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We explore the ground state and thermodynamic properties of the polaron coupled to quantum dispersive
optical phonons in one spatial dimension. Calculations are performed using the finite–temperature Lanczos
method augmented by a highly efficient construction of the variational Hilbert space. We focus on the electron
removal spectral function as relevant for the angle-resolved photoemission experiments. We show that photoe-
mission spectroscopy can be used to measure the phonon dispersion relation in a dilute system of polarons. The
spectral weight of observed phonon bands is proportional to the phonon contribution to the wavefunction at
finite phonon momentum. In addition, we demonstrate that when removing an electron from a polaron ground
state, the polaron band does not appear in the spectral function. The latter becomes observable only at elevated
temperatures.

PACS numbers:

I. INTRODUCTION

Electron-phonon interaction represents one of the most
studied phenomena in solid-state physics. The Holstein model
(HM)1 symbolizes one of the simplest and possibly the most
studied prototype microscopic models describing electron
coupling to quantum lattice degrees of freedom. Despite its
apparent simplicity, the model has no exact solution, even in
the most straightforward single electron case. For this reason,
many numerical methods have been applied and developed to
tackle the ground state and dynamic properties of the HM. The
most straightforward are exact diagonalization approaches on
finite lattices2–8 followed by slightly more sophisticated vari-
ational approaches.9–22

Other techniques rely on diagrammatic approaches23–25

with extentions to momentum averaged approximations26–30

that allow for the computation of static as well as dynamic
properties of the model. Recently developed hierarchical
equations of motion approach allows for computation of spec-
tral functions at finite temperature31,32. Further improvements
within the context of momentum averaged approximations led
to the development of generalized Green’s function cluster
expansion33 that allow reliable computations in the extreme
adiabatic limit of different charge–boson coupled models.

Other successful methods include various Monte Carlo
methods.34–40 Diagrammatic and world line Monte Carlo
method25,41,42 have recently been applied to determine the mo-
bility of an electron subject to local lattice vibrations. In
this class of approaches a Density–matrix renormalization–
group techniques43–45 represent yet another class of advanced
techniques most successful in tackling the Holstein model
in one spatial dimension, which can be easily extended to
finite electron doping regime. Recently, this approach has
been generalized to obtain spectral properties of the HM at fi-
nite temperatures.46 In the limit of infinite dimension dynami-
cal mean-field approaches (DMFT)47,48 provide exact results,
while it has recently been shown that DMFT can also provide
a reasonably accurate solution for the spectral function for the
one-dimensional problem.49

In comparison to a multitude of past research based on the
Holstein model, only a few recent works incorporate a more
realistic phonon dispersion among the optical Einstein modes.
One of the early approaches to include the phonon dispersion
in the adiabatic limit has been reported in Ref.50. In Ref.51 au-
thors have investigated the influence of the dispersion among
optical phonons on the polaron effective mass. Recently, the
electron addition spectral function and the optical response
has been studied in the HM with dispersive optical phonons.52

The coupling of the electron to acoustic phonons seems to
be the most challenging when using various numerical ap-
proaches. In such cases, perturbative approaches seem to be
more applicable.53,54

Most previous works on the polaron spectral function have
investigated cases of adding an electron (or hole) to the
vacuum.5,7,17,26–29,46,52,53,55 We are in contrast removing an
electron from the 1 electron sector. Note that after the removal
of an electron from the system of dispersionless Einstein
phonons, there is no dynamics left in the system; the phonon
degrees of freedom remain frozen. This is possibly why not
much attention has been devoted to the electron removal spec-
tral function in the context of the Holstein polaron. The intro-
duction of dispersion renders the Holstein model more physi-
cally relevant, allowing phonon degrees of freedom to evolve
even in the absence of the electron. Here we note that in most
materials, the bandwidth of optical phonons is much smaller
than the position of the middle of the optical band. Never-
theless, a substantial dispersion of optical phonons appears
in systems where intracellular interactions are comparable to
those between cells and where the masses of atoms in the unit
cell are similar. A few examples of systems with large disper-
sions of optical phonons are GaLaAs superlattice systems56

