
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhanced Dirac node separation in the strained math
xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms
ub>mi>Cd/mi>mn>3/mn>/msub>msub>mi>As/mi>mn>

2/mn>/msub>/mrow>/math> topological semimetal
G. Krizman, J. Bermejo-Ortiz, M. Goyal, A. C. Lygo, J. Wang, Z. Zhang, B. A. Assaf, S.

Stemmer, L. A. de Vaulchier, and Y. Guldner
Phys. Rev. B 106, 165202 — Published  6 October 2022

DOI: 10.1103/PhysRevB.106.165202

https://dx.doi.org/10.1103/PhysRevB.106.165202


Enhanced Dirac node separation in strained Cd3As2 topological semimetal 

G. Krizman,1 J. Bermejo Ortiz,2 M. Goyal,3 A. Lygo,3 J. Wang,4 Z. Zhang,5 B.A. Assaf,4 S. Stemmer,3 L.A. de 

Vaulchier,2 Y. Guldner2 

1 Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenbergerstrasse 69, 4040 Linz, Austria 

2 Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue 
Lhomond 75005 Paris, France 

3 Materials Department, University of California, Santa Barbara, CA 93106, USA 

4 Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA 

5 Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA 

 

In topological semimetals, nodes appear at symmetry points in the Brillouin zone as a result of band 

inversion, and yield quasi-relativistic massless fermions at low energies. Cd3As2 is a three-dimensional 

topological semimetal that hosts two Dirac cones responsible for a variety of quantum phenomena. In 

this work, we demonstrate the strain tuning of the Dirac nodes of Cd3As2 through a combination of 

magnetooptical infrared spectroscopy and high-resolution X-ray diffraction studies performed on 

epitaxial films. In these thin films, we observe a giant enhancement of the node separation in 

momentum space by close to a factor of 4. A combination of experimental measurements and 

theoretical modelling allows relate the origin of this enhancement to a strengthening of the topological 

band inversion driven by lattice strain. Our results demonstrate how strain can be used as a knob to 

tune the topological properties of semimetals and to potentially enhance their performance and 

response for various applications.  

 

I. INTRODUCTION 

Semimetals are materials that host a band overlap in their electronic structure while retaining a low 

density of state at the Fermi energy. With the rise of topological phases of matter, new semimetals were 

discovered, with peculiar band crossings. [1] In three-dimensions, such band crossings can occur at a finite 

number of points in the Brillouin zone, yielding what is referred to Dirac or Weyl fermions. [2] [3] [4] The 

main distinction between the two classes lies in the fact that Weyl fermions are intrinsically helical and 

exhibit spin-momentum locking. They generally occur in pairs of opposite helicity. Their properties have 

attracted tremendous attention. They are thought to host a chiral anomaly manifesting as a negative 

magnetoresistance [5] [4] [6] and have also been found to yield strong non-linear optical effects, [7] [8] 

thermoelectric effects, [9] efficient spin-charge conversion [10] [11] and spin transport. [12]  

Cd3As2 was among the first discovered topological semimetals [13] [14]. This high quality stoichiometric 

material possesses two Dirac nodes. Thus, it is a first-choice system to study Weyl node physics in its 

simplest form. It crystallizes in a tetragonal structure that remains nearly cubic. Its electronic structure is 

well described by a modified Kane model similar to that of strained III-V and II-VI 

semiconductors. [14] [15] [16] In this model, two s-like (S) and six p-like bands (light hole (LH), heavy hole 

(HH), and split-off (SO)) interact near the Γ −point. In Cd3As2, a band inversion brings the s-like band below 

4 of the p-like bands yielding a semimetal similar to HgTe. [17] [18] However, the natural tetragonality of 



Cd3As2, i.e. the lattice elongation along the z//[001] direction, lifts the degeneracy of LH and HH causing 

them to cross at finite kz. This effect yields two Dirac nodes in Cd3As2 with strongly electron-hole 

asymmetric dispersions, and a node separation governed by the splitting of the p-like bands and the 

tetragonal distortion (Fig. 1(a)). This asymmetric picture of the band structure of Cd3As2 is reproduced in 

magnetooptical measurements by independent groups, [19] [20] density-functional theory 

calculations, [21] [22] [13] scanning tunneling microscopy, [23] and early angle resolved photoemission 

measurements. [3] The fact that the origin of the node separation in Cd3As2 can be traced back to specific 

band and structural origins [20] [24] [25] makes it a prototypical topological semimetal ideal for band 

engineering. 

