. The nonzero components in Xq depend
on the crystal symmetry. It is noted that, in general,
Xq depends on both temperature and microscopic model
parameters as discussed in Sec. III, although they do not
affect the following results based on the symmetry anal-
ysis.

We find six rules to determine nonzero q-resolved
anisotropic exchange interactions. In the following, we
consider the wave vector q, which lies inside the Brillouin
zone for simplicity; q does not lie on the Brillouin zone
boundary. Then, the six rules for Dq, Eq, and Fq under
the specific crystal (point group) symmetry are given by
using the magnetic representation theory:

(a) The space inversion symmetry imposes Dq =
0, while there is no constraint on Eq and Fq

[Fig. 1(a)].

(b) The mirror symmetry with respect to the plane
perpendicular to q imposes Dq ‖ plane and Eq ⊥
plane, while there is no constraint on Fq [Fig. 1(b)].
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TABLE I. Symmetry constraint on XAB;q when the point group symmetry fixes the sublattices A and B. The point group
symmetries in momentum space in the left column correspond to those in Fig. 1.

symmetry constraint on XAB;q

inversion center Im(DAB;q) = 0, Im(EAB;q) = 0, Im(FAB;q) = 0

mirror plane ⊥ q Re(DAB;q) ⊥plane, Im(DAB;q) ‖plane, Re(EAB;q) ⊥plane, Im(EAB;q) ‖plane, Im(FAB;q) = 0

twofold axis ⊥ q Re(DAB;q) ‖axis, Im(DAB;q) ⊥axis, Re(EAB;q) ‖axis, Im(EAB;q) ⊥axis, Im(FAB;q) = 0

mirror plane ‖ q DAB;q ⊥plane, EAB;q ⊥plane

twofold axis ‖ q DAB;q ‖axis, EAB;q ‖axis

TABLE II. Symmetry constraint between XAA;q and XBB;q when the point group symmetry interexchanges the sublattices A
and B. The point group symmetries in momentum space in the left column correspond to those in Fig. 1. The superscript ‖ #
(⊥ #) represents the components parallel (perpendicular) to #, where # denotes any of axis and plane.

symmetry constraint on XAA;q and XBB;q

inversion center Im(DAA;q) = −Im(DBB;q), Re(EAA;q) = Re(EBB;q), Re(FAA;q) = Re(FBB;q)

mirror plane ⊥ q Im(D‖planeAA;q ) = Im(D‖planeBB;q ), Im(D⊥plane
AA;q ) = −Im(D⊥plane

BB;q ),

Re(E‖planeAA;q ) = −Re(E‖planeBB;q ), Re(E⊥plane
AA;q ) = Re(E⊥plane

BB;q ), Re(FAA;q) = Re(FBB;q)

twofold axis ⊥ q Im(D⊥axis
AA;q ) = Im(D⊥axis

BB;q ), Im(D‖axisAA;q) = −Im(D‖axisBB;q),

Re(E⊥axis
AA;q ) = −Re(E⊥axis

BB;q ), Re(E‖axisAA;q) = Re(E‖axisBB;q), Re(FAA;q) = Re(FBB;q)

mirror plane ‖ q Im(D⊥plane
AA;q ) = Im(D⊥plane

BB;q ), Im(D‖planeAA;q ) = −Im(D‖planeBB;q ),

Re(E⊥plane
AA;q ) = Re(E⊥plane

BB;q ), Re(E‖planeAA;q ) = −Re(E‖planeBB;q ), Re(FAA;q) = Re(FBB;q)

twofold axis ‖ q Im(D⊥axis
AA;q ) = −Im(D⊥axis

BB;q ), Im(D‖axisAA;q) = Im(D‖axisBB;q),

Re(E⊥axis
AA;q ) = −Re(E⊥axis

BB;q ), Re(E‖axisAA;q) = Re(E‖axisBB;q), Re(FAA;q) = Re(FBB;q)

(c) The twofold rotational symmetry around the axis
perpendicular to q imposes Dq ⊥ axis and Eq ‖
axis, while there is no constraint on Fq [Fig. 1(c)].

(d) The mirror symmetry with respect to the plane par-
allel to q imposes Dq ⊥ plane and Eq ⊥ plane,
while there is no constraint on Fq [Fig. 1(d)].

(e) The twofold rotational symmetry around the axis
parallel to q imposes Dq ‖ axis and Eq ‖ axis,
while there is no constraint on Fq [Fig. 1(e)].

(f) The n-fold (n = 3, 4, 6) rotational symmetries
around the axis parallel to q imposes Dq ‖ axis,
Eq = 0, and Fq = (F xs

q , F⊥q , F
⊥
q ) [Fig. 1(f)].

Here, xs is taken along the q direction and each operation
leaves the origin q = (0, 0, 0) invariant. The detailed
discussion is given in Appendix A. The rules do not
change in the presence of the magnetic field owing to the
characteristic of the bilinear coupling of S±q .

The above rules indicate that nonzero components of
Dq and Eq largely depend on the point group symmetry,
while there is only one constraint for Fq. In particular,
the rules for Dq are the counterpart in momentum space
of Moriya’s rule in real space [91]. In addition, the condi-
tion for the symmetric off-diagonal interaction Eq is also
obtained, where the nonzero component of Eq is different
from (the same as) that of Dq for the rules (a), (b), (c),
and (f) [(d) and (e)]. Thus, the above rules are regarded

as an extension of Moriya’s rule to the momentum space
and symmetric interactions.

2. Multi-sublattice case

Next, we extend the above results to multi-sublattice
cases. The general expression of the momentum-resolved
exchange interactions is described by∑

µ,ν

STµqXµν;qSν−q, (7)

with

Xµν;q =

 Fxs
µν;q Ezsµν;q +Dzsµν;q Eysµν;q −Dysµν;q

Ezsµν;q −Dzsµν;q Fysµν;q Exs
µν;q +Dxs

µν;q

Eysµν;q +Dysµν;q Exs
µν;q −Dxs

µν;q Fzsµν;q

 .

(8)

STµq = (Sxs
µq, S

ys
µq, S

zs
µq) is the Fourier transform of the

spin on the sublattice µ and Xµν;q = X †νµ;q. The interac-
tion matrix Xµν;q is an extension of Xq in Eq. (3), which
is composed of the complex coupling constants Dµν;q =
(Dxs

µν;q,Dysµν;q,Dzsµν;q), Eµν;q = (Exs
µν;q, Eysµν;q, Ezsµν;q), and

Fµν;q = (Fxs
µν;q,Fysµν;q,Fzsµν;q). For µ = ν (µ 6= ν),

Xµν;q represents the intrasublattice (intersublattice) in-
teraction; Xµµ;q has nine independent components be-
cause Re(Dµµ;q) = Im(Eµµ;q) = Im(Fµµ;q) = 0 sim-
ilar to Xq in Eq. (3), while Xµν;q for µ 6= ν has
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TABLE III. Symmetry constraint XAB;q when the point group symmetry interexchanges the sublattices A and B. The point
group symmetries in momentum space in the left column correspond to those in Fig. 1. The superscript ‖ # (⊥ #) represents
the components parallel (perpendicular) to #, where # denotes any of axis and plane.

symmetry constraint on XAB;q

inversion center DAB;q = 0

mirror plane ⊥ q DAB;q ‖ plane, EAB;q ⊥ plane

twofold axis ⊥ q DAB;q ⊥axis, EAB;q ‖axis

mirror plane ‖ q Re(DAB;q) ‖plane, Im(DAB;q) ⊥plane, Re(EAB;q) ⊥plane, Im(EAB;q) ‖plane, Im(FAB;q) = 0

twofold axis ‖ q Re(DAB;q) ⊥ axis, Im(DAB;q) ‖ axis, Re(EAB;q) ‖ axis, Im(EAB;q) ⊥ axis, Im(FAB;q) = 0

TABLE IV. Symmetry constraint between XCA;q and XBC;q when the point group symmetry interexchanges the sublattices A
and B but fixes the sublattice C. The point group symmetries in momentum space in the left column correspond to those in
Fig. 1. The superscript ‖ # (⊥ #) represents the components parallel (perpendicular) to #, where # denotes any of axis and
plane.

symmetry constraint on XCA;q and XBC;q

inversion center DCA;q = −DBC;q, ECA;q = EBC;q, FCA;q = FBC;q

mirror plane ⊥ q D‖planeCA;q = D‖planeBC;q , D⊥plane
CA;q = −D⊥plane

BC;q , E‖planeCA;q = −E‖planeBC;q , E⊥plane
CA;q = E⊥plane

BC;q , FCA;q = FBC;q

twofold axis ⊥ q D⊥axis
CA;q = D⊥axis

BC;q , D‖axisCA;q = −D‖axisBC;q, E⊥axis
CA;q = −E⊥axis

BC;q , E‖axisCA;q = E‖axisBC;q, FCA;q = FBC;q

mirror plane ‖ q Re(D⊥plane
CA;q ) = −Re(D⊥plane

BC;q ), Re(D‖planeCA;q ) = Re(D‖planeBC;q ), Im(D⊥plane
CA;q ) = Im(D⊥plane

BC;q ),

Im(D‖planeCA;q ) = −Im(D‖planeBC;q ), Re(E⊥plane
CA;q ) = Re(E⊥plane

BC;q ), Re(E‖planeCA;q ) = −Re(E‖planeBC;q ),

Im(E⊥plane
CA;q ) = −Im(E⊥plane

BC;q ), Im(E‖planeCA;q ) = Im(E‖planeBC;q ), Re(FCA;q) = Re(FBC;q), Im(FCA;q) = −Im(FBC;q)

twofold axis ‖ q Re(D⊥axis
CA;q ) = Re(D⊥axis

BC;q ), Re(D‖axisCA;q) = −Re(D‖axisBC;q), Im(D⊥axis
CA;q ) = −Im(D⊥axis

BC;q ), Im(D‖axisCA;q) = Im(D‖axisBC;q),

Re(E⊥axis
CA;q ) = −Re(E⊥axis

BC;q ), Re(E‖axisCA;q) = Re(E‖axisBC;q), Im(E⊥axis
CA;q ) = Im(E⊥axis

BC;q ), Im(E‖axisCA;q) = −Im(E‖axisBC;q),

Re(FCA;q) = Re(FBC;q), Im(FCA;q) = −Im(FBC;q)

eighteen independent components. Here, Dµν;q (Eµν;q

and Fµν;q) corresponds to the antisymmetric (symmet-
ric) interactions in spin space; Re(Dµν;q), Im(Eµν;q),
and Im(Fµν;q) [Im(Dµν;q), Re(Eµν;q), and Re(Fµν;q)]
correspond to the antisymmetric (symmetric) interac-
tions for µ ↔ ν; Re(Dµν;q), Re(Eµν;q), and Re(Fµν;q)
[Im(Dµν;q), Im(Eµν;q), and Im(Fµν;q)] correspond to the
symmetric (antisymmetric) interactions for q → −q.

Similar to Xq in Sec. II A 1, the symmetry rules for
Xµν;q are obtained by the magnetic representation anal-
ysis, as detailed in Appendix A. Since the interaction is
defined in the momentum space as well as the primitive-
lattice case, it is enough to consider the six point group
symmetries in Fig. 1 to obtain nonzero components of
Xµν;q. The different point from the primitive-lattice case
is to take into account the permutation among the sub-
lattices in each symmetry operation. In the following, we
give the symmetry rules for Xµν;q in two and three sublat-
tice systems in specific examples. As we list the general
rules for the permutation among the sublattices, the fol-
lowing analyses are straightforwardly extended to more
than three-sublattice systems. To simplify the rules, we
consider the situation where the wave vector q is in-
side the Brillouin zone and perpendicular to the principal
axis, which means that there are no symmetry constraints
by the n-fold (n = 3, 4, 6) rotational symmetry around q
in Fig. 1(f).

First, we consider the symmetry rules in terms of

XAA;q, XBB;q and XAB;q(= X †BA;q) for the two-sublattice

case, i.e., µ, ν = A,B in Eq. (7). In contrast to the
primitive-lattice case, the symmetry rules change de-
pending on the permutation symmetry of the sublattices;
we divide the cases where the point group symmetry (i)
fixes or (ii) interchanges the sublattices A and B. In the
case (i), the symmetry constraint on XAA;q (XBB;q) is
the same as that for Xq shown in Figs. 1(a)-1(e), while
the symmetry rules for XAB;q are summarized in Table I.
In this case, there is no constraint between XAA;q and
XBB;q. In the case (ii), the point group symmetry im-
poses constraints between XAA;q and XBB;q and those on
XAB;q, as summarized in Tables II and III, respectively.

Next, we present the symmetry rules for the three-
sublattice case, i.e., µ, ν = A,B,C. There are three
cases of the permutation symmetry: The point group
symmetry (i) fixes the sublattices A, B, and C, (ii) in-
terchanges the sublattices A and B but fixes the sub-
lattice C, and (iii) cyclically interchanges the sublattices
A, B, and C. Here, we only consider the cases (i) and
(ii) since the case (iii) is rare for q perpendicular to the
principal axis. In the case (i), the symmetry constraint
on XAA;q, XBB;q, and XCC;q is the same as that for Xq

shown in Figs. 1(a)-1(e). Besides, the symmetry rules
for XAB;q, XBC;q, and XCA;q are the same as those for
XAB;q shown in Table I. In the case (ii), the symmetry
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constraints between XBC;q and XCA;q are qualitatively
different from the two-sublattice case, which are summa-
rized in Table IV. Meanwhile, the symmetry rules for
the other interaction matrices are obtained by using the
above results; the symmetry constraint on XCC;q is the
same as that for Xq shown in Figs. 1(a)-1(e) and the
symmetry constraint on XAA;q, XBB;q, and XAB;q is the
same as that shown in Tables. II and III.

B. Effective spin model under space groups

1. Primitive-lattice case

The above symmetry argument in Sec. II A 1 gives a
general form of the spin Hamiltonian in any primitive
lattice systems, which is obtained by summing the con-
tribution from entire q in the first Brillouin zone as

H = −
∑
q

STq XqS−q, (9)

where the minus sign is added for later convenience [see
Eq. (38) in Sec. III A]. As a demonstration, we here dis-
cuss a specific form of Xq for 24 gray symmorphic space
groups belonging to the tetragonal, hexagonal, and trig-
onal crystal systems shown in Tables V-VII. The gray
symmorphic space group M defined as M = H+θH with
the symmorphic space group H and the time-reversal op-
eration θ [113]. In the model in Eq. (9), we take the spin
coordinates xs, ys, and zs along the x, y, and z directions
shown in Fig. (2)(a), respectively.