and hexagonal nitride AlN semiconductors57.
Our calculation is limited to computation of a single

electron coupled to dispersive optical phonons on a one-
dimensional chain58. Our findings are thus relevant to sys-
tems in the low-carrier doping limit with nondegenerate po-
larons. Recently, angle-resolved photoemission spectroscopy
(ARPES) studies have been applied to systems with low
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electron density, such as doped transition metal oxides59,60,
Graphene heterostructures61, multilayer FeSe thin films62, and
oxide heterostrucures63, where polaronic effects have been
observed.

In this work, we explore the physical properties of the
polaron in two directions. We introduce phonon dispersion
among optical phonons and examine the electron removal
spectral function as relevant for angle-resolved photoemission
experiments. We show that photoemission spectroscopy can
be used to measure the phonon bands in a dilute system of
polarons. In addition, we demonstrate that when removing an
electron from a polaron ground state, the polaron band does
not appear in the spectral function. The latter is observed only
at elevated temperatures.

II. MODEL AND METHOD

We study a single electron coupled to dispersive optical
phonons on a one–dimensional system

H = −tel
∑
j

(c†jcj+1 + H.c.) + g
∑
j

n̂j(a
†
j + aj) +

+ tph
∑
j

(a†jaj+1 + H.c.) + ω0

∑
j

a†jaj , (1)

where c†j and a†j are electron and phonon creation operators
at site j, respectively, n̂j = c†jcj represents the electron den-
sity operator and tel the nearest-neighbor hopping amplitude.
ω0 denotes the position of the center of the dispersive opti-
cal phonon band ω(q) = ω0 + 2tph cos(q). We introduce
the dimensionless effective electron-phonon coupling strength
λ = εp/2tel = g2/2tel

√
ω2
0 − 4t2ph where εp is the polaron

energy in the limit tel = 0.51 From here and on we set tel = 1.
We have used a numerical method described in detail

in Refs.12,13,52 The method generates the variational Hilbert
space starting from the initial single-electron Bloch state c†k|∅〉
where c†k = 1√

L

∑
j e
ikjc†j , with no phonons on a finite lat-

tice with L sites and periodic boundary conditions. The varia-
tional Hilbert space is then generated by applying the first two
off-diagonal terms of Hamiltonian in Eq. (1) Nh times taking
into account the full translational symmetry. In the intermedi-
ate coupling regime the method provides computation of the
ground state energy in the thermodynamic limit to extremely
high accuracy. The constructed variational Hilbert space al-
lows only a finite maximal distance of a phonon quanta from
the electron position, Lmax = Nh − 1. This limitation is
in turn responsible for a discrete phonon dispersion ω(q).
Note that Lmax can be chosen smaller, equal or larger than
L. Furthermore, the maximal amount of phonon quanta at
the electron position is given by Nphmax = Nh while on
the M − th neighboring site to the electron, it is reduced
to Nphmax = Nh − M . We have used a standard Lanczos
procedure64 to obtain static as well as dynamic properties of
the model.

III. ZERO TEMPERATURE RESULTS
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Figure 1: n̄q for different valus of λ as denoted in insets and for dif-
ferent values of the phonon dispersion tph, computed in the polaron
ground state. In this and in all subsequent figures unless otherwise
specified we have used ω0 = tel = 1, Nh = 16 and the size of the
system L = 32.