Here, we demonstrate such a band engineering by lattice strain in Cd3As2 thin films grown by molecular 

beam epitaxy on Al1-xInxSb buffer layers in (001) GaSb substrates. Using magnetooptical infrared 

spectroscopy measurements and 𝒌. 𝒑 modelling, we reveal a large enhancement of the Dirac nodes 

separation driven by this lattice strain (Fig. 1(b)). This translates into an enhancement of the Weyl node 

separation in Cd3As2. Our findings are compared to previous measurements on unstrained films for which 

the Dirac node separation is found to be much smaller (Fig. 1(a)). [20] They are corroborated by 

temperature dependent X-ray diffraction and magnetooptical measurements that can only be 

consistently explained by the picture and band ordering shown in Fig. 1(b). 

 

FIG 1. Band dispersion of (a) pristine (𝑐/2𝑎 ≈ 1.005) and (b) compressively strained Cd3As2 in the (001) 

plane achieved in this work (𝑐/2𝑎 ≈ 1.023). The bands are labeled in the standard notation of the Kane 

model, LH: light holes, HH: heavy holes, S: s-like band, SO: split-off band. Energy is taken to be 0 at the HH 

band edge. Ω represents the position of the LH band edge, and quantifies the LH-HH splitting, Eg is the 

energy gap between HH and S.  

 

 



II. STRAIN CHARACTERIZATION 

(001)-oriented Cd3As2 thin films (200 nm) are grown using molecular beam epitaxy on III-V substrates 

following what is shown in the following work. [26] We focus on two (001) oriented layers grown on a 

2µm-thick Al1-xInxSb buffer layer with x=0.5 as discussed in ref. [27], which are 150 and 200nm thick. 

X-ray diffraction is carried out at the Advanced Photon Source at Argonne National Lab using beamline 

33-ID-D. XRD patterns obtained at different temperatures are shown in Fig. 2(a). The Cd3As2 (00 16) Bragg 

peak can be seen at lower diffraction angle than the (004) peaks of the buffer layer and the GaSb 

substrate. We first analyze the lattice parameters of Cd3As2 at high temperature. At 260K, we find the out-

of-plane parameter 𝑐 = 25.660 ± 0.005Å. A reciprocal space map obtained at 260K near the GaSb (224) 

peak is shown in Fig. 2(c) and allows us to determine the in-plane lattice parameter 𝑎 = 12.540 ± 0.003Å 

from the (44 16) peak of Cd3As2. From Fig. 2(b), we find that the Cd3As2 epilayer remains coherently 

strained to the underlying buffer layer that has an in-plane lattice parameter 𝑎𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑎/2 = 6.27Å. 

Comparing 𝑐/2𝑎 to what is found for bulk single crystals near room temperature and at 100K from 

previous works [28] (𝑎𝑏𝑢𝑙𝑘 = 12.67 + ±0.01 and 𝑐𝑏𝑢𝑙𝑘 = 25.48 ± 0.02) confirms that the unit cell is 

compressively strained in the plane, and elongated along the 𝑐-axis. The tetragonality 𝑐/2𝑎 of the crystal 

is enhanced from 1.0055 (300K) [29] or 1.0064 (100K) [30] in (unstrained) bulk single crystals to more than 

1.023 in our strained film. As detailed in the Appendix A, we evaluate the strain tensor as 𝜀𝑥𝑥 = 𝜀𝑦𝑦 =

−1.0 ± 0.1% and 𝜀𝑧𝑧 = +0.7 ± 0.1% when comparing our lattice parameters to those of pristine Cd3As2 

from Ref. [28]. The reciprocal maps in Fig. 2(b,c) show that the high compressive biaxial strain is 

maintained in our 200nm-thick epilayer, as denoted by the sharpness of the peak attributed to the Cd3As2 

lattice. Such a coherent compressive strain over a large thickness was previously reported in III-V 

heterostructures [31]. 