Let us start constructing an effective model consisting
of the interactions at specific wave vectors rather than
all the wave vectors in the Brillouin zone, which is given
by

Heff = −
∑

q∈{Q}

STq XqS−q, (10)

where {Q} represents a set of the symmetry-related wave
vectors. For example, in the tetragonal crystal system,
there are at least four symmetry-related wave vectors
connected by the fourfold rotation, {Q} = ±Q1,±Q2,
whereas there are at least six (three) symmetry-related
connected by the sixfold (threefold) rotation, {Q} =
±Q1,±Q2,±Q3 ({Q} = Q1,Q2,Q3), in the hexagonal
(trigonal) crystal system.

Once {Q} and the space group in the model in Eq. (10)
are determined, we can write down nonzero compo-
nents of Xq following the rules in Sec. II A 1. We
present the results of Xq in the tetragonal, hexagonal,
and trigonal crystal systems, where the wave vectors lie
along the high symmetry lines; Q1 is taken along the
x [Fig. 2(a)] and [110] [Fig. 2(b)] axes in the tetragonal
crystal system, while Q1 is taken along the x [Fig. 2(c)]
and y [Fig. 2(d)] axes in the hexagonal and trigonal
crystal systems. The specific form of XQ1

is sum-
marized in Table V for the tetragonal crystal systems

FIG. 2. A set of {Q} along the different high symmetric
lines inside the first Brillouin zone in (a, b) tetragonal crystal
systems and (c, d) hexagonal and trigonal crystal systems. In
(a) and (b), Q1 and Q2 are connected by the fourfold rotation
around the z axis, while in (c) and (d), Q1, Q2, and Q3 are
connected by the threefold rotation. The wave vectors in {Q}
lie on the xy plane.

(P4/mmm,P422, P 4̄2m,P 4̄m2, P4mm,P4/m,P4, and
P 4̄), Table VI for the hexagonal crystal systems
(P6/mmm,P622, P 6̄m2, P 6̄2m,P6mm,P6/m,P 6̄, and
P6), and Table VII for the trigonal crystal systems
(P 3̄m1, P 3̄1m,P321, P312, P3m1, P31m,P 3̄, and P3).
In Tables V-VII, Nc stands for the number of indepen-
dent components of XQ1

. Xq for the low-symmetric {Q}
is also obtained by using the same rules, as shown in Ap-
pendix B.

From Tables V-VII, one finds two features irrelevant
to the details of the space group. First, there are at
least three independent components (Nc ≥ 3) in all
cases. Among them, one component corresponds to the
isotropic contribution, F iso

q = (F xq + F yq + F zq )/3. Sec-
ond, the antisymmetric interaction Dq only appears in
the absence of the spatial inversion symmetry, while the
symmetric ones Eq and Fq appear irrespective of the in-
version symmetry, as shown in the rule (a) in Sec. II A 1.

In addition, there are three characteristics in Tables V-
VII. The first is that the interaction matrix depends
on not only the space group but also the direction of
Q1, which reflects the different symmetry of the wave
vectors. In particular, XQ1‖x̂ and XQ1‖ŷ in P 6̄m2,
P 6̄2m, P321, P312, P3m1, and P31m crystals have
a different number of independent components. The
second is that the diagonal components of the inter-
actions are different for all the space groups except
for Q1 ‖ [110] in P4/mmm,P422, P 4̄2m,P 4̄m2, P4mm,
and P4/m crystal systems, i.e., F xQ1

6= F yQ1
6= F zQ1

;

the difference between F xQ1
and F zQ1

(F yQ1
and F zQ1

) is
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TABLE V. Interaction matrix XQ1 and the number of independent components Nc in the tetragonal crystal systems for the
high-symmetric wave vector Q1 shown in Figs. 2(a) and 2(b). The spin coordinates xs, ys, and zs are taken along the x, y, and
z directions in Fig. (2)(a), respectively.

Q1 ‖ x̂ Q1 ‖ [110]

space group H XQ1 Nc XQ1 Nc

P4/mmm

F xQ1
0 0

0 F yQ1
0

0 0 F zQ1

 3

F xQ1
EzQ1

0

EzQ1
F xQ1

0

0 0 F zQ1

 3

P422

F xQ1
0 0

0 F yQ1
iDx

Q1

0 −iDx
Q1

F zQ1

 4

 F xQ1
EzQ1

−iDx
Q1

EzQ1
F xQ1

iDx
Q1

iDx
Q1
−iDx

Q1
F zQ1

 4

P 4̄2m

F xQ1
0 0

0 F yQ1
iDx

Q1

0 −iDx
Q1

F zQ1

 4

 F xQ1
EzQ1

iDx
Q1

EzQ1
F xQ1

iDx
Q1

−iDx
Q1
−iDx

Q1
F zQ1

 4

P 4̄m2

 F xQ1
0 −iDy

Q1

0 F yQ1
0

iDy
Q1

0 F zQ1

 4

 F xQ1
EzQ1

−iDx
Q1

EzQ1
F xQ1

iDx
Q1

iDx
Q1
−iDx

Q1
F zQ1

 4

P4mm

 F xQ1
0 −iDy

Q1

0 F yQ1
0

iDy
Q1

0 F zQ1

 4

 F xQ1
EzQ1

iDx
Q1

EzQ1
F xQ1

iDx
Q1

−iDx
Q1
−iDx

Q1
F zQ1

 4

P4/m

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

P4

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

P 4̄

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

owing to an inequivalence between the in-plane and z
directions, while that between F xQ1

and F yQ1
is owing

to the discrete rotational symmetry around the princi-
pal axis. It is noted that in the case of Q1 ‖ [110] in
P4/mmm,P422, P 4̄2m,P 4̄m2, P4mm, and P4/m crys-
tal systems, all the space groups allow nonzero EzQ1

in-

stead of different F xQ1
and F yQ1

. The third is that the

symmetric off-diagonal components, ExQ1
and EyQ1

, only
appear in the trigonal crystal systems, which do not have
the twofold axis along the z direction and the horizontal
mirror plane [see rules (c) and (d)]. Thus, a qualitative
different multiple-Q state is expected under ExQ1

and EyQ1

in the trigonal crystal systems from that in the tetragonal
and hexagonal crystal systems, as discussed in Sec. II C.

The other relevant interactions at the symmetry-
related wave vectors in {Q} are obtained by rotating the
interaction matrix XQ1

by the angle φ, which is repre-
sented by

XQη
= Γ(φ)XQ1

Γ−1(φ), (11)

where

Γ(φ) =

σ cosφ −σ sinφ 0

σ sinφ σ cosφ 0

0 0 1

 (12)

with σ = 1 (σ = −1) for the rotation (improper rotation)
and η = 2, 3. Specifically, XQ2

for P4/mmm, P422,
P4mm, P4/m and P4 (P 4̄2m, P 4̄m2, and P 4̄) are ob-
tained by using Eqs. (11) and (12) with φ = π/2 and
σ = 1 (σ = −1), and XQ2

(XQ3
) in the hexagonal and

trigonal systems are obtained with φ = 2π/3 (φ = 4π/3)
and σ = 1. X−Q is obtained from X−Q = X∗Q by the
time-reversal symmetry.

Tables V-VII are useful to construct the model not
only with {Q} shown in Fig. 2 but also with other {Q}.
For example, the model with {Q} = {±Q1 ‖ x̂,±Q2 ‖
ŷ,Q1 ± Q2,−Q1 ± Q2} in P4/mmm crystal is con-
structed from XQ1‖x̂ and X(Q1+Q2)‖[110], which are given
in Table V. Then, the number of independent interac-
tions in the model is six. Furthermore, the general model
in Eq. (9) with the interactions at the two-dimensional
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TABLE VI. Interaction matrix XQ1 and the number of independent components Nc in the hexagonal crystal systems for the
high-symmetric wave vector Q1 shown in Figs. 2(c) and 2(d). The spin coordinates xs, ys, and zs are taken along the x, y, and
z directions in Fig. (2)(a), respectively.

Q1 ‖ x̂ Q1 ‖ ŷ
space group H XQ1 Nc XQ1 Nc

P6/mmm

F xQ1
0 0

0 F yQ1
0

0 0 F zQ1

 3

F xQ1
0 0

0 F yQ1
0

0 0 F zQ1

 3

P622

F xQ1
0 0

0 F yQ1
iDx

Q1

0 −iDx
Q1

F zQ1

 4

 F xQ1
0 −iDy

Q1

0 F yQ1
0

iDy
Q1

0 F zQ1

 4

P 6̄m2

 F xQ1
iDz

Q1
0

−iDz
Q1

F yQ1
0

0 0 F zQ1

 4

F xQ1
0 0

0 F yQ1
0

0 0 F zQ1

 3

P 6̄2m

F xQ1
0 0

0 F yQ1
0

0 0 F zQ1

 3

 F xQ1
iDz

Q1
0

−iDz
Q1

F yQ1
0

0 0 F zQ1

 4

P6mm

 F xQ1
0 −iDy

Q1

0 F yQ1
0

iDy
Q1

0 F zQ1

 4

F xQ1
0 0

0 F yQ1
iDx

Q1

0 −iDx
Q1

F zQ1

 4

P6/m

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

P 6̄

 F xQ1
EzQ1

+ iDz
Q1

0

EzQ1
− iDz

Q1
F yQ1

0

0 0 F zQ1

 4

 F xQ1
EzQ1

+ iDz
Q1

0

EzQ1
− iDz

Q1
F yQ1

0

0 0 F zQ1

 4

P6

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

wave vectors can be constructed from Tables V-VII and
Appendix B, which will give an insight into the sta-
bility of the two-dimensional multiple-Q states, such
as the SkX. Similar to the case with two-dimensional
wave vectors, one can construct the spin model with
the interactions at three-dimensional wave vectors based
on the rules (a)-(f), which leads to a minimal effective
spin model to investigate an instability toward three-
dimensional multiple-Q states [42, 46, 108, 114], such as
the hedgehog lattice.

Although one can start form the general model in
Eq. (9) and obtain the optimal spin configurations by
performing unbiased numerical simulations, such as the
Monte Carlo simulations, one notices that the effective
spin model in Eq. (10) is enough to discuss the magnetic
instability in specific temperature regions. For example,
in the case of the isotropic classical spin model, which
corresponds to F xq = F yq = F zq and Dq = Eq = 0, the
ground state becomes the spiral ordering with the wave
vector q∗ that gives the largest value of Xq. In this case,
the interactions with other q( 6= q∗) do not contribute to
the energy, which can be neglected. Meanwhile, in the

case of the anisotropic spin model originating from the
SOC, the instability toward a multiple-Q state, which
is a superposition of spin density waves at different q,
can occur. In such a situation, the superposition be-
tween the wave vectors connected by the point group
operations tends to be favored, since they give the same
largest eigenvalue of Xq so as to satisfy the lattice sym-
metry. Then, it is natural to use the effective spin model
in Eq. (10) rather than the general model in Eq. (9) to ex-
amine the low-temperature spin configuration. The use
of the effective spin model enables us to reduce the com-
putational cost. Furthermore, the effective spin model
is useful to discuss the instability toward the multiple-Q
states in the model with the dipolar interaction at high
temperatures [53, 69].

The momentum-space effective spin model in Eqs. (9)
and (10) can be applied to both metals with long-range
interactions and insulators with short-range interactions.
Especially, when considering the low-temperature spin
configuration in metals, the effective spin model in mo-
mentum space in Eq. (10) enables us to search for
multiple-Q states more efficiently compared to the orig-
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TABLE VII. Interaction matrix XQ1 and the number of independent components Nc in the trigonal crystal systems for the
high-symmetric wave vector Q1 shown in Figs. 2(c) and 2(d). The spin coordinates xs, ys, and zs are taken along the x, y, and
z directions in Fig. (2)(a), respectively.

Q1 ‖ x̂ Q1 ‖ ŷ
space group H XQ1 Nc XQ1 Nc

P 3̄m1

F xQ1
0 0

0 F yQ1
ExQ1

0 ExQ1
F zQ1

 4

F xQ1
0 0

0 F yQ1
ExQ1

0 ExQ1
F zQ1

 4

P 3̄1m

F
x
Q1

0 EyQ1

0 F yQ1
0

EyQ1
0 F zQ1

 4

F
x
Q1

0 EyQ1

0 F yQ1
0

EyQ1
0 F zQ1

 4

P321

F xQ1
0 0

0 F yQ1
ExQ1

+ iDx
Q1

0 ExQ1
− iDx

Q1
F zQ1

 5

 F xQ1
iDz

Q1
−iDy

Q1

−iDz
Q1

F yQ1
ExQ1

iDy
Q1

ExQ1
F zQ1

 6

P312

 F xQ1
iDz

Q1
EyQ1

−iDz
Q1

F yQ1
iDx

Q1

EyQ1
−iDx

Q1
F zQ1

 6

 F xQ1
0 EyQ1

− iDy
Q1

0 F yQ1
0

EyQ1
+ iDy

Q1
0 F zQ1

 5

P3m1

 F xQ1
iDz

Q1
−iDy

Q1

−iDz
Q1

F yQ1
ExQ1

iDy
Q1

ExQ1
F zQ1

 6

F xQ1
0 0

0 F yQ1
ExQ1

+ iDx
Q1

0 ExQ1
− iDx

Q1
F zQ1

 5

P31m

 F xQ1
0 EyQ1

− iDy
Q1

0 F yQ1
0

EyQ1
+ iDy

Q1
0 F zQ1

 5

 F xQ1
iDz

Q1
EyQ1

−iDz
Q1

F yQ1
iDx

Q1

EyQ1
−iDx

Q1
F zQ1

 6

P 3̄

F
x
Q1

EzQ1
EyQ1

EzQ1
F yQ1

ExQ1

EyQ1
ExQ1

F zQ1

 6

F
x
Q1

EzQ1
EyQ1

EzQ1
F yQ1

ExQ1

EyQ1
ExQ1

F zQ1

 6

P3

 F xQ1
EzQ1

+ iDz
Q1

EyQ1
− iDy

Q1

EzQ1
− iDz

Q1
F yQ1

ExQ1
+ iDx

Q1

EyQ1
+ iDy

Q1
ExQ1

− iDx
Q1

F zQ1

 9

 F xQ1
EzQ1

+ iDz
Q1

EyQ1
− iDy

Q1

EzQ1
− iDz

Q1
F yQ1

ExQ1
+ iDx

Q1

EyQ1
+ iDy

Q1
ExQ1

− iDx
Q1

F zQ1

 9

inal itinerant electron model in real space. In the
momentum-space effective spin model, there are only 3
to 9 model parameters depending on the wave vector.
Meanwhile, when we construct an effective spin model
with the real-space interactions for the itinerant electron
model, the consideration up to the further-neighbor in-
teractions including the sign change is required. Besides,
too many model parameters make it difficult to obtain
the optimal spin configurations with the lowest energy,
since there are a lot of local minima owing to the com-
peting interactions in real space. Thus, our effective spin
model in Eq. (10) gives an efficient guideline to under-
stand the instability toward the multiple-Q states.