Our main focus is on the electron removal spectral function
defined as

A(ω, q) =

M0∑
n=0

|〈ψ(n,0)
−q |cq|ψ

(0,1)
0 〉|2δ(ω − E(n,0)

q + E
(0,1)
0 ),

(2)
where |ψ(n,Nel)

q 〉 represents the nth translationally invariant
state with Nel = 0, 1 electrons and wavevector q. In par-
ticular, |ψ(0,1)

k=0 〉 represents the polaron ground state obtained
using the Lanczos procedure. Typically M1 = 50 Lanczos
steps was sufficient to obtain accurate ground state energies
and wavefuctions for the polaron case. Furthermore, we have
computed M0 = 200 excited states |ψ(n,0)

q 〉 for each q. To
ensure orthogonality of |ψ(n,0)

q 〉, we have also employed the
Gram-Schmid reorthogonalization procedure. We have used
a Lorentzian form of the delta functions with the half width
at half maximum (HWHM) η for graphic representations of
A(q, ω). The integral over ω yields the sum–rule∫ +∞

−∞
dωA(ω, q) = 〈ψ(0,1)

0 |c†qcq|ψ
(0,1)
0 〉 = n̄q, (3)

that further gives
∑
q n̄q = 1 for the case of the polaron. Fur-

thermore, n̄q contains the information of the expectation value
of the kinetic energy via

−2tel
∑
q

n̄q cos(q) = Ekin, (4)
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where Ekin = 〈ψ(0,1)
0 |Hkin|ψ(0,1)

0 〉 and Hkin represents the
first term in Eq. 1. Eq. 4 can serve as a consistency check on
the computation of A(ω, q).
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Figure 2: Full lines in a) represent Ekin of the polaron ground state
at various tph and the total wavevector q = 0, open circles represent
the same quantity computed usingEkin = −2tel

∑
q n̄q cos(q). The

quasiparticle weight Zq=0 vs. λ is represented in b) and c) represents
Zq at fixed λ = 1.

In Fig. 1 we present n̄q computed in the polaron ground
state |ψ(0,1)

q=0 〉. In the case of the free electron, i.e. at λ = 0,
n̄q = δq,0. Increasing values of n̄q 6=0 at λ > 0 indicate that
the electron obtains finite momenta qel as the phonon cloud
picks up the difference qph so that the total q = qel + qph = 0.
In the limit of very large λ (not shown) one expects n̄q ∼ 1/L
that would yield, according to Eq. 4,Ekin → 0. In the vicinity
of q ∼ 0 a negative value of tph has a more pronounced effect
on the increase of n̄q in comparison to tph > 0. In particular,
for tph = −0.2, nq has the largest amplitude of the curves
for small q, and the smallest amplitude for large q, as one
would expect from the energy denominator in the perturbation
theory. This effect is more pronounced in the weak coupling
regime, λ . 1, see Fig. 1(a).

In Fig. 2(a) we display Ekin vs. λ for different values of
phonon dispersion. In contrast to n̄q , there is very little effect
of different values of tph on Ekin in the weak to intermediate
coupling regime, i.e. λ . 1. For larger λ > 1, tph > 0 has
a more pronounced effect on Ekin than for tph < 0. It is the
amplitude of states with large electron momentum q that cause
the biggest change in Ekin. In first order of the perturbation
theory, the large momentum states have a bigger amplitude
for tph > 0 than in the opposite case, because the energy
denominators are smaller when tph > 0. Note that full lines
represent Ekin computed as an expectation value of Hkin in
the polaron ground state while circles represent Ekin obtained
from n̄q via Eqs. 3 and 4.

Investigating further the effects of tph on the properties
of the polaron we computed the quasiparticle weight Zq =

|〈ψ(0,1)
q |c†q|∅〉|2 that measures the weight of the free electron

in the polaron ground state. As shown in Fig. 2(b) Zq=0 de-
creases faster with λ when tph < 0. This is a consequence
of the smaller phonon excitation energy ωq=0 = ω0 + 2tph
for tph < 0. At large λ & 1.5 we observe a crossing of
Zq=0 at tph = 0.2 below those computed at smaller values
of tph. This seemingly unusual effect can be explained by
the coupling of electron to two phonon excitations, each at
q1 = q2 = π, that yields total momentum q = 0 and total ex-
citation energy ω2ph = 2ω0 − 4tph. The latter, providing that
tph > ω0/6, lies below the single phonon excitation energy
at q = 0, ω1ph = ω0 + 2tph, see also Ref.52. A monotonic
decrease of Zq vs. q at fixed λ = 1 is shown in Fig. 2(c),
which indicates diminishing weight of the free electron wave
function at given q in the polaron ground state as q departs
from the middle of the Brillouin zone.