 

FIG 2. (a) Temperature dependent specular X-ray diffraction patterns taken using a beam energy of 20keV. 

(b) Reciprocal space maps obtained about the GaSb (224) peak at 20K and (c) at 260K. 𝐿 and 𝐾 are the 

Miller indices. (d) Integrated intensity of the Cd3As2 and buffer layer shown in the RMSs at two different 

temperatures versus K. (e) Experimental ratio 𝑐/2𝑎 (blue squares) versus temperature compared to Ali et 

al. (ref [30] at 100K) and S&G (ref [29] at 300K). 



The Cd3As2 peak shifts towards higher Bragg angles at the low temperature as seen in Fig. 2(a) indicating 

a reduction of 𝑐 (thermal contraction). To analyze the temperature dependence of 𝑎, reciprocal space 

maps (RSMs) were obtained down to 20K near the GaSb (224) peak (see Fig. 2(b,c)). Qualitatively, it is 

clear that the Cd3As2 (44 16) maintains its alignment with the buffer layer peak in the in-plane direction, 

indicating that the two have the same 𝑎-lattice constant, even at low temperature. The integrated 

intensity of the (44 16) sample and the buffer layer peaks as function of Miller index K are then determined 

by isolating a region of interest that excludes the GaSb peak. Curves of this integrated intensity versus K 

are shown for T=260K and T=20K in Fig. 2(d) and from which a slight reduction of the 𝑎 lattice constant 

can be extracted at each temperature. Visually, it is obvious that a lattice constant is slightly smaller at 

low temperature. Combining the lattice constants obtained from the Cd3As2 (00 16) and (44 16) peaks at 

various temperatures RSMs obtained at various temperature between 260K and 20K, we track the 

variation of the tetragonality given by the ratio 𝑐/2𝑎 down to low temperatures of interest. 𝑐/2𝑎 

decreases as temperature drops, but remains much larger than what is found in bulk single crystals or 

relaxed layers. This means that, beyond the intrinsic distortion of Cd3As2 yielding 𝑐/2𝑎~1.006, [30] we 

have achieved a significant additional biaxial compressive strain resulting in 1.020 < 𝑐/2𝑎 < 1.024. 

Furthermore, the slight reduction of the tetragonality as temperature decreases is attributed to the 

difference between the thermal expansion coefficients of the buffer and Cd3As2 layers. [32] [33] The lower 

thermal contraction of Al1-xInxSb induces a small biaxial tensile stress on Cd3As2. 

 

III. STRAIN EFFECTS ON THE BAND STRUCTURE 

We next study the electronic structure of this highly compressively strained Cd3As2 film using 

magnetooptical infrared spectroscopy measurements that are carried out at various temperatures. We 

use a Fourier Transform Infrared spectrometer coupled to a cryostat equipped with a 15T coil, as in our 

previous works. Detection is carried out using a composite Si bolometer and a HgCdTe detector. 

Magnetooptical spectra obtain at 4.2K in the mid-infrared are shown in Fig. 3(a) and those in the far-

infrared in Fig. 3(b). Transition minima in Fig. 3(a,b) are due to inter-Landau level transitions, whose study 

versus magnetic field aims to extract the zero field band properties, mainly 𝐸𝑔 and Ω. The energy positions 

of the minima versus magnetic field is extracted and plotted in Fig. 3(c). To model these magnetooptical 

transitions, an 8-band Kane model is utilized [15] [19] and carefully detailed in the Appendix B1-2 and 

C. [15][17] [34] [35] The tetragonal distortion inherent to Cd3As2 introduces a crystal field splitting 𝛿 into 

the Kane model. [15,35] This parameter is directly proportional to the tetragonality 𝑐/2𝑎 determined by 

XRD : 