We comment that the effective spin models in the
primitive-lattice system in Eq. (10) can be used as the ef-
fective spin model in the multi-sublattice systems when
the ordering vectors in each sublattice are common to
each other. Indeed, the effective spin model based on
such an approximation have accounted for the appear-
ance of the SkX [96, 103, 108, 111], hedgehog-lattice [42],
and vortex-crystal [95] phases in real materials where
there are multiple magnetic ions in the unit cell. Mean-

while, in order to examine the magnetic structures within
the unit cell, we need to extend the effective spin mod-
els so as to include the sublattice degree of freedom, as
discussed in the next section.

Finally, we briefly discuss how to construct the
model from the experimental data, where we focus on
GdRu2Si2 [18, 103]. GdRu2Si2 has a I4/mmm crystal
structure with the alternative stacking of the Gd square
lattice and hosts the incommensurate order below a Néel
temperature with the ordering vector Q ‖ [100]. By
applying the magnetic field along [001] direction, the
double-Q SkX with ordering vectors Q1 = (Q, 0, 0) and
Q2 = (0, Q, 0) appears in the ground state, whereQ1 and
Q2 are connected by the fourfold rotation along [001].
Thus, we approximate the I4/mmm crystal structure
by the Gd square lattice with P4/mmm symmetry and
take into account the interactions only at ±Q1 and ±Q2.
Such a situation is described by the model in Eq. (10)
with P4/mmm symmetry and {Q} = {±Q1,±Q2},
which is constructed from Table V and Eqs. (11) and
(12): XQ1‖x̂ is shown in the first row of Table. V and
XQ2

are obtained by using Eq. (12) with σ = 1 and



10

FIG. 3. (a) Honeycomb and (b) kagome structures with
P6/mmm symmetry. Gray, white, and black spheres rep-
resent sublattices A, B, and C, respectively. The wave vector
Q1 parallel to the x direction is denoted in the figure.

φ = π/2. Indeed, this model reproduces not only the
observed SkX phase but also the other double-Q phases
appearing at low temperatures by additionally consider-
ing the magnetic field and biquadratic interaction [103].
In this way, one can construct the effective spin model
for other materials once the space group symmetry and
relevant {Q} are determined from the x-ray and neutron
experiments.

2. Multi-sublattice case

Based on the symmetry argument in Sec. II A 2, one
can directly construct the effective spin model in two and
three sublattice systems. The effective spin Hamiltonian
is given by

Heff = −
∑

q∈{Q}

∑
µ,ν

STµqXµν;qSν−q, (13)

where {Q} is a set of the wave vector. As well as
the primitive-lattice case, we can write down nonzero
components of the interaction matrix once {Q} and the
space group are given. As specific examples, we present
the interaction matrix at Q1 ‖ x̂ on the honeycomb
and kagome structures with the hexagonal space group
P6/mmm shown in Fig. 3; the Brillouin zone is the same
as that in Fig. 2(a). When focusing on the Q1 com-
ponent, there are seven symmetry constraints in both
honeycomb and kagome lattices similar to the primitive
triangular lattice as follows: the inversion center (I), the
mirror planes perpendicular to x̂ (mx), ŷ (my), and ẑ

(mz), and the twofold axis parallel to x̂ (Cx), ŷ (Cy),
and ẑ (Cz). Depending on the sublattice configurations,
these constraints give different interaction matrices, as
detailed below.

In the two-sublattice honeycomb-structure case in
Fig. 3(a), mz, mx, and Cy (I, my, Cx, and Cz) fix (in-
terexchange) the sublattices A and B. Thus, the sym-
metry constrains by mz, mx, and Cy (I, my, Cx, and
Cz) are given in Fig. 1 and Table. I (Tables. II and III).
Consequently, the interaction matrices are expressed as

XAA;Q1 =

 Re(FxAA;Q1
) iIm(DzAA;Q1

) 0

−iIm(DzAA;Q1
) Re(FyAA;Q1

) 0

0 0 Re(FzAA;Q1
)

 ,

(14)

XBB;Q1
=

Re(FxAA;Q1
) −iIm(DzAA;Q1

) 0

iIm(DzAA;Q1
) Re(FyAA;Q1

) 0

0 0 Re(FzAA;Q1
)

 ,

(15)

XAB;Q1
=

Re(FxAB;Q1
) iIm(EzAB;Q1

) 0

iIm(EzAB;Q1
) Re(FyAB;Q1

) 0

0 0 Re(FzAB;Q1
)

 .

(16)

Here, XBB;Q1 is related to XAA;Q1 through I, my, Cx,
and Cz. Compared to XQ1‖x̂ on P6/mmm triangular
lattice shown in Table. VI, the main difference is seen
in the off-diagonal components in XAA;Q1

and XBB;Q1
;

the intrasublattice DM interaction Im(DzAA;Q1
) arises in

the honeycomb structure owing to the lacking of the lo-
cal inversion symmetry at each sublattice. Meanwhile,
the intersublattice interaction XAB;Q1

has a symmetric
anisotropic exchange interaction Im(EzAB;Q1

) rather than
the DM interaction. The interaction matrices at the
other Qη are easily obtained from a similar relation in
Eq. (11).

In the three-sublattice kagome-structure case in
Fig. 3(b), I, mz, and Cz fix the sublattices A, B, and
C, while mx, my, Cx, and Cy interexchange the sublat-
tices A and B but fix C. Thus, the symmetry constrains
by the former (latter) symmetries are given in Fig. 1 and
Table. I (Fig. 1 and Tables. II-IV). As a result, the in-
teraction matrices are given by
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XAA;Q1 =

Re(FxAA;Q1
) Re(EzAA;Q1

) 0

Re(EzAA;Q1
) Re(FyAA;Q1

) 0

0 0 Re(FzAA;Q1
)

 ,XBB;Q1 =

 Re(FxAA;Q1
) −Re(EzAA;Q1

) 0

−Re(EzAA;Q1
) Re(FyAA;Q1

) 0

0 0 Re(FzAA;Q1
)

 ,

(17)

XCC;Q1
=

Re(FxCC;Q1
) 0 0

0 Re(FyCC;Q1
) 0

0 0 Re(FzCC;Q1
)

 ,XAB;Q1
=

 Re(FxAB;Q1
) Re(DzAB;Q1

) 0

−Re(DzAB;Q1
) Re(FyAB;Q1

) 0

0 0 Re(FzAB;Q1
)

 , (18)

XBC;Q1
=

 Re(FxBC;Q1
) Re(EzBC;Q1

) + Re(DzBC;Q1
) 0

Re(EzBC;Q1
)− Re(DzBC;Q1

) Re(FyBC;Q1
) 0

0 0 Re(FzBC;Q1
)

 , (19)

XCA;Q1 =

 Re(FxBC;Q1
) −Re(EzBC;Q1

) + Re(DzBC;Q1
) 0

−Re(EzBC;Q1
)− Re(DzBC;Q1

) Re(FyBC;Q1
) 0

0 0 Re(FzBC;Q1
)

 . (20)

Since the sublattice C is fixed by all the point group
symmetries, XAA;Q1 and XBB;Q1 (XBC;Q1 and XCA;Q1)
depend on each other, while XCC;Q1 (XAB;Q1) is inde-
pendent. Similar to the honeycomb-structure case, the
DM interaction arises in the kagome-structure case, al-
though its nature is different from each other owing to the
different sublattice configurations: The DM interaction
appears in the intersublattice interaction Xµν;Q1 in the
kagome-structure case, while that appears in the intra-
sublattice interaction Xµµ;Q1

in the honeycomb-structure
case. The interaction matrices at the other Qη are also
obtained from a similar relation in Eq. (11).

The effective spin model in Eq. (13) becomes a ref-
erence to search for sublattice-dependent multiple-Q
states, such as the antiferromagnetic SkX [63–65] and
multi-sublattice SkX [66]. As Re(Dµµ;q), Im(Eµµ;q),
Im(Fµµ;q) in the intrasublattice interaction matrix
Xµµ;Q1

and Dµν;q, Eµν;q, and Fµν;q in the intersub-
lattice interaction matrix Xµν;Q1

(µ 6= ν) additionally
emerges according to the multi-sublattice configurations,
they can be different sources to induce the multiple-Q
states in the multi-sublattice system. Besides, the model
in Eq. (13) is useful to provide an insight into the micro-
scopic origin of the sublattice-dependent topological spin
textures observed in experiments, such as the fractional
antiferromagnetic SkX in MnSc2S4 [115, 116].

C. Tendency of spin configurations under the
anisotropic interactions

In Secs. II A and II B, we show that a variety of
anisotropic exchange interactions appear depending on
the space group, wave vector, and sublattice struc-
ture. To intuitively understand the relationship be-

tween the momentum-resolved anisotropic exchange in-
teractions and the multiple-Q states, we present plausi-
ble spin configurations in the presence of eachDQη , EQη ,
and FQη in the primitive triangular-lattice case under the
hexagonal and trigonal space groups. Figure 4 shows the
expected single-Q and triple-Q modulations under the
strong anisotropic interactions, as detailed in Secs. II C 1
and II C 2, respectively. Although we here present the
spin configurations for the variable spin length due to
quantum and thermal fluctuations for better visibility,
similar single-Q and triple-Q spin configurations are also
obtained as the ground state even in the classical spin
model by taking into account the anisotropic exchange
interaction.

1. Single-Q case

We discuss the tendency of single-Q instabilities under
the momentum-resolved interaction at the wave vector
Q1 ‖ x̂. In the case of the isotropic interaction, the
spiral state with a wave vector q∗ = Q1 has the lowest
energy, as described above, where the spiral plane is ar-
bitrary. When additionally considering the anisotropic
interactions, the spiral wave is modulated depending on
the type of them. For example,DQ1

fixes the spiral plane
perpendicular to DQ1

: The proper-screw (out-of-plane
cycloidal) spiral wave is favored in the space group P622
(P6mm) with nonzero Dx

Q1
(Dy

Q1
), and the in-plane cy-

cloidal spiral wave is favored in the space group P 6̄m2
with nonzero Dz

Q1
. The proper-screw, out-of-plane cy-

cloidal, and in-plane cycloidal spiral waves are shown in
the upper panel of Figs. 4(a)-4(c), respectively. Mean-
while, when considering the effect ofEQ1

instead ofDQ1
,

the spiral plane by the isotropic interaction is elliptically
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FIG. 4. Spin configurations in the presence of the anisotropic interactions: (a) DQ1 ‖ x̂, (b) DQ1 ‖ ŷ, (c) DQ1 ‖ ẑ, (d)
EQ1 ‖ x̂, (e) EQ1 ‖ ŷ, (f) EQ1 ‖ ẑ, (g) FQ1 ‖ x̂, (h) FQ1 ‖ ŷ, and (i) FQ1 ‖ ẑ. Upper panel: Single-Q spin structures with
the ordering vector Q1 ‖ x̂ of (a)-(c) spiral waves and (d-i) sinusoidal waves. In (a-c), the spiral planes in the spiral wave are
(a) yz, (b) zx, and (c) xy planes. In (d-i), the oscillating directions in the sinusoidal wave are (d) [011], (e) [101], (f) [110], (g)
[100], (h) [010], and (i) [001] directions. Lower panel: Triple-Q structures consisting of the three single-Q waves in the upper
panel at Q1, Q2, and Q3 in Fig. 2(c). The color of arrows represents the z spin component, where red, blue, and green stand
for positive, negative, and zero values. When the spin length at each site is fixed, these spin configurations are modulated by
the constraint in terms of the spin norm.

modulated so as to have more perpendicular spin com- ponent to EQ1 . In other words, EQ1 favors the sinu-
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soidal wave oscillating in one direction. For example,
ExQ1

, EyQ1
, and EzQ1

favor the sinusoidal wave with the

spin oscillation along the [011], [101], and [110] direc-
tions in spin space, respectively, which are shown in the
upper panel of Figs. 4(d)-4(f). It is noted that a simi-
lar sinusoidal spin configuration to have a constant |Si|
is expected to appear in the classical spin model. Such
a sinusoidal modulation by ExQ1

, EyQ1
, and EzQ1

is ex-

pected in the space groups P 3̄m1, P 3̄1m, and P6/m,
respectively. Moreover, FQ1

also modulates the spiral
wave into the sinusoidal wave. For example, in the case
of F xQ1

, F yQ1
, and F zQ1

, the sinusoidal wave with the spin

oscillation along the [100], [010], and [001] directions in
spin space is favored, respectively, as shown in the upper
panel of Figs. 4(g)-4(i).

2. Triple-Q case

Similar to the single-Q case, one can expect a tendency
of the multiple-Q spin configuration under the strong
anisotropic interactions. We here discuss the relationship
between the anisotropic interactions and the triple-Q spin
configuration by superposing the three spirals with the
same intensity on the triangular lattice belonging to the
hexagonal and trigonal space groups, where we consider
the superposition of the spin density waves at Q1, Q2,
and Q3 in Fig. 2(c) and neglect the phase degree of free-
dom of the spin density wave for simplicity [62, 117, 118].