Figure 3: A(ω, q) for different λ and tph as denoted in the insets.
In a) through f) blue dashed lines follow single-phonon excitation
and are obtained from ω1ph = −E(0,1)

q=0 + ω0 + 2tph cos(q), yel-
low dot-dashed lines enclose continuum of 2–phonon excitations be-
low the polaron ground state energy: ω±2ph = −E(0,1)

q=0 + 2ω0 ±
4tph cos(q/2). In addition, red dashed lines indicate the regime of
three phonon excitation continuum ω±3ph, as given in the text. We
have used artificial broadening η = 0.05. Note that the lowest fre-
quency (lowest |ω| ) peaks at q = 0 are represented by the Lorentzian
forms of the delta functions in q and ω. Identical colour coding has
been used in all panels.

We now turn to the analysis of A(ω, q), presented as den-
sity plots for different values of λ and two different values
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Figure 4: A(ω, q, k) computed at tph = 0.1 from a) through d)
and tph = −0.1 from e) through h), for different values of k as
denoted in the insets. In a) through e) blue dashed lines follow single-
phonon excitation and are obtained from ω1ph = −E(0,1)

k + ω0 +
2tph cos(q−k), yellow dot-dashed lines enclose the continuum of 2–
phonon excitations below the polaron ground state energy: ω±2ph =

−E(0,1)
k + 2ω0±4tph cos((q−k)/2). White dashed lines represent

the polaron dispersion relation given by ωpol = −E(0,1)
q . We have

used artificial broadening η = 0.05. Note that the lowest frequency
(lowest |ω| ) peaks at q = 0 are represented by the Lorentzian forms
of the delta functions in q and ω. Identical colour coding has been
used in all panels.

of tph in Fig. 3. The lowest frequency peaks (lowest |ω| )
at q = 0 are located at the polaron energy ω = −E(0,1)

0 .
They are represented by the broadened delta functions in the
ω and q directions. It is important to emphasise, that there is
no signature of a polaron band, that is typically observed in
the electron–addition spectral function25–29,31,46,52,53,55. The
reason is that as the electron is ejected from the polaron

ground state the system has no information about the po-
laron state at finite momentum. The well defined dispersive
bands seen just below the single polaron peak in all cases
represent the single phonon dispersion given by ω1ph(q) =

−E(0,1)
0 + ω0 + 2tph cos(q), shown in Figs 3(a-f) as blue

dashed lines. While their positions are given by the phonon
dispersion relation ω1ph(q), their spectral weights are non–
uniform and largest around q = 0 irrespective of the sign of
tph. This finding is particularly relevant. By measuring the
above-mentioned spectral weight of phonon bands, one can
extract the weight of the phonon contribution to the wavefunc-
tion at finite phonon momentum q. Or more quantitatively: in
the weak-coupling regime the polaron wavefunction at total
k = 0 can be written as |ψ(0,1)

k=0 〉 ∼ c
†
k=0|∅〉+

∑
q vqc

†
−qa

†
q|∅〉.

Then the q−dependent intensity of phonon bands is propor-
tional to |vq|2.

Besides the single phonon band, a two– and even three–
phonon continuums are clearly seen for λ & 1.0. The two–
phonon continuum is located in the interval given by ω±2ph =

−E(0,1)
0 +2ω0±4tph cos(q/2), as indicated by the yellow dot–

dashed lines. The three–phonon one appears between ω−3ph =

−E(0,1)
0 + 3ω0− 4tph cos((q± π)/3) and ω+

3ph = −E(0,1)
0 +

3ω0 + 4tph cos(q/3) for tph > 0 (indicated by red dashed
lines in Figs. 3(e) and (f)). The upper and lower bounds are
reversed for tph < 0.