𝛿 = 3𝑏 (1 −
𝑐

2𝑎
) (1) 

where 𝑏 < 0 is a shear deformation potential, as it is defined in Ref [36]. It creates a direct relation 

between the crystalline and the electronic properties of the material. 𝛿 is the main parameter that 

contributes to the non-zero splitting of LH and HH, which we call here Ω (see Fig. 1). However, the spin-

orbit parameter ∆, responsible for the splitting between LH and SO can also play a crucial role in Ω. It is 

because strain induces a coupling between the LH and SO bands (see Appendix B4) [37] [36,38]. The 

magnitude of the splitting responsible for the Dirac node creation is given by: 



Ω = −
∆ + 𝛿

2
+
1

2
√(∆ − 𝛿)2 + 4

𝛿∆

3
(2) 

In most of semiconductors [39,40], ∆ is large enough (or 𝛿 is small enough (∆≫ 𝛿)) to neglect its influence 

on Ω and one finds Ω ≈ −2𝛿 3⁄ = −2𝑏(1 − 𝑐 2𝑎⁄ ), see Fig. 1(a). As we will see later, the temperature 

dependence of the magneto-optical oscillations determined in this work shows that the effect of ∆ in Eq. 

(2) is non-negligible for highly strained samples, see Fig. 1(b). 

 

FIG 3. Magnetooptical spectra in mid-infrared (a) and far-infrared (b). (c) Fan-chart showing data as the 

black points and calculated magnetooptical transitions in red and blue.  

The experimental data allows us to extract with precision the band parameters. In particular, the positions 

of the bands are given by the extrapolation to zero field of the two series of magneto-optical oscillations 

(see Fig. 3(c)). At 4.2K we find 𝐸𝑔 = −110 meV, implying that S lies below HH, and most importantly Ω =

−75 meV demonstrating the enhanced LH-HH splitting. The slope of the transitions at high energy (the 

bending of transitions “1-0” and “2-1” in blue with increasing magnetic field) allows an accurate 

determination of ∆= 220 meV (independently from 𝛿) in excellent agreement with DFT 

calculations [13] [21]. The fit thus results in 𝛿 = 150 meV following Eq. (2). This value is considerably 

enhanced compared to other works, performed on relaxed samples and single crystals, that give 𝛿 < 30 

meV [19,20,23,34]. Therefore, the corresponding Dirac node spacing found in this work is 0.04 Å-1 (see 

Fig. 1(b)), which is four times greater than in relaxed layers or bulk crystals (see Fig. 1(a)). This is directly 

due to the much more pronounced tetragonality of the sample studied here, as it is shown by Eq. (1). A 

deformation potential 𝑏 = −2.1 ± 0.5 eV reconciles all these results and demonstrates the strain origin 

of the enhanced Dirac node separation. The determination of such deformation potential 𝑏 with respect 

to a cubic lattice allows for a direct comparison with other semiconductors. This parameter is universal 

and accounts for the effect of a (001) biaxial strain applied to any diamond and zinc-blende cubic lattices, 

i.e., it determines the strength of the p-type bands splitting under applied strain [36,38]. For diamond 

semiconductors, one can find in the literature 𝑏 = −2.1 eV for Si, or 𝑏 = −2.5 eV for Ge [41]. Zinc-blende 



semiconductors (GaAs, InAs, InSb, AlSb, InP, …) show −2 < 𝑏 < −1.3 eV [41]. Therefore, by determining 

𝑏 = −2.1 eV, this work establishes Cd3As2 as a highly strain sensitive material. 

 

IV. TEMPERATURE DEPENDENCE OF Cd3As2 BAND STRUCTURE 

Magneto-optical measurements have been performed up to 𝑇 = 200 K. The analysis conducted in Sec. III 

for T=4 K is repeated for each temperature. This process results in optimal fits that are presented in Fig. 

4. For each temperature, a great agreement is obtained with the experimental data, which allow an 

accurate determination of the band parameters: 𝐸𝑔 , 𝛿, ∆, and 𝑃⊥ (or 𝑣), whose values are listed in Table I. 

The energy gap 𝐸𝑔 and the in-plane matrix elements 𝑃⊥ are found to be almost temperature independent. 

The variations of 𝛿(𝑇) and ∆(𝑇) can be unraveled