In the case of DQ1 ‖ x̂, i.e., DQ1 ‖ Q1, the threefold
rotational symmetry imposes DQ2 ‖ Q2 and DQ3 ‖ Q3.
Then, DQ1

‖ x̂ favors the triple-Q proper-screw spiral
wave expressed as the superposition of the three proper-
screw spirals in the lower panel of Fig. 4(a), which cor-
responds to the Bloch SkX with Nsk = −1 per mag-
netic unit cell [see Eq. (57) for the definition of the
skyrmion number Nsk in Sec. V C]. Similarly, DQ1

‖ ŷ
andDQ1

‖ ẑ favor the triple-Q out-of-plane cycloidal spi-
ral wave corresponding to the Néel SkX with Nsk = −1
and the triple-Q in-plane spiral wave, as shown in the
lower panel of Figs. 4(b) and 4(c), respectively. As shown
in Figs. 4(a) and 4(b) [Fig. 4(c)], the superposition of spi-
rals in different spiral planes (the same spiral plane) leads
to the noncoplanar (coplanar) structure.

Meanwhile, EQ1 and FQ1 tend to favor triple-Q sinu-
soidal waves, as shown in the lower panel of Figs. 4(d)-
4(i). Among them, EQ1 ‖ x̂ and EQ1 ‖ ŷ tend to favor
the noncoplanar triple-Q sinusoidal waves since they con-
sist of the three sinusoidal waves oscillating in different
out-of-plane directions, as shown in the lower panel of
Figs. 4(d) and 4(e). This noncoplanar triple-Q sinusoidal
states correspond to the SkXs with Nsk = +2. The cases
for EQ1

‖ ẑ, FQ1
‖ x̂, and FQ1

‖ ŷ favor the copla-
nar triple-Q sinusoidal waves consisting of the three si-
nusoidal waves oscillating in different in-plane directions,
as shown in the lower panel of Figs. 4(f)-4(h). The re-
maining FQ1

‖ ẑ favors the collinear triple-Q sinusoidal
wave consisting of the three sinusoidal waves oscillating

in the same direction [the lower panel of Fig. 4(i)], which
is the so-called magnetic bubble.

The above intuitive analysis provides two important
pieces of information about the SkXs. The first is that
the anisotropic interactions in all the hexagonal and trig-
onal crystal systems do not tend to favor the anti-type
SkXs with Nsk = +1 without the threefold rotational
symmetry, since the anisotropic exchange interactions
connected by the threefold rotation [see Eq. (11)] lead
to the energy loss to form such SkXs free from threefold
symmetry. Meanwhile, there is no preference between
the SkXs and anti-type SkXs in terms of the symmetric
anisotropic exchange interactions in the tetragonal crys-
tal systems. The second is that there is an instability
tendency toward the SkXs with |Nsk| = 2 only in the
trigonal crystal systems with ExQ1

and EyQ1
within the

bilinear exchange interactions.
Such an argument in terms of the spin modulations

under the anisotropic exchange interactions is consistent
with the previous studies for the effective spin model with
the classical spin, where unbiased numerical simulations
have been performed at low temperatures close to the
zero temperature under the space groups P4/mmm [51,
92], P4mm [49], P4/m [119], P6/mmm [54, 94],
P6mm [55], P 6̄m2 [120] and P 3̄m1 [61]. For example,
the P 3̄m1 system with nonzero ExQ1

in addition to the
isotropic exchange interaction exhibits the instability to-
ward the SkX with |Nsk| = 2 in Fig. 4(g). According
to the simulation, the plausible multiple-Q state can be
energetically stable even by small magnetic anisotropy;
the SkX with |Nsk| = 2 in Fig. 4(g) is stabilized by
ExQ1

, whose magnitude is 10 times smaller than that of

the isotropic interaction [61]. For another example, the
P6/mmm system with nonzero F xQ1

(F yQ1
) in addition

to the isotropic exchange interaction and Zeeman cou-
pling to an external magnetic field leads to the SkX with
Nsk = −1, whose spin configuration is similar to that in
Fig. 4(b) [4(a)]. Furthermore, the skyrmion texture of
the quantum spin has been studied in the quantum spin
state, where the Néel type skyrmion appears by DQ1

‖ ŷ
even under quantum fluctuations [121–123].

III. ORIGIN OF THE ANISOTROPIC
EXCHANGE INTERACTIONS: CASE OF

ITINERANT ELECTRON MODELS

We discuss how to derive the momentum-resolved
anisotropic exchange interaction in Eq. (9) based on a
microscopic Hamiltonian for itinerant magnets. Start-
ing from the multi-band anisotropic PAM with the SOC
in Sec. III A, we present the important parameters for
nonzero anisotropic interactions. For that purpose, we
perform the Schrieffer-Wolff transformation [99] to derive
the Kondo lattice model with the anisotropic exchange
coupling between itinerant electron spins and localized
spins in Sec. III B. Then, we trace out the itinerant elec-
tron degree of freedom to derive the effective spin model
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by supposing the weak exchange coupling in Sec. III C.

A. Anisotropic periodic Anderson model

We consider the multi-band anisotropic PAM incorpo-
rating the effect of the SOC [61, 101, 124, 125], which is
represented by

HPAM = Hc +Hf +Hcf , (21)

where

Hc =
∑
m,k,σ

(εmk − µ)c†mkσcmkσ, (22)

Hf = (Ef − µ)
∑
i,σ

niσ + U
∑
i

ni↑ni↓, (23)

Hcf =
∑

m,i,k,σ,σ′

eik·Ri

√
N

f†iσ(V 0
mkδ + Vmk · σ)σσ′cmkσ′

+ h.c. (24)

Here, c†mkσ (cmkσ) is a creation (annihilation) operator
of an itinerant electron with band m, wave vector k,

and spin σ, f†iσ (fiσ) is a creation (annihilation) oper-
ator of a localized f electron at position vector Ri with

spin σ, and niσ = f†iσfiσ. Hc represents the Hamilto-
nian of the itinerant electron with the energy disper-
sion εmk and the chemical potential µ. Hf represents
the Hamiltonian of the localized f electron, where Ef
is the atomic energy and U is the Coulomb interaction.
Hcf stands for the Hamiltonian consisting of the hy-
bridization between the itinerant electrons and localized
electrons; V 0

mkδσσ′ represents the spin-independent hy-
bridization and Vmk · σσσ′ =

∑
α=x,y,z V

α
mkσ

α
σσ′ repre-

sents the spin-dependent hybridization, where δσσ′ is the
Kronecker delta, σσσ′ = (σx, σy, σz)σσ′ is a vector of
the Pauli matrices, and N is the number of unit cells.
The contribution of spin-dependent hybridization arises
from the mixture of up- and down-spin basis functions of
the itinerant and/or localized electrons due to the SOC,
where the spin index σ in the spin-orbital-coupled basis
is regarded as the pseudospin.

B. Anisotropic Kondo lattice model

We derive a low-energy effective model when Ef (Ef +
U) is much smaller (larger) than the Fermi energy. In this
situation, the f electron state at each site is occupied
by a single electron (

∑
σ niσ = 1) and the f electron is

approximately regarded as the localized spin. When the
hybridizations are treated as the perturbation, the low-
energy effective model is derived by the Schrieffer-Wolff
transformation as eSHPAMe−S with the generator S; S
satisfies Hcf + [S,H0] = 0, where H0 = Hc + Hf and
[S,H0] represents the communication relation. Then, S

is given by

S =
1√
N

∑
m,i,k,σ,σ′

(Amk +Bmkniσ̄)

×
{
eik·Rif†iσ(V 0

mkδσσ′ + Vmk · σσσ′)cmkσ′ − h.c.
}
,

(25)

where σ̄ = −σ and

Amk =
1

Ef − εmk
, (26)

Bmk =
1

εmk − Ef
− 1

εmk − Ef − U
. (27)

Then, the low-energy effective model up to the second
order of the hybridizations, HPAM(2), is approximately
given by

HPAM(2) = H0 +
1

2
[S,Hcf ] (28)

= Hc +
∑
m,m′

∑
σ,σ′

(
H′mσ;m′σδσσ′+

Hex
mσ;m′σ′ +HSOC

mσ;m′σ′
)
, (29)

where the subscriptmσ;m′σ′ represents a matrix element
between itinerant electrons with (m,σ) and (m′, σ′). In
the derivation, we drop off the constant terms such as
Hf . The details of HPAM(2) are given in Appendix C.

To focus on the origin of the anisotropic interac-
tions, we further neglect the contributions from the spin-
independent term H′ and from the different bands in Hex

andHSOC. In the end, HPAM(2) reduces to an anisotropic
Kondo lattice model as

HKLM = Hc +
∑
m

∑
σ,σ′

(
Hex
mσσ′ +HSOC

mσσ′
)
, (30)

where the subscript mσσ′ represents a matrix element
between itinerant electrons with (m,σ) and (m,σ′).

The Kondo lattice model includes two spin-dependent
terms. One is the exchange interaction between itinerant
electron spins and localized spins, Hex

mσσ′ , which is given
by

Hex
mσσ′ =

1√
N

∑
k,q,α,β

Jαβmk+qkc
†
mk+qσσ

α
σσ′cmkσ′S

β
q . (31)

Here, Sq is the Fourier transform of the localized spin

Si =
∑
σσ′ f

†
iσσσσ′fiσ′/2. The exchange interaction is

decomposed into isotropic, symmetric anisotropic, and
antisymmetric anisotropic exchange interactions in spin
space [61, 101, 126] as

Jαβmkk′ = J ISO
mkk′δαβ + [JS

mkk′ ]
αβ + [JAS

mkk′ ]
αβ , (32)
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where

J ISO
mkk′ = C

(1)
mkk′

(
V 0
mk′V

0∗
mk − Vmk′ · V ∗mk

)
, (33)

[JS
mkk′ ]

αβ = C
(1)
mkk′

(
V αmk′V

β∗
mk + V α∗mkV

β
mk′

)
, (34)

[JAS
mkk′ ]

αβ = iC
(1)
mkk′

∑
γ

εαβγ
(
V γmk′V

0∗
mk − V

γ∗
mkV

0
mk′
)
,

(35)

with C
(1)
mkk′ = (Bmk + Bmk′)/2 and the Levi-Civita

symbol εαβγ . The symmetric and antisymmetric ex-
change interactions satisfy [JS

mkk′ ]
αβ = [JS

mkk′ ]
βα and

[JAS
mkk′ ]

αβ = −[JAS
mkk′ ]

βα, respectively. The anisotropic
exchange interactions vanish in the absence of the spin-
dependent hybridizations. In addition, it is noted that
these anisotropic interactions also vanish when Hcf in-
cludes a single component of (V 0

mk,Vmk).
The other spin-dependent term in Eq. (30) is the effec-

tive SOC for itinerant electrons, HSOC
mσσ′ , which is given

by

HSOC
mσσ′ =

∑
k

gmk · c†mkσσσσ′cmkσ′ , (36)

where

gαmk =C
(2)
mk

V αmkV
0∗
mk + V α∗mkV

0
mk − i

∑
β,γ

εαβγV
β
mkV

γ∗
mk

 ,

(37)

with C
(2)
mk = −(Amk + Bmk/2). The effective SOC is

induced by the spin-dependent hybridizations; gαmk van-
ishes for Vmk = 0. The expression of gαmk reduces to the
antisymmetric spin-orbit interaction in the single-band
system, which only appears in noncentrosymmetric crys-
tal systems.

C. Effective spin model

An effective spin model of the anisotropic Kondo lat-
tice model in Eq. (9) is obtained by expanding the grand
potential to the second order with respect to the ex-
change coupling [73, 74, 77]. When taking gmk = 0 for
simplicity, the lowest second-order contribution of the ex-
change energy to the grand potential is given by

Ω(2) = −T
2

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2〈TτHex
τ1H

ex
τ2 〉con

= −
∑
q

∑
αβ

Xαβ
q Sαq S

β
−q, (38)

where T is the temperature, τ is the imaginary time, Tτ
is the time ordered product, Hex

τ = eτH
cHexe−τH

c

, and
〈· · · 〉con represents the contributions from the connected
Feynman diagrams. Xαβ

q in the second line corresponds

to the interaction matrix in Sec. II, which is given by

Xαβ
q =

T

N

∑
m,k,γ,ωn

Gmk+q(iωn)Gmk(iωn)Jγαmk+qkJ
γβ
mkk+q,

=
1

N

∑
m,k,γ

f(εmk)− f(εmk+q)

εmk+q − εmk
Jγαmk+qkJ

γβ
mkk+q.

(39)

where Gmk(iωn) = 1/(iωn− εmk +µ) is the noninteract-
ing Green’s function with the Matsubara frequency ωn
and f(εmk) is the Fermi distribution function. It is noted
that Green’s function does not depend on the spin, since
we neglect the effective SOC (gmk = 0), and then, we
omit its spin dependence for notational simplicity. Dq,
Eq, and Fq in Eq. (3) are related to Xαβ

q in Eq. (39) as

Dα
q =

1

2

∑
β,γ

εαβγIm
[
Xβγ

q

]
, (40)

Eαq =
1

2

∑
β,γ

|εαβγ |Re
[
Xβγ

q

]
, (41)

Fαq = Xαα
q . (42)

In this way, the momentum-resolved anisotropic interac-
tions introduced in Eq. (3) are obtained based on the
itinerant electron model. As shown in Eq. (39), the cou-
pling matrix depends on the temperature and electronic
states. It is noted that the anisotropic interactions are
also obtained from the Kondo lattice model with gmk 6= 0
instead of JS

mkk′ and JAS
mkk′ [49, 127, 128].

The effective spin model in Eq. (38) is justified when
the energy scale of the exchange interaction is smaller
than that of the bandwidth. In the itinerant electron
model, the dominant q components in the interactions
giving the largest eigenvalue of Xq are related to the
nesting vectors of the Fermi surface, as inferred from
Eq. (39). As Xq is calculated when εmk, µ, V 0

mk, and
Vmk are given, one can quantitatively evaluate the con-
tributions of the anisotropic interactions. For example,
one can directly evaluate the anisotropic interactions in
materials within the framework of the first principle cal-
culations.