While the polaron dispersion does not appear in the elec-
tron removal spectral function, A(ω, q), the dispersion can be
detected by removing an electron from a polaron state with a
given total momentum k, ψ(0,1)

k :

A(ω, q, k) =
∑
n

|〈ψ(n,0)
k−q |cq|ψ

(0,1)
k 〉|2δ(ω−E(n,0)

k−q +E
(0,1)
k ),

(5)
In Fig. 4 we present A(ω, q, k) for k > 0 while in Figs. 3(c)
and (d) results for the same set of parameters are presented
for k = 0. With increasing k the lowest-|ω| peak follows
the polaron dispersion relation ωpol(q) = −E(0,1)

q , as de-
noted by the white dashed lines, while its spectral weight de-
creases. This is consistent with the notion that the spectral
weight of this peak corresponds to the quasiparticle weight
given by Zq = |〈ψ(0,1)

q |c†q|ψ
(0,0)
q=0 〉|2, where the state |ψ(0,0)

q=0 〉
represents the electron and phonon vacuum. Zq is displayed
also in Fig. 2(c). At higher ω single– and multiple phonon
bands shifted by q → q − k remain clearly visible while most
of their spectral weight remains located around q = 0. One
way to think about this is that at weak coupling, the polaron
ground state at large k is mainly composed of an electron at
(near) zero momentum and a phonon of momentum (near) k,
when this is the lowest energy state of total momentum k.
That is why the spectral weight peaks near q=0. At larger
k we observe a shift of the spectral weight from the polaron
peak to phonon bands.
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IV. THERMODYNAMIC PROPERTIES

Computation of static quantities was computed using the
finite temperature Lanczos method (FTLM).55,65 The central
proposition of the method is that the summation over all states
in a given sector can be replaced by the summation over nor-
malized random states |rk〉 =

∑N1

j=1 αj |φ
(j,1)
k 〉, where αj are

distributed randomly from a uniform distribution, |φ(j,1)k 〉 rep-
resents N1 translationally invariant basis states in the one–
electron and multi–phonon subspace. The expectation value
of a given operator B is obtained from

< B >= Z−1
∑
k

R∑
r=1

M1∑
m=1

e−βE
(m,1)
k 〈rk|ψ(m,1)

k 〉 ×

〈ψ(m,1)
k |B|rk〉, (6)

where |ψ(m,1)
k 〉 and E(m,1)

k are Lanczos wave-functions and
corresponding energies in the 1 electron subspace and β =
1/T . Lanczos states are generated using M1 iterations start-
ing from |rk〉 states, respectively. Furthermore, R represents
the number of different random states and the first summa-
tion is over all nonequivalent k− states in the first Brillouin
zone. The statistical sum Z is in the framework of the FTLM
method55,65 given by

Z =
∑
k

R∑
r=1

M1∑
m=1

e−βE
(m,1)
k |〈rk|ψ(m,1)

k 〉|2. (7)

For computation of static properties we have sampled over
R = 200 random states and performed M0 = 100 Lanczos
iterations.

Computation of dynamic properties at finite–temperature,
such as the electron removal spectral function A(ω, q, T ),
requires additional summation over the zero electron states.
A(ω, q, T ) is expressed as

A(ω, q, T ) = Z−1
∑
k

R∑
r=1

M1∑
m=1

M0∑
n=1

e−βE
(m,1)
k 〈rk|ψ(m,1)

k 〉 ×

〈ψ(m,1)
k |c†q|ψ

(n,0)
k−q 〉〈ψ

(n,0)
k−q |cq|rk〉 × δ(ω − E

(n,0)
k−q + E

(m,1)
k ),

(8)

where |ψ(m,l)
k 〉 and E

(m,l)
k are Lanczos wave-functions and

corresponding energies in the l = 0 and 1 electron subspace.
Lanczos states in the l = 0 and 1 sectors are generated us-
ing M0 and M1 iterations starting from cq|rk〉 and |rk〉 states,
respectively. We have used typically R = 200, M1 = 50
and M0 = 100 Lanczos iterations combined with the Gram-
Schmidt reorthogonalization procedure to avoid spurious non-
orthogonal states that appear due to roundoff errors, intro-
duced by the finite-precision arithmetic when using large val-
ues of Mi.