Similar momentum-resolved spin models can be de-
rived from other itinerant electron models. For example,
the classical Kondo lattice model in the strong exchange
coupling regime (double exchange model [129, 130]) is
mapped onto the effective spin model with the short-
range spin interactions [131–134] When taking into ac-
count the Rashba- or Dresselhaus-type SOC, the short-
range spin interactions become anisotropic [88, 135–139].
Furthermore, the effective spin model with the short-
range spin interactions can be constructed based on the
Hubbard model with the SOC [136, 140, 141]. In these
cases, the momentum-resolved effective spin model in
Eq. (10) is obtained once the dominant interaction in
q space (including q = 0 component) are extracted.
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FIG. 5. Left panel: P6/mmm crystal lattice consisting of
three layers. The blue (gray) spheres represent magnetic
(nonmagnetic) ions with the f (s) orbital and form the tri-
angular lattice on the xy plane. The three layers are stacked
along the z direction at equal intervals of c. Right panel: the
triangular lattice viewed from the z direction; e1, e2, and e3

are the unit vectors.

IV. ORIGIN OF THE ANISOTROPIC
EXCHANGE INTERACTIONS: CASE OF

LOCALIZED SPIN MODELS

In the previous section, we show that the momentum-
resolved anisotropic exchange interaction is obtained as
the effective long(short)-range interaction for itinerant
electron models. Meanwhile, the above momentum-
resolved anisotropic exchange interaction is also related
to the short-range interaction in the localized spin model.
For example, a ground-state magnetic phase diagram
has been constructed by considering the dominant q
interactions in frustrated magnets [80, 142] and DM-
based magnets [143]. In the localized spin model, the
anisotropic exchange interaction originates from the rel-
ativistic SOC, which largely depends on the point-group
symmetry in crystals [90, 91, 144–153]. In such a sit-
uation, the microscopic origin of the interaction matrix
Xq in Eq. (10) is attributed to the Fourier transform
of real-space anisotropic exchange interactions. Further-
more, the effective spin model can include the effect of
the dipolar interactions by performing the Fourier trans-
formation, which is renomarlized into Eq and Fq [53, 69].

V. APPLICATION TO A SPECIFIC
HEXAGONAL SYSTEM

We apply the above general expression to a spe-
cific hexagonal crystal system under the space group
P6/mmm at low temperatures. Starting from the PAM
in Sec. V A and mapping it onto the effective spin model
in Sec. V B, we show the multiple-Q instability in the
ground state by performing the simulated annealing in
Sec. V C.

A. Anisotropic Periodic Anderson model

As an example, we consider the specific P6/mmm
crystal lattice consisting of three triangular-lattice lay-

ers separated by a distance c, as shown in the left panel
of Fig. 5; the localized f orbitals denoted by the blue
spheres lie on the middle layer, and the itinerant s or-
bitals denoted by the gray spheres lie on the upper and
lower layers. We set the lattice constant of the triangular
lattice as the length unit.

The system is described by the multi-band anisotropic
PAM in Eq. (21) under the periodic boundary condition
in the x and y directions. The energy dispersion of the
itinerant electron in Hc in upper and lower layers is given
by

εmk = −2
∑

i=1,2,3

(t1 cosk · ei + t3 cos 2k · ei) , (43)

where k = (kx, ky) is the two-dimensional wave vector,

e1 = (1, 0), e2 = (−1/2,
√

3/2), and e3 = (−1/2,−
√

3/2)
are the unit vectors of the triangular lattice (the right
panel of Fig. 5), and m = +(−) represents the upper
(lower) nonmagnetic layer. Here, we consider the hop-
pings between the nearest- and third-neighbor sites, t1
and t3, within the same layer.

Meanwhile, we suppose that the f orbital with the
Kramers twofold degeneracy is anisotropic in spin space
by incorporating the effect of the SOC and the crystalline
electric field (CEF) under the P6/mmm symmetry in the
following way. By assuming that the magnitude of SOC
is greater than that of CEF, the fourteen degenerate f
electron states are split into the two levels with the total
angular momentum j = 7/2 and j = 5/2 by the SOC,
and then, they are split into totally seven Kramers pairs
by the CEF. We choose one out of seven Kramers pairs,
which is expressed as

f†i↑ |0〉 = αCEF

∣∣∣∣i, 3, 1

2

〉
+
√

1− α2
CEF

(√
6

7

∣∣∣∣i,−2,−1

2

〉

+

√
1

7

∣∣∣∣i,−3,
1

2

〉)
, (44)

f†i↓ |0〉 = −αCEF

∣∣∣∣i,−3,−1

2

〉
−
√

1− α2
CEF

(√
6

7

∣∣∣∣i, 2, 1

2

〉
+

√
1

7

∣∣∣∣i, 3,−1

2

〉)
, (45)

where |i, lz, sz〉 is characterized by the site i and the
magnetic quantum number of the f orbital (lz =
−3,−2, · · · 3) and spin (sz = ±1/2) and αCEF (|αCEF| ≤
1) is a constant depending on the CEF parameters. It
is noted that the subscripts ↑ and ↓ in the left-hand

side represent the pseudo spin to satisfy θf†i↑ |0〉 = f†i↓ |0〉
and θf†i↓ |0〉 = −f†i↑ |0〉 for the time-reversal operation θ.

|i,±3, sz〉 and |i,±2, sz〉 in the right-hand side are related

to the real expressions of the f orbitals |3a〉 ∝
√

10x(x2−
3y2)/4, |3b〉 ∝

√
10y(3x2−y2)/4, |βz〉 ∝

√
15z(x2−y2)/2,
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and |xyz〉 ∝
√

15xyz as

|i,±3, sz〉 = ∓ 1√
2
|i, 3a, sz〉 −

i√
2
|i, 3b, sz〉 , (46)

|i,±2, sz〉 =
1√
2
|i, βz, sz〉 ±

i√
2
|i, xyz, sz〉 . (47)

Then, the hybridizations V 0
mk and V αmk (α = x, y, z) in

Hcf are given by

V 0
mk =

∑
d

T 0
mde

ik·d, (48)

V αmk =
∑
d

Tαmde
ik·d, (49)

where d represents the vector connecting the s orbital at
Ri + d and the f orbital at Ri, and

T 0
md =

−
√

7αCEF +
√

1− α2
CEF√

14
t3ad , (50)

T xmd = i
√

1− α2
CEF

√
3

7
txyzd , (51)

T ymd = i
√

1− α2
CEF

√
3

7
tβzd , (52)

T zmd = i

√
7αCEF +

√
1− α2

CEF√
14

t3bd , (53)

with t3ad =
√

10l(l2 − 3m2)(sfσ)/4, t3bd =
√

10m(3l2 −
m2)(sfσ)/4, tβzd =

√
15n(l2 − m2)(sfσ)/2, txyzd =√

15lmn(sfσ). (l,m, n) = d/|d| and (sfσ) is the Slater-
Koster parameter [154]. Hereafter, we set (sfσ) = 1, d =
±e1 + m(0, 0, c), ±e2 + m(0, 0, c), and ±e3 + m(0, 0, c).
Then, V zmk vanishes for any αCEF and c due to the sym-
metry of |3b〉. In addition, for αCEF = ±1 or c = 0,

V xmk = V ymk = 0, as txyzd and tβzd are proportional to n.
In this situation, the anisotropic interaction in Eqs. (40)-
(42) appears for αCEF 6= ±1 and c 6= 0. It is noted that
the nearest-neighbor hybridizations by d = (0, 0,±c)
vanish for any αCEF and c owing to the symmetry in
the present system.

B. Effective spin model

Following the procedure in Sec. III, we derive the effec-
tive spin model for the present PAM, which enables us to
search for the multiple-Q instability. From the symmetry
argument, there are three independent components (Fq)
in Xq for the high-symmetric lines, e.g., q = (qx, 0) and
q = (0, qy), while there are four independent components
(Fq and Ezq) for a general q, as shown in Tables VI and X.
In each q, the interaction matrix Xq is calculated when
the model parameters (t1, t3, µ, U,Ef ,Vmk, T ) are given.
It is noted that Vmk is determined by αCEF and the dis-

tance c, and U and Ef are used for C
(1)
mkk′ . Here, we

evaluate Xq by setting t1 = 1, t3 = −0.85 and µ = 1.3.

FIG. 6. αCEF and c̃ = c/
√

3 dependences of (a) q∗x giving the
largest eigenvalue of Xq, (b) F xq∗ − F zq∗ , and (c) F yq∗ − F

z
q∗ .

(d) Eigenvalues λq in momentum space at αCEF = −0.8 and
c = 0.4, where the hexagon with a solid line shows the first
Brillouin zone. The maxima appears at Q1 = e1π/3, Q2 =
e2π/3, and Q3 = e3π/3. The other parameters are set as

t1 = 1, t3 = −0.85, µ = 1.3, C
(1)

mkk′ = 1, T = 0.02, and

N = 482.

For the parameters, we neglect the wave vector depen-

dence of C
(1)
mkk′ in Eqs. (33)-(35) by supposing the sit-

uation where U and |Ef | is larger than the bandwidth.

Besides, we set C
(1)
mkk′ = 1 for simplicity.

We first calculate the optimal ordering vector q∗ =
(q∗x, q

∗
y) that gives the maximum eigenvalue of Xq while

changing αCEF and c̃ = c/
√

3 at a low temperature
T = 0.02 for the system size N = 482. As shown in
Fig. 6(a), the maximum eigenvalue of Xq is obtained for
q∗ = (π/3, 0) drawn by the white region, while that is
for q∗ = (q∗x, q

∗
y) with q∗x 6= π/3 and q∗y 6= 0 drawn by the

color region. We also plot the anisotropic exchange inter-
actions, F xq∗ −F zq∗ and F yq∗ −F zq∗ , in Figs. 6(b) and 6(c),
respectively. One finds that the anisotropic interaction
to satisfy F xq∗ > F yq∗ , F

z
q∗ is realized in almost the region

except for αCEF = ±1, where only the isotropic spin in-
teraction appears, i.e., F xq∗ = F yq∗ = F zq∗ . In other words,
the magnitude of anisotropic interactions largely depends
on αCEF and c. Especially, the reversal of the magnitude
relation between F yq∗ and F zq∗ in Fig. 6(c) indicates the in-
stability toward the different spiral or multiple-Q states.
For example, the tendency toward the out-of-plane (in-
plane) cycloidal spin is expected for αCEF = −0.5 and
c̃ = 0.3 (αCEF = 0.3 and c̃ = 0.5).

In the following, we fix the parameters as αCEF = −0.8
and c̃ = 0.4, which gives the optimal ordering vectors as
±Q1 = ±e1π/3, ±Q2 = ±e2π/3, and ±Q3 = ±e3π/3.
We plot the q dependence of the largest eigenvalue of Xq
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TABLE VIII. λq, F xq , F yq , F zq , and Ezq at Q1, 2Q1, 3Q1,
2Q1 −Q3, and Q1 −Q3 at αCEF = −0.8 and c = 0.4, where
Q1 = e1π/3, Q2 = e2π/3, and Q3 = e3π/3. The other
parameters are the same as those in Fig. 6.

q λq F xq F yq F zq Ezq

Q1 1.53 1.53 0.76 1.16 0.00

2Q1 0.82 0.82 0.24 0.79 0.00

3Q1 0.80 0.80 0.45 0.65 0.00

2Q1 −Q3 0.64 0.55 0.30 0.64 -0.09

Q1 −Q3 0.55 0.46 0.28 0.52 0.16

at each q denoted as λq in Fig. 6(d). We summarize the
numerical values of λq, F xq , F yq , F zq , and Ezq at Q1 in
Table VIII. In addition, we show them at wave vectors
given by linear combinations of Q1, Q2, and Q3 for later
convenience.

C. Multiple-Q instability

1. Simulated annealing

We investigate the low-temperature magnetic phases
in the presence of the effective anisotropic interactions
Xq obtained in Sec. V B. Here, we add the Zeeman
term, HZ = −H

∑
i S

z
i , to the effective anisotropic spin

model in Eq. (9) in order to investigate the effects of
the magnetic field H. It is noted that the introduc-
tion of the magnetic field along the z direction does not
lead to the additional anisotropic bilinear interactions.
The spin configuration is obtained by using the simu-
lated annealing combined with the standard Metropolis
local updates. To focus on the multiple-Q instability in
the ground state, we ignore the temperature dependence
of Xq for simplicity. We gradually reduce the tempera-
ture with a rate Tn+1 = αTn, where Tn is the temper-
ature at the nth step. We set the initial temperature
T0 = 1 and the coefficient α ≈ 0.993116. A final temper-
ature Tf = 0.001 is reached after total 105 Monte Carlo
steps, where we perform 102 Monte Carlo steps at each
temperature Tn. At the final temperature, we perform
104 Monte Carlo steps for thermalization and measure-
ments, respectively. To determine the phase boundary,
we set the spin configuration obtained near the phase
boundary as the initial spin configuration and perform
the simulated annealing starting at a low temperature
(T0 = 0.05, 0.01). In the simulation, we again set λQ1

as
the energy unit. Moreover, we treat the spin as the clas-
sical one with fixing the spin length at each site (|Si| = 1)
for simplicity.

We identify magnetic phases by measuring a magnetic
moment, a spin scalar chirality, and the skyrmion num-
ber. The magnetic moment with wave vector q is defined

as

mα
q =

√√√√〈 1

N2

∑
j,k

Sαj S
α
k e

iq·(Rj−Rk)

〉
, (54)

where α = x, y, z and 〈· · · 〉 is the average over the Monte
Carlo samples. The in-plane and out-of-plane magnetic

moments are given by m⊥q =
√

(mx
q)2 + (my

q)2 and mz
q,

respectively. mq=0 corresponds to the uniform magne-
tization M . The spin scalar chirality of the triangle
is defined as χr = [Sj · (Sk × Sl)], where the position
vector r represents the triangle center and the trian-
gle consists of (j, k, l) sites labeled in the counterclock-
wise order. The uniform spin scalar chirality is given by
χsc = 〈

∑
r χr/N〉. The spin scalar chirality with wave

vector q is given by

χq =

√√√√〈 1

N2

∑
µ

∑
r,r′∈µ

χrχr′eiq·(r−r
′)

〉
, (55)

where µ = (u, d) represents upward and downward tri-
angles, respectively. A skyrmion density Ωr [155] at the
triangle r is defined as

tan

(
Ωr

2

)
=

[
Sj · (Sk × Sl)

1 + Sj · Sk + Sk · Sl + Sl · Sj

]
. (56)

Then, the skyrmion number is given by

Nsk =
1

4πNm

〈∑
r

Ωr

〉
, (57)

where Nm is the number of the magnetic unit cell.
In the following, we discuss three situations with dif-

ferent sets of wave vectors, {Q}. First, we analyze the
ground state of the effective spin model by taking into
account all the q contributions in the interactions in
Sec. V C 2. As mentioned in Sec. II B 1, a part of interac-
tions are important to describe the magnetic instability
at low temperatures. Therefore, we discuss the minimum
effective spin model to reproduce the results in Sec. V C 2.
In Sec. V C 3, we find that it is not enough to reproduce
the results in Sec. V C 2 when considering only the con-
tributions from Q1-Q3. In Sec. V C 4, we show that the
additional contribution from 3Q1-3Q3 well reproduces
the results in Sec. V C 2.

2. Case of the interactions at all the wave vectors

In the effective spin model with the interactions at all
the wave vectors q except for q = 0, we investigate the
ground state of the effective spin model while changing
the magnetic field H. We show H dependences of the in-
plane magnetic moment at Q1-Q3, (m⊥Qη

)2, in Fig. 7(a),

the out-of-plane magnetic moment at Q1-Q3, (mz
Qη

)2, in



19

FIG. 7. H dependences of (a) (m⊥Qη )2, (b) (mz
Qη )2, (c)

(χQη )2, (d) Mz and |χsc|, and (e) Nsk in the model with

the interactions at all the wave vectors. We sort m⊥Qη , mz
Qη ,

and χQη to satisfy m⊥Q1
≥ m⊥Q2

≥ m⊥Q3
.

Fig. 7(b), the spin scalar chirality at Q1-Q3, (χQη
)2, in

Fig. 7(c), the uniform magnetization Mz and the uniform
spin scalar chirality |χsc| in Fig. 7(d), and the skyrmion
number Nsk in Fig. 7(e), where we sort m⊥Qη

, mz
Qη

, and

χQη
to satisfy m⊥Q1

≥ m⊥Q2
≥ m⊥Q3

for better readability.
In addition to the fully polarized state at H = 2, we find
three types of the multiple-Q states; all the states are
characterized by mQη

, since Xq has the largest eigenval-
ues atQη, as detailed below. These multiple-Q states are
stabilized by magnetic anisotropy rather than thermal
fluctuations. Figure 8 shows the spin and chirality config-
urations in real space and the magnetic moments in mo-
mentum space for each multiple-Q state. The skyrmion
density configurations in real space for each multiple-Q
state are shown in Fig. 9.

At H = 0, the ground state becomes a double-Q (2Q′)
state. In this state, the spin configuration is character-
ized by the double-Q in-plane components m⊥Q1

and m⊥Q2

with different intensities and no out-of-plane components
at Q1-Q3 (Q′ represents different intensities of the Q1

and Q2 components), as shown in Figs. 7(a) and 7(b).
The real-space spin configuration is shown in the first
column of Fig. 8(a). The in-plane spins form a periodic
structure consisting of the vortex (circle) and antivortex
(square), while the z spins show no periodic structure.
Such a tendency is found in the presence (absence) of
sharp peaks in m⊥q (mz

q), as shown in the third (fourth)
column of Fig. 8(a). In the scalar chirality sector, this
state exhibits χQη

= 0 and χsc = 0, as shown in Figs. 7(c)
and 7(d), respectively. In the real-space picture, the lo-
cal scalar chirality is randomly distributed, as shown in
the second column of Fig. 8(a). Accordingly, there is no
skyrmion number (Nsk = 0) in Fig. 7(e).

By applying a magnetic field, the 2Q′ state changes
into a triple-Q chiral I (3Q′-Ch-I) state, whose spin struc-
ture is characterized by the double-Q in-plane compo-
nents m⊥Q1

¿m⊥Q2
and the single-Q z component mz

Q3
, as

shown in Figs. 7(a) and 7(b). The in-plane spin config-
uration of the 3Q′-Ch-I state is similar to that of the
2Q′ state, as shown in the first and third columns of
Fig. 8(b). Meanwhile, the first and fourth columns of
Fig. 8(b) show a structure of z spin components due to
the single-Q peak of mz

Qη
, where the z spins have pos-

itive (small positive or negative) values at antivortices
(vortices). The undetermined sign of the z spins at vor-
tices is owing to the small value of mz

Qη
, which results in

the fluctuations of Nsk characterized by non-integer val-
ues, as shown in Fig. 7(e). The 3Q′-Ch-I state shows a
nonzero uniform scalar chirality [Fig. 7(d)] as well as the
chirality density wave along the Q3 direction [Fig. 7(c)].
The nonzero uniform scalar chirality is attributed to the
inequivalence between the z spin component at antivor-
tices and vortices, as found in the real-space spin and
chirality configurations in Fig. 8(b); there is a large neg-
ative chirality at antivortices with large z spins and a
small negative/positive chirality at vortices with small z
spins.

While increasing H, the peak structure of mz
Qη

and
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FIG. 8. First column: The spin configurations averaged over 500 Monte Carlo steps of (a) the 2Q′ state at H = 0, (b) 3Q′-Ch-I
state at H = 0.15, and (c) 3Q′-Ch-II state at H = 0.5. The arrows and contours show the xy and z components of the
spin, respectively. The circle (square) highlights the vortex (antivortex) structure in the xy spins. Second column: The scalar
chirality configurations of the first column. Third and fourth columns: The in-plane and out-of-plane magnetic moments in
momentum space. The solid and dashed circles in the third column highlight the Qη and 3Qη components, respectively. The
hexagons with a solid line show the first Brillouin zone. The q = 0 component is removed for better visibility.

Mz are developed, and then, there are no fluctuations in
Nsk for H & 0.225. We call this state a triple-Q chiral II
(3Q′-Ch-II) state. As the difference of m⊥Qη

, mz
Qη

, χQη
,

and χsc between the 3Q′-Ch-I phase and the 3Q′-Ch-II
phase seems to be slight in Figs. 7(a)-7(d), the similar
spin and chirality configurations in real and momentum
spaces appear in Figs. 8(b) and 8(c). By closely look-
ing into their spin configurations, one finds that all spins
have positive z components in the 3Q′-Ch-II phase in
Fig. 8(c), which is presumably due to the development of
mz

Qη
and Mz. As a result, the positive chirality contribu-

tion appears at vortices, which leads to the suppression
of the total scalar chirality, as shown in Fig. 7(d). While
further increasing H, the chirality contributions from the
vortices and antivortices are canceled out, and then, this
state turns into the fully polarized state at H = 2.

We further discuss the H dependence of Nsk in
Fig. 7(e), especially for the small H region, where
Nsk takes a non-integer value. We plot the real-space

skyrmion density configurations in Fig. 9. All the states
have the large skyrmion density near the (anti)vortex
cores. At H = 0, the skyrmion number becomes zero
within the errorbars, where both vortices and antivortices
take a random value, as shown in Fig. 9(a). For H > 0,
Nsk takes a non-integer value in the 3Q’-Ch-I state. In
this state, the antivortices take a negative value, while
the vortices take a positive or negative value at random,
as shown in Figs. 9(b) and 9(c). This randomness is the
reason why Nsk becomes the non-integer values. Such
randomness is suppressed while increasing H, as shown
in Figs. 9(b) and 9(c). In the end, the randomness van-
ishes in the 3Q’-Ch-II state, since the vortices always
take a positive value, as shown in Fig. 9(d). This result
indicates that the energy scale of F zq is too small to lead
to the sharp peak of mz

Qη
, which makes the skyrmion

density at the vortices ambiguous.
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FIG. 9. Skyrmion density configurations of (a) the 2Q′ state
at H = 0, (b) 3Q′-Ch-I state at H = 0.1, (c) 3Q′-Ch-I state at
H = 0.15, and (d) 3Q′-Ch-II state at H = 0.5. The skyrmion
density is calculated by using the spin configuration averaged
over 500 Monte Carlo steps.

3. Case of the interactions at Qη

To identify the origin of the multiple-Q states, we con-
sider the minimum model to reproduce the results in
Fig. 7 by dropping off the less important q component
of the interactions. In the previous section, we find that
the model shows the instability toward the multiple-Q
states with the scalar chirality, where there are no con-
tributions from the interactions at almost all q channels
except for Qν and their higher harmonics, as discussed
in Sec. II B 1. In this section, we only consider the contri-
butions of the interactions at {Q} = {±Q1,±Q2,±Q3},
since they give the maximum eigenvalue of Xq.

As a result, we find that the model with the interac-
tions at {Q} = {±Q1,±Q2,±Q3} is oversimplified in the
present situation. The H dependences in Fig. 10 show
that the magnetic phases in the present model are differ-
ent from those in Sec. V C 2; we obtain the 2Q′-CS, 3Q′-
SkX, 3Q-SkX, and 3Q-Ch states that are not stabilized
in the model in Sec. V C 2. In particular, the appearance
of the 3Q′-SkX and 3Q-SkX with Nsk = −1 is a char-
acteristic of the oversimplified model, whose real-space
spin and chirality configurations are shown in Fig. 11. In
the 3Q′-SkX, the in-plane spin configuration is similar
to that in the 3Q′-Ch-I state, while there is a difference
in the z spin configurations; the 3Q′-SkX in Fig 11(a)
[the 3Q′-Ch-I state in Fig 8(b)] has the (no) alternating
arrangement of vortices with the positive and negative
z spins in the Q3 direction. Meanwhile, The 3Q-SkX

FIG. 10. H dependences of (a) (m⊥Qη )2, (b) (mz
Qη )2, (c)

(χQη )2, (d) Mz and |χsc|, and (e) Nsk in the model with

the Qη channels. We sort m⊥Qη , mz
Qη , and χQη to satisfy

m⊥Q1
≥ m⊥Q2

≥ m⊥Q3
.

in Fig 11(b) shows an entirely different structure, which
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FIG. 11. Left panel: Snapshots of the spin configurations
of (a) the 3Q′-SkX state at H = 0.3 and (b) 3Q-SkX state
at H = 0.75. The arrows and contours show the xy and z
components of the spin, respectively. Right panel: The scalar
chirality configurations corresponding to the spin configura-
tions shown in the left panel.

is expressed as the superposition of the three cycloidal
elliptical waves with the same intensity. The 3Q-SkX
is similar to the SkX in Fig. 4(b), since it is stabilized
by the interplay among large F xQ1

, the isotropic interac-
tion, and the magnetic field, as discussed in Sec. II C 2.
We show the real-space spin and chirality configurations,
the q-space magnetic moments, and the skyrmion den-
sity configurations for the obtained states in Appendix D
for reference.

4. Case of the interactions at Qη and 3Qη

Next, we focus on the contribution from higher har-
monics for the following reasons. By comparing the q-
resolved magnetic moments shown in Figs. 8 and 15, we
find that the discrepancy between the results in Figs. 7
and 10 appears in the magnetic moments at higher-
harmonic wave vectors. Indeed, the values of λq and Fq

at 2Q1, 3Q1, and 2Q1−Q3 are large enough to compete
with those at Q1, as shown in Table VIII. On the basis
of the above discussion, we additionally take into account
the interactions at the higher-harmonic wave vectors to
those at Qν .

By performing the numerical simulations for the sev-
eral models with the different {Q}, we find that the
introduction of the interactions at ±3Q1,±3Q2,±3Q3

is enough to reproduce the results in Fig. 7. We
show the results for the model with {Q} =

FIG. 12. H dependences of (a) (m⊥Qη )2, (b) (mz
Qη )2, (c)

(χQη )2, (d) Mz and |χsc|, and (e) Nsk in the model with

the Qη and 3Qη channels. We sort m⊥Qη , mz
Qη , and χQη to

satisfy m⊥Q1
≥ m⊥Q2

≥ m⊥Q3
.

{±Q1,±Q2,±Q3,±3Q1,±3Q2,±3Q3} in Fig. 12. Com-
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FIG. 13. r dependence of |χsc| in the model with XQη and
rX3Qη at H = 0.7.

pared to the results in Fig. 7, the H dependences of spin-
and chirality-related quantities are reproduced except for
the high field region, H & 1.625. It is noted that there
is still an inconsistency in the high-field region; the 3Q-
Ch state appears for H & 1.625 corresponding to the
3Q-Ch state in the model with the interactions only at
±Q1,±Q2, and ±Q3 in Sec. V C 3, although the intensi-
ties of Q1, Q2, and Q3 components in the magnetic mo-
ments are slightly different in the present 3Q-Ch state.
This result indicates that the interactions at other higher
harmonics like 2Q1−Q2, which contributes to the energy
in the 3Q′-Ch-II state [Fig. 8(c)] might be important in
the high field region.

The reason why the contribution from the interactions
at 3Qν is important is understood from the spiral mod-
ulation in the presence of anisotropic interactions. From
the relation of F xQ1

> F zQ1
(> F yQ1

), the spiral plane along
the Q1 direction is elliptically modulated so as to have
more x-spin component. In a similar way, the multiple-
Q states in Sec. V C 2 consist of a superposition of the
elliptical waves along the Q1-Q3 directions. Such a de-
formation from the circular spiral plane to the elliptical
spiral plane leads to the relatively large intensity at 3Qη,
as shown by the dashed circles in the third column in
Fig. 8. Thus, the interactions at 3Qη play an important
role in the present situation. Meanwhile, it is noted that
the contribution at the 2Qη channel is not important in
spite of the larger value of λ2Qη

than λ3Qη
, since the 2Qη

modulation does not appear in the elliptical modulation
under FQη

.

Furthermore, we investigate how large contribution
from the 3Qη channel requires the stabilization of the
3Q’-Ch-I state by multiplying the variable 0 ≤ r ≤ 1 by
X3Qη

. Figure 13 shows the r dependence of the uniform
spin scalar chirality at H = 0.7. The result at r = 0
corresponds to that in Fig. 10, while the result at r = 1
corresponds to that in Fig. 12. The 3Q′-SkX in the inter-
mediate r has similar spin and chirality textures to those
in Fig. 11(a). The result shows that the 3Q′-Ch-I state
appears at r ' 0.31, which indicates that relatively small

λ3Q1
. λQ1

/4 leads to the stabilization (destabilization)

of the 3Q′-Ch-I (3Q(′)-SkX) state.