As a consistency check we note that the frequency sum–rule
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Figure 5: Temperature dependence of < H >,< Hph >,< Hep >
, and < Hkin > in (a) through (d) for different values of tph as
indicated in the inset. In (d) circles present results obtained from
spectral function frequency sum–rules using Eqs. 9 and 10.

yields ∫ +∞

−∞
dωA(ω, q, T ) = < c†qcq > , (9)

< Hkin >= −2tel
∑
q

< c†qcq > cos(q), (10)

which in turn defines also the thermodynamic average of the
kinetic energy < Hkin >. In Fig. 5(d) we compare results
of < Hkin > computed using Eq. 6 with those obtained from
sum–rules following Eqs. 9 and 10.

We first discuss selected T -dependent static properties. We
separate the Hamiltonian in Eq. 1 into three parts: Hkin that
represents the first term in Eq. 1, Hep the second and Hph the
sum of the last two terms. In Fig. 5 we show thermodynamic
averages of the total energy < H > and the three parts of H
for different strengths of the optical dispersion tph. The total
energy < H > remains nearly T -independent for T . 0.1ω0,
followed by a monotonic increase at higher T . In contrast, we
observe a noticeable redistribution of energies between dif-
ferent parts of H even for T . 0.1ω0. The < Hkin > and
< Hph > show pronounced increase with T in the low-T
regime. In contrast, < Hep > displays a decrease that com-
pensates the increase of the former two, considering the equal-
ity < H >=< Hkin > + < Hph > + < Hep >. The
lowering of the electron–phonon coupling term < Hep > re-
sults from the thermal population of polaron states at finite k
that possess lower electron-phonon energy and higher kinetic
energy. A more detailed analysis is given in the Appendix A.
Note that in the high–T limit as T →∞, < Hkin >→ 0.

We conclude with the analysis of spectral functions at
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Figure 6: A(ω, q, T ) computed at tph = 0.1 from a) through d) and
tph = −0.1 from e) through h), for different values of T as denoted
in the insets. Blue dashed lines follow the single-phonon excitation
and are obtained from ω1ph(q) = −E(0,1)

q=0 + ω0 + 2tph cos(q), yel-
low dot-dashed lines enclose the continuum of 2–phonon excitations
below the polaron ground state energy: ω±2ph = −E(0,1)

q=0 + 2ω0 ±
4tph cos((q)/2). White dashed lines represent the polaron disper-
sion relation given by ωpol(q) = −E(0,1)

q . We have used artificial
broadening η = 0.05. Identical colour coding has been used in all
panels.

finite–T . At small T = 0.1ω0 we compare A(ω, q, T ) in
Figs. 6 (a) and (e) with their T = 0 counterparts in Figs. 3 (c)
and (d). The lowest-|ω| peak represented with a single delta
function in ω and q at T = 0 obtains finite widths, first along
q axis, then at higher T also along ω axis. The spread along
the q direction is most pronounced along the polaron disper-
sion relation ωpol(q) = −E(0,1)

q as marked by white dashed
lines and becomes even more evident at higher T . The spread
is due to processes where an electron with finite q is ejected

from the thermally excited polaron state |ψ(0,1)
k 〉 at q = k.

The increased spectral weight in the ω > ωpol(q) direction is
most evident around q = 0. It is a consequence of transitions
where an electron with q = 0 is ejected from the same ther-
mally excited state of the polaron at finite k as in the previous
case.