Finally, we find that the relationship of F x3Q1
>

F y3Q1
, F z3Q1

is also important. Indeed, when we per-

form the simulations by setting F y3Q1
> F x3Q1

, F z3Q1
and

F z3Q1
> F x3Q1

, F y3Q1
, at the same time, we also change

3Q2 and 3Q3 channels to satisfy the threefold rotational
symmetry, we could not reproduce the results in Fig. 7.

VI. SUMMARY AND PERSPECTIVE

To summarize, we formulated a systematic method
of constructing the effective spin model with the
momentum-resolved anisotropic exchange interactions
based on two approaches in order to systematically un-
derstand multiple-Q instabilities. First, by perform-
ing magnetic representation analysis, we found the six
symmetry rules to obtain nonzero momentum-resolved
anisotropic exchange interactions in the primitive-lattice
system. According to the rules, one can systematically
construct the effective spin model in any primitive lat-
tices. As a demonstration, we showed the effective spin
models in the tetragonal, hexagonal, and trigonal crystal
systems. We also found the symmetry rules in the multi-
sublattice system and showed the effective spin model in
the honeycomb and kagome structures. Second, by per-
forming perturbation analysis, we found that the spin-
dependent hybridizations between itinerant electron and
localized electron states are important microscopic model
parameters for nonzero long-range anisotropic exchange
interactions in metals. The results beyond the symme-
try argument give a way to quantitatively evaluate the
contributions of the anisotropic interactions in magnetic
metals within the framework of the first principle calcu-
lations. Finally, we showed how to use the above gen-
eral results by applying them to a hexagonal crystal and
how the anisotropic interactions affect multiple-Q states
by performing the simulated annealing for the effective
model. We found that a plethora of multiple-Q states
with a spin scalar chirality are stabilized by the symmet-
ric anisotropic exchange interactions at wave vectors that
give the maximum of the magnetic susceptibility as well
as those at their higher harmonics.

Our results will stimulate further exploration of mate-
rials hosting SkX. Based on the symmetry argument, one
can construct the effective spin model and analyze possi-
ble SkXs stabilized by the anisotropic interactions once
the crystal symmetry and the ordering vector are pro-
vided from the neutron and x-ray experiments. There-
fore, the symmetry argument provides a reference for
the exploration of further SkXs in both centrosymmetric
and noncentrosymmetric magnets since our results give a
complete relationship between the anisotropic exchange
interaction and crystal symmetry in any crystal systems.
In particular, the symmetry rules about the symmetric
anisotropic interaction makes it possible to search cen-
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trosymmetric materials hosting SkXs, which have been
less studied so far compared to noncentrosymmetric ma-
terials based on Moriya’s rule.

In addition, our results will open up the possibility
of exotic multiple-Q states beyond the SkXs. As vari-
ous sets of anisotropic exchange interactions emerge de-
pending on the crystal symmetry, there are several ways
to stabilize different types of multiple-Q states. In-
deed, we showed that the competition between interac-
tions at different wave vectors leads to the emergence of
the unconventional multiple-Q state with a non-integer
skyrmion number. These competitions might become
a source of exotic multiple-Q states [92, 93]. We also
showed a variety of anisotropic exchange interactions in
the multi-sublattice system, which become a origin of
the sublattice-dependent SkX, such as the antiferromag-
netic SkX. Besides, it is an intriguing problem to exam-
ine the role of thermal fluctuations in the momentum-
space effective spin model since a recent theoretical study
has revealed rich multiple-Q states in the magnetic field-
temperature phase diagram [114].
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Appendix A: Magnetic representation analysis

1. Primitive-lattice case

We show details of the magnetic representation analy-
sis in Secs. II A 1 and II B 1. The q-resolved anisotropic
spin interaction in Eq. (2) is determined so as to satisfy
the crystal symmetry as well as the time-reversal symme-
try. In the following, we discuss the interaction matrix
Xq in the gray symmorphic space group M = H + θH
including the time-reversal operation θ, space group op-
erations ∈ H, and their product.

The time-reversal symmetry connecting ±q imposes

Xαβ
q = θXαβ

−qθ
−1

=
(
Xαβ
−q

)∗
, (A1)

where the property of the anti-linearity of θ is used in
the second line. From this symmetry constraint and the

definition of Xq in Eq. (3), one obtains Dq = −D−q,
Eq = E−q and Fq = F−q, which means that Dq is
antisymmetric in momentum space but Eq and Fq are
symmetric.

We adopt point group operations in momentum space
as follows. Let us assume a crystal with a lattice vector
Rn and a point group operation P of the crystal. Then,
PRn leaves the system invariant. Meanwhile, the crys-
tal in momentum space is characterized by a reciprocal
lattice vector Gm, where PGm leaves the system invari-
ant. Thus, the same point group operation P is present
in both real and momentum spaces.

Since the anisotropic spin interaction, STq XqS−q, is re-
garded as the interaction between two spins at reciprocal
wave vector ±q, nonzero components in Xq are deter-
mined by the point group operation leaving the “bond”
connecting q and −q. There are two types of such oper-
ations, P I and P II, which are given by

(I) operation P I satisfying P Iq = q,

(II) operation P II satisfying P IIq = −q.

In terms of the magnetic space group, these point group
operations form the magnetic little co-group [113]. In
other words, the anisotropic spin interaction in Eq. (2)
must satisfy the magnetic little co-group symmetry
rather than the point group symmetry, which is the rea-
son why the anisotropic interaction depends on not only
the crystal symmetry but also the wave vector q [see Ta-
bles. V-VII].

The symmetry constraints from point group symme-
try are obtained by dividing the symmetry operations
into spin and momentum space (magnetic representa-
tion [98]). First, we rewrite the anisotropic spin inter-
action at ±q as

STq XqS−q + ST−qX−qSq = S̃T

(
0 Xq

X∗q 0

)
S̃, (A2)

with

S̃ = (Sxsq , Sysq , S
zs
q , S

xs
−q, S

ys
−q, S

zs
−q)T . (A3)

Here, Sαq is the classical spin (axial vector) at wave vector
q in the cartesian coordinates α = (xs, ys, zs) and Xq

represents the 3× 3 interaction matrix.
By using the magnetic representation Γ(P ) for the op-

eration P , the symmetry constraint is obtained from(
0 Xq

X∗q 0

)
= Γ(P )

(
0 Xq

X∗q 0

)
Γ−1(P ). (A4)

Γ(P ) is given by

Γ(P ) = Γperm(P )⊗ Γax(P ), (A5)

where 2×2 matrix Γperm(P ) is the permutation represen-
tation for q and −q and 3× 3 matrix Γax(P ) is the axial
vector representation for the three spin components. The
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permutation representation ΓI
perm for any type I opera-

tions is defined as P I(q,−q) = (q,−q)ΓI
perm = (q,−q),

while ΓII
perm for any type II operations is defined as

P II(q,−q) = (q,−q)ΓII
perm = (−q, q). Then, Γperm is

explicitly given by

ΓI
perm =

(
1 0

0 1

)
,ΓII

perm =

(
0 1

1 0

)
. (A6)

Meanwhile, The axial vector representation is defined as
Γax(P )αβ = 〈α|P |β〉 (α, β = xs, ys, zs), where |α〉 is the
basis in classical spin space (axial vector space).

Then, the rules (a)-(f) in Sec. II A 1 are obtained from
the following magnetic representations by setting |xs〉 ‖
q:

(A) The representation of the space inversion center
corresponding to Fig. 1(a) is given by

ΓII
perm ⊗

1 0 0

0 1 0

0 0 1

 . (A7)

(B) The representation of the mirror plane perpendic-
ular to q corresponding to Fig. 1(b) is given by

ΓII
perm ⊗

1 0 0

0 −1 0

0 0 −1

 . (A8)

(C) The representation of the twofold axis perpendicu-
lar to q corresponding to Fig. 1(c) is given by

ΓII
perm ⊗

−1 0 0

0 −1 0

0 0 1

 , (A9)

where the direction of |zs〉 is parallel to the axis.

(D) The representation of the mirror plane including q
corresponding to Fig. 1(d) is given by

ΓI
perm ⊗

−1 0 0

0 −1 0

0 0 1

 , (A10)

where the direction of |zs〉 is perpendicular to the
mirror plane.

(E) The representation of the twofold axis including q
corresponding to Fig. 1(e) is given by

ΓI
perm ⊗

1 0 0

0 −1 0

0 0 −1

 . (A11)

(F) The representation of the n-fold (n = 3, 4, 6) axis
including q corresponding to Fig. 1(f) is given by

ΓI
perm ⊗

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , (A12)

with φ = 2π/n.

Since the operation P in the rules (a)-(c) [(d)-(f)] is the
type II (I), the rules (a)-(c) [(d)-(f)] are obtained from
Xq = Γax(P )X∗qΓ−1

ax (P ) [Xq = Γax(P )XqΓ−1
ax (P )]. Thus,

the rules (a)-(c) [(d) and (e)] are imposed by the point
group operation (not) combined with the time-reversal
operation, which results in the different (same) nonzero
components of Eq and Dq. In the magnetic represen-
tations (A)-(E), the axial vector representations do not
have the off-diagonal components, which results in no
constraint on Fq.

In Sec. II B 1, we use the axial vector representation
by setting |xs〉 ‖ |x〉, |ys〉 ‖ |y〉, and |zs〉 ‖ |z〉, where
(|x〉 , |y〉 , |z〉) is the basis set of the crystal lattice shown
in Fig. 2(a). Then, the axial vector representation has
the off-diagonal components depending on the symmetry
of the space group and the wave vector, which results in
different constraints on the interactions. Equation (11)
is obtained by using the permutation representation for
(±Q1,±Q2) or (±Q1,±Q2,±Q3) space.

2. Multi-sublattice case

Similar to the primitive-lattice case, we rewrite the in-
teraction in Eq. (7) in an extended space. For example,
we here show the two-sublattice case, where the interac-
tion is given by

S̃T


0 XAA;q 0 XAB;q

X ∗AA;q 0 X ∗AB;q 0

0 X ∗AB;q 0 XBB;q

XAB;q 0 X ∗BB;q 0

 S̃, (A13)

with

S̃ = (SAq,SA−q,SBq,SB−q)T . (A14)

The symmetry constraint is obtained by using the mag-
netic representation Γ(P ) for the operation P , which is
given by

Γ(P ) = Γsub(P )⊗ Γperm(P )⊗ Γax(P ). (A15)

Here, 2× 2 matrix Γsub(P ) is the permutation represen-
tation for the sublattices A and B, 2×2 matrix Γperm(P )
is the permutation representation for q and −q, and 3×3
matrix Γax(P ) is the axial vector representation for the
three spin components. Γperm(P ) and Γax(P ) are given
in the previous section. As mentioned in Sec. II A 2, the
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symmetry constraint is imposed by the point group sym-
metry (i) fixing or (ii) interchanging the sublattices A
and B. In terms of the magnetic representation, the case
(i) and (ii) point group symmetry is represented by using

ΓI
sub =

(
1 0

0 1

)
,ΓII

sub =

(
0 1

1 0

)
, (A16)

respectively.
In the n-sublattice (n ≥ 3) case, the symmetry con-

straints are obtained as well as the two-sublattice case.
Then, the interaction matrix is written in the extended
space with

S̃ = (SAq,SA−q,SBq,SB−q, · · · ,Snq,Sn−q)T . (A17)

The magnetic representation is common to Eq. (A15),
where only Γsub depends on the number of sublattices.
For example, in the three-sublattice case, the symmetry
constraint is imposed by the point group symmetry that
(i) fixes the sublattices A, B, and C, (ii) interchanges the
sublattices A and B but fixes the sublattice C, and (iii)
cyclically interchanges the sublattices A, B, and C. The
corresponding representations are given by

Γ
(i)
sub =

1 0 0

0 1 0

0 0 1

 ,Γ
(ii)
sub =

0 1 0

1 0 0

0 0 1

 ,Γ
(iii)
sub =

0 1 0

0 0 1

1 0 0

 .

(A18)

It is noted that the point group symmetry belonging to
the same class as the point group symmetry (i)-(iii) also
imposes the symmetry constraint.

Appendix B: Effective spin model with the
interactions at low symmetric wave vectors in

tetragonal, hexagonal, and trigonal crystal systems

We here present the model in Eq. (10) with the low
symmetric wave vectors in the tetragonal, hexagonal,
and trigonal crystal systems. Figure 14(a)[(b)] shows
the schematic pictures of the low symmetric wave vectors
for the tetragonal (hexagonal and trigonal) crystal sys-
tems. In the P4/mmm, P422, P 4̄2m, P 4̄m2, and P4mm
(P4/m,P4, and P 4̄) crystals, there are four (two) equiv-
alent wave vectors Q1, Q2, Q′1, and Q′2 (Q1 and Q2)
connected by the crystal symmetry; the effective spin
model in Eq. (10) is described to have the interactions
at {Q} = {±Q1,±Q2,±Q′1,±Q′2} ({Q} = {±Q1,±Q2}
or {±Q′1,±Q′2}). Meanwhile, in the P6/mmm, P622,
P 6̄m2, P 6̄2m, P6mm, P 3̄m1, P 3̄1m, P321, P312, and
P3m1 (P6/m,P 6̄, P6, P 3̄, and P3) crystals, there are
six (three) equivalent wave vectors Q1, Q2, Q3, Q′1,
Q′2, and Q′3 (Q1, Q2, and Q3) connected by the crystal
symmetry. In this case, the dominant exchange interac-
tions in the effective spin model in Eq. (10) are described
by ones at {Q} = {±Q1,±Q2,±Q3,±Q′1,±Q′2,±Q′3}
({Q} = {±Q1,±Q2,±Q3} or {±Q′1,±Q′2,±Q′3}).

FIG. 14. A set of low symmetric wave vectors along the low
symmetric lines inside the first Brillouin zone in (a) tetrag-
onal crystal systems and (b) hexagonal and trigonal crystal
systems. The dashed lines represent the high symmetric lines.
In (a), Q1 and Q2 (Q′1 and Q′2) are connected by the four-
fold rotation around the z axis, while in (b), Q1, Q2, and Q3

(Q′1, Q′2, and Q′3) are connected by the threefold rotation.
Q1 and Q′1 are connected by the twofold rotation around the
x axis, the mirror reflection on the xz plane, the time-reversal
operation after the twofold rotation around the y axis, or the
time-reversal operation after the mirror reflection on the yz
plane. The wave vectors in {Q} lie on the xy plane.

Tables IX-XI show the results of XQ1
and XQ′1

in the
tetragonal, hexagonal, trigonal crystal systems, respec-
tively. In addition, the number of independent compo-
nents (Nc) of the interaction matrix is shown. In all
cases, XQ1

has at least four independent components
(Nc ≥ 4). In the P4/mmm, P422, P 4̄2m, P 4̄m2,
P4mm, P6/mmm, P622, P 6̄m2, P 6̄2m, P6mm, P 3̄m1,
P 3̄1m, P321, P312, and P3m1 crystals, Nc of XQ′1

is
zero since the components of XQ′1

are related to those
of XQ1

. For example, nonzero components of XQ′1
is

obtained from those of XQ1
by using the twofold rota-

tion about the x axis, the mirror reflection on the xz
plane, the time-reversal operation after the twofold ro-
tation about the y axis, or the time-reversal operation
after the mirror reflection on the yz plane depending on
the space group. The other relevant interactions at the
symmetry-related wave vectors in {Q} are obtained by
using Eq. (11) in a similar way.

Appendix C: Effective Hamiltonian of the
anisotropic periodic Anderson model

We show the details of the low-energy effective model
in Eq. (28) of the multi-band anisotropic periodic Ander-
son model. The spin-dependent term, H′mσ;m′σ, is given
by

H′mσ;m′σ =
∑
k,q,α

ε̃αmk+qm′kS
α
q c
†
mk+qσcm′kσ

+
∑
k

ε̃mm′kc
†
mkσcm′kσ (C1)
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TABLE IX. Interaction matrices XQ1 and XQ′1
and the number of independent components Nc in the tetragonal crystal systems

for the low symmetric wave vectors Q1 and Q′1 shown in Fig. 14(a). The spin coordinates xs, ys, and zs are taken along the x,
y, and z directions in Fig. (14)(a), respectively.

Q1 Q′1

space group H XQ1 Nc XQ′1
Nc

P4/mmm

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

 F xQ1
−EzQ1

0

−EzQ1
F yQ1

0

0 0 F zQ1

 0

P422

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

iDy
Q1

−EzQ1
F yQ1

iDx
Q1

−iDy
Q1
−iDx

Q1
F zQ1

 0

P 4̄2m

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

iDy
Q1

−EzQ1
F yQ1

iDx
Q1

−iDy
Q1
−iDx

Q1
F zQ1

 0

P 4̄m2

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

−iDy
Q1

−EzQ1
F yQ1

−iDx
Q1

iDy
Q1

iDx
Q1

F zQ1

 0

P4mm

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

−iDy
Q1

−EzQ1
F yQ1

−iDx
Q1

iDy
Q1

iDx
Q1

F zQ1

 0

P4/m

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4


F xQ′1

EzQ′1
0

EzQ′1
F y
Q′1

0

0 0 F zQ′1

 4

P4

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6


F xQ′1

EzQ′1
−iDy

Q′1

EzQ′1
F y
Q′1

iDx
Q′1

iDy

Q′1
−iDx

Q′1
F zQ′1

 6

P 4̄

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6


F xQ′1

EzQ′1
−iDy

Q′1

EzQ′1
F y
Q′1

iDx
Q′1

iDy

Q′1
−iDx

Q′1
F zQ′1

 6

where

ε̃αmkm′k′ = C
(1)
mkm′k′

[
V αm′k′V

0∗
mk + V α∗mkV

0
m′k′

−i
∑
β,γ

εαβγV
β
m′k′V

γ∗
mk

 (C2)

ε′mm′k = C
(2)
mm′k(V 0

m′kV
0∗
mk + Vm′k · V ∗mk), (C3)

with

C
(1)
mkm′k′ =

1

2
(Bmk +Bm′k′), (C4)

C
(2)
mm′k = −1

2

(
Amk +

Bmk

2
+Am′k +

Bm′k
2

)
. (C5)

The first term with m 6= m′ (m = m′) in Eq. (C1) hy-
bridizes different bands (the same band) at different wave
vectors, while the second term with m 6= m′ (m = m′)
hybridizes different bands (the same band) at the same
wave vectors. However, these terms keep the degeneracy

in terms of the itinerant electron spin σ, so they cannot
be the origin of the anisotropic exchange interactions.

The spin-dependent terms, Hex
mσ;m′σ′ and HSOC

mσ;m′σ′ ,
include the hybridization of the different bands, which
is neglected in the main text, although they also be-
come the origin of the anisotropic exchange interactions.
When considering the hybridization, the expression of the
anisotropic exchange interactions in Sec. III C becomes
more complex. In the following, we show the details
of the spin-dependent terms. The exchange interaction,
Hex
mσ;m′σ′ , is given by

Hex
mσ;m′σ′ =

1√
N

∑
k,q,α,β

Jαβmk+qm′kc
†
mk+qσσ

α
σσ′cm′kσ′S

β
q .

(C6)

where

Jαβmkm′k′ = J ISO
mkm′k′δαβ + [JS

mkm′k′ ]
αβ + [JAS

mkm′k′ ]
αβ ,
(C7)
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TABLE X. Interaction matrices XQ1 and XQ′1
and the number of independent components Nc in the hexagonal crystal systems

for the low symmetric wave vectors Q1 and Q′1 shown in Fig. 14(b). The spin coordinates xs, ys, and zs are taken along the x,
y, and z directions in Fig. (14)(a), respectively.

Q1 Q′1

space group H XQ1 Nc XQ1 Nc

P6/mmm

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4

 F yQ1
−EzQ1

0

−EzQ1
F xQ1

0

0 0 F zQ1

 0

P622

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

iDy
Q1

−EzQ1
F yQ1

iDx
Q1

−iDy
Q1
−iDx

Q1
F zQ1

 0

P 6̄m2

 F xQ1
EzQ1

+ iDz
Q1

0

EzQ1
− iDz

Q1
F yQ1

0

0 0 F zQ1

 5

 F xQ1
−EzQ1

− iDz
Q1

0

−EzQ1
+ iDz

Q1
F yQ1

0

0 0 F zQ1

 0

P 6̄2m

 F xQ1
EzQ1

+ iDz
Q1

0

EzQ1
− iDz

Q1
F yQ1

0

0 0 F zQ1

 5

 F xQ1
−EzQ1

− iDz
Q1

0

−EzQ1
+ iDz

Q1
F yQ1

0

0 0 F zQ1

 0

P6mm

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6

 F xQ1
−EzQ1

−iDy
Q1

−EzQ1
F yQ1

−iDx
Q1

iDy
Q1

iDx
Q1

F zQ1

 0

P6/m

F xQ1
EzQ1

0

EzQ1
F yQ1

0

0 0 F zQ1

 4


F xQ′1

EzQ′1
0

EzQ′1
F y
Q′1

0

0 0 F zQ′1

 4

P 6̄

 F xQ1
EzQ1

+ iDz
Q1

0

EzQ1
− iDz

Q1
F yQ1

0

0 0 F zQ1

 5


F xQ′1

EzQ′1
+ iDz

Q′1
0

EzQ′1
− iDz

Q′1
F y
Q′1

0

0 0 F zQ′1

 5

P6

 F xQ1
EzQ1

−iDy
Q1

EzQ1
F yQ1

iDx
Q1

iDy
Q1
−iDx

Q1
F zQ1

 6


F xQ′1

EzQ′1
−iDy

Q′1

EzQ′1
F y
Q′1

iDx
Q′1

iDy

Q′1
−iDx

Q′1
F zQ′1

 6

with

J ISO
mkm′k′ = C

(1)
mkm′k′(V

0
m′k′V

0∗
mk − Vm′k′ · V ∗mk),

(C8)

[JS
mkm′k′ ]

αβ = C
(1)
mkm′k′

(
V αm′k′V

β∗
mk + V α∗mkV

β
m′k′

)
,

(C9)

[JAS
mkm′k′ ]

αβ = C
(1)
mkm′k′i

∑
γ

εαβγ
(
V γm′k′V

0∗
mk − V

γ∗
mkV

0
m′k′

)
.

(C10)

The effective SOC, HSOC
mσ;m′σ′ , is given by

HSOC
mσ;m′σ′ =

∑
k

gmm′k · c†mkσσσσ′cm′kσ′ , (C11)

where

gαmm′k = C
(2)
mm′k

V αm′kV 0∗
mk + V α∗mkV

0
m′k − i

∑
β,γ

εαβγV
β
m′kV

γ∗
mk

 .
(C12)

Appendix D: Magnetic phases in the case of the
interactions at Qη

We show the details of the multiple-Q states in the
model with the interactions at {Q} = {±Q1,±Q2,±Q3}
in Sec. V C 3. As shown in Fig. 10, we find the 2Q′-
CS state, 3Q′-SkX, 3Q-SkX, and 3Q-Ch state in addi-
tion to the 3Q′-Ch-II state and the fully polarized state.
Here, CS represents a chiral stripe characterized by a
single peak of χq [75, 156, 157] and 3Q stands for the
same intensity of Q1, Q2, and Q3 components in the
magnetic moments. Figure 15 shows the real-space spin
and chirality configurations and the q-space magnetic
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TABLE XI. Interaction matrices XQ1 and XQ′1
and the number of independent components Nc in the trigonal crystal systems

for the low symmetric wave vectors Q1 and Q′1 shown in Fig. 14(b). The spin coordinates xs, ys, and zs are taken along the x,
y, and z directions in Fig. (14)(a), respectively.

Q1 Q′1

space group H XQ1 Nc XQ1 Nc

P 3̄m1

F
x
Q1

EzQ1
EyQ1

EzQ1
F yQ1

ExQ1

EyQ1
ExQ1

F zQ1

 6

 F xQ1
−EzQ1

−EyQ1

−EzQ1
F yQ1

ExQ1

−EyQ1
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 0
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 6
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 0
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 9
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 9

moments for the 2Q′-CS state, 3Q′-SkX, 3Q-SkX, and
3Q-Ch state. Their skyrmion density configurations are
shown in Fig. 16.



30

FIG. 15. First column: Snapshots of the spin configurations of (a) the 2Q′-CS state at H = 0, (b) 3Q′-SkX state at H = 0.3,
(c) 3Q-SkX state at H = 0.75, and (d) 3Q-Ch state at H = 1.5. The arrows and contours show the xy and z components of
the spin, respectively. Second column: The scalar chirality configurations of the spin configurations shown in the first column.
Third and fourth columns: The in-plane and out-of-plane magnetic moments in momentum space, respectively. The hexagons
with a solid line show the first Brillouin zone. The q = 0 component is removed for better visibility. The first and second
columns in (b) and (c) are the same as Figs. 11(a) and (b), respectively.
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FIG. 16. Skyrmion density configurations of (a) the 2Q′ state
at H = 0, (b) 3Q′-Ch-I state at H = 0.1, (c) 3Q′-Ch-I state
at H = 0.15, and (d) 3Q′-Ch-II state at H = 0.5.
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netic vortices in Rashba metals, Phys. Rev. Lett. 121,
137202 (2018).

[50] S. Bera and S. S. Mandal, Theory of the skyrmion,
meron, antiskyrmion, and antimeron in chiral magnets,
Phys. Rev. Research 1, 033109 (2019).

[51] S. Hayami and Y. Motome, Square skyrmion crystal in
centrosymmetric itinerant magnets, Phys. Rev. B 103,
024439 (2021).

[52] Z. Wang, Y. Su, S.-Z. Lin, and C. D. Batista,
Meron, skyrmion, and vortex crystals in centrosym-
metric tetragonal magnets, Phys. Rev. B 103, 104408
(2021).

[53] O. I. Utesov, Thermodynamically stable skyrmion lat-
tice in a tetragonal frustrated antiferromagnet with
dipolar interaction, Phys. Rev. B 103, 064414 (2021).

[54] S. Hayami and Y. Motome, Noncoplanar multiple-Q
spin textures by itinerant frustration: Effects of single-
ion anisotropy and bond-dependent anisotropy, Phys.
Rev. B 103, 054422 (2021).

[55] S. Hayami and R. Yambe, Meron-antimeron crystals in
noncentrosymmetric itinerant magnets on a triangular
lattice, Phys. Rev. B 104, 094425 (2021).

[56] T. Momoi, K. Kubo, and K. Niki, Possible chiral phase
transition in two-dimensional solid 3He, Phys. Rev.
Lett. 79, 2081 (1997).

[57] Y. Kamiya and C. D. Batista, Magnetic vortex crystals
in frustrated mott insulator, Phys. Rev. X 4, 011023
(2014).

[58] G. Marmorini and T. Momoi, Magnon condensation
with finite degeneracy on the triangular lattice, Phys.
Rev. B 89, 134425 (2014).

[59] Z. Wang, Y. Kamiya, A. H. Nevidomskyy, and C. D.
Batista, Three-dimensional crystallization of vortex
strings in frustrated quantum magnets, Phys. Rev. Lett.
115, 107201 (2015).

[60] S. Hayami, S.-Z. Lin, Y. Kamiya, and C. D. Batista,
Vortices, skyrmions, and chirality waves in frustrated
mott insulators with a quenched periodic array of im-
purities, Phys. Rev. B 94, 174420 (2016).

[61] R. Yambe and S. Hayami, Skyrmion crystals in cen-
trosymmetric itinerant magnets without horizontal mir-
ror plane, Sci. Rep. 11, 11184 (2021).

[62] S. Hayami, T. Okubo, and Y. Motome, Phase shift in
skyrmion crystals, Nat. Commun. 12, 6927 (2021).
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ral spin-liquid and the emergence of a vortex-like state
in MnSc2S4, Nat. Phys. 13, 157 (2017).

[116] S. Gao, H. D. Rosales, F. A. G. Albarraćın, V. Tsurkan,
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