Next we analyse the well defined single phonon excitation
relation ω1ph(q). In contrast to the T = 0 case as shown in
Figs. 3 (c) and (d), at finite T , for the same set of parameters
presented in Fig 6, a continuum of excitations appears above
the single phonon excitation band, i.e. at |ω| < |ω1ph(q)|
while ω1ph(q) now defines the lower limit of the continuum
of single phonon excitations. The continuum is most clearly
observed in the interval 0.2 . T/ω0 . 0.3. Additional spec-
tral weight also appears below and above the boundaries of the
two-phonon continuum already at T & 0.1ω0. At T & 0.4ω0

the boundaries of single and multiple phonon excitations be-
come indistinguishable from the background while additional
spectral weight appears around q = 0 above ωpol(q). The
latter is a consequence of an electron ejected from an excited
polaron state at around q = 0 composed of a polaron with an
additional phonon excitation to a final state with no (or, more
generally, fewer) phonons.

V. CONCLUSIONS

We computed selected static and dynamic properties of the
electron coupled to dispersive optical phonons in the frame-
work of the Holstein model at zero and finite temperature. The
introduction of phonon dispersion has a nearly undetectable
effect on the kinetic energy in the week to intermediate cou-
pling regime. In contrast, we find a substantial variation of
the quasiparticle weight with varying phonon bandwidth al-
ready in the weak coupling regime. In particular, the upward
dispersion (tph < 0) has a more decisive influence on the
quasiparticle weight than the downward one.

We have computed the electron removal spectral function
of a polaron coupled to dispersive quantum optical phonons.
In contrast to the most commonly computed electron addition
spectral function that yields unity for the frequency sum–rule,
the sum–rule of the electron removal spectral function from
the polaron state is given by the expectation value of the den-
sity operator nq . Moreover, using Eq. 4, nq yields the expec-
tation value of the kinetic energy operator.

The spectral function computed in the ground polaron state
consists of a single peak positioned at the polaron frequency
with its weight given by Zq=0 and well–defined single and
multiple phonon bands that precisely follow single and multi-
ple phonon dispersion relations shifted by the polaron energy.
Their spectral weight is not uniform but predominantly con-
centrated near the middle of the Brillouin zone.

At finite temperatures, the total energy remains nearly T -
independent up to T . 0.1ω0, followed by a monotononic
increase at higher T . In contrast, in the same temperature
regime, we observe a noticeable redistribution of energies be-
tween different parts of H . While the kinetic and phonon en-
ergy show a pronounced increase with T , the electron–phonon
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coupling energy decreases with increasing T . The latter re-
sults from the thermal population of polaron states at finite q
that possess lower electron-phonon energy.

The electron removal spectral function undergoes distinct
changes at finite temperatures. The low–frequency peak ob-
tains a finite width and disperses along the direction of the
polaron band. Additional spectral weight appears as a satel-
lite peak above the zero–T low–frequency peak in the mid-
dle of the Brillouin zone. The latter is a consequence of an
electron, ejected from an excited polaron state composed of
a polaron with an additional phonon excitation. Extra spec-
tral weight develops also above the phonon excitation band,
which remains distinguishable from the rest of the spectra up
to T . 0.3ω0. The electron removal spectral function fre-
quency sum–rule is consistent with the prediction of Eq. 10
down to T ∼ 0.1ω0 and serves as a consistency check of the
numerical method at finite T .

We have shown that photoemission spectroscopy can be
used to measure the phonon dispersion relation in a dilute sys-
tem of polarons. We have demonstrated that the polaron band
does not appear in the spectral function when removing an
electron from a polaron ground state. The latter becomes ob-
servable only at elevated temperatures. We have also shown
that the spectral weight of observed phonon bands is propor-
tional to the phonon contribution to the wavefunction at finite
phonon momentum q.

We conclude by comparing our results in Figs 3 and 6 with
ARPES measurements59 in the low-doped transition metal ox-
ide TiO2 where at least one satellite has been observed below a
polaron peak. Both signals are limited to the proximity of the
center of the Brillouin zone (BZ). The separation of the satel-
lite peak from the polaron one corresponds to the longitudinal-
optical phonon.

Before comparing our findings with ARPES data, we note
that our calculations are based on a single electron. Our re-
sults predict that in the extremely low-doping regime, only a
single polaron peak located in the middle of the BZ should be
observed at extremely low-T . Still, at finite-T even a calcula-
tion considering a single electron predicts the observation of
a polaron band around the center of the BZ that appears due
to thermal excitations of polaron states at finite center of mass
wavevector. Concerning the satellite peak in Ref.59, our re-
sults obtained at T = 0 predict the observation of a dispersive
phonon band with the largest intensity around the center of the
BZ. With increasing T the phonon band spreads out and loses
intensity.
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Appendix A: Why does 〈Hep〉 decrease with T?

1. Numerical argument

We give further insight into the seemingly unexpected ini-
tial decrease of the electron–phonon coupling energy with T ,
as observed in Fig. 5(c). With increasing T , the states with
non–zero total momentum k become thermally populated at
much lower T than ω0 since the entire polaron energy band
E(k) is narrower than ω0, see also Fig. A1(a), while states at
small k are even much closer to the ground state energy. It
is instructive to analyse results obtained at zero–T as func-
tions of k. In Fig. A1(d) we show that with increasing k,
the electron–phonon energy Eep decreases as the electron be-
comes more strongly coupled to the phonon cloud. This trend
is also explained using the second order perturbation theory
in Subsection A 2. Consequently, the number of phonons in
the system Nph increases. We conclude that the decrease of
< Hep > is a consequence of thermal population of states
with finite k that are more strongly coupled to the electron.

The thermal population of states with finite k, can also ex-
plain why the total number oh phonons in the systems, approx-
imately given by Nph(T ) = 〈Hph〉/ω0, as seen in Fig. 5(b),
increases by Nph(T ) − Nph(0) ∼ 2 at relatively small tem-
peratures, T ∼ 0.2ω0.
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Figure A1: Zero-T results vs. k: a) the polaron dispersion rela-
tion: E(k) = 〈ψ(0,1)

k |H|ψ(0,1)
k 〉, b) the kinetic energy: Ekin(k) =

〈ψ(0,1)
k |Hkin|ψ(0,1)

k 〉, c) the total number of phonons in the system:
Nph(k) = 〈ψ(0,1)

k |
∑

j a
†
jaj |ψ

(0,1)
k 〉, and d) the electron–phonon

coupling Eep(k) = 〈ψ(0,1)
k |g

∑
j nj(aj + a†j)|ψ

(0,1)
k 〉.

2. Analytical argument

Consider E(k) in leading order perturbation theory for the
polaron ground state at total momentum k, for dispersionless
optical phonons at weak coupling.
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∆E(k) in the second order in g is given by

∆E(k) =
∑
q

|〈∅|ck+qa−q|Hepc
†
k|∅〉|2

ε0(k)− (ε0(k + q) + ω0)
, (A1)

where Hep is the electron-phonon Hamiltonian in the recip-
rocal space, ε0(k) = −2t cos(k) is the unperturbed elec-
tron energy at momentum k, while the energies of the un-
perturbed excited states with one phonon and one electron,
lie above −2t + ω0. As the polaron momentum k increases,
ε0(k) increases, but the set of unperturbed excited states
−2t cos(k + q) + ω0 are at the same energies as for k = 0
since q spans the entire Brillouin zone. (Whatever the to-

tal momentum, there is always an unperturbed excited state
with the electron at zero momentum and the phonon taking
the rest of the momentum.) It therefore follows that ∆E(k) at
nonzero k is the same as ∆E(k) at k=0 but with a reduced
phonon energy ω̃ = ω0

(
ε0(k)− ε0(0))

)
. As k increases,

the dimensionless coupling g/ω̃ increases, and ∆E(k) be-
comes larger in magnitude (more negative). Since ∆E(k) =
∆Eep(k) + ∆Ekin(k) + ∆Eph(k), and the last two terms are
positive, ∆Eep(k) ≤ ∆E(k).

Thus, as the temperature increases from zero and thermally
populates nonzero polaron states, 〈Hep〉 becomes more nega-
tive (in weak coupling).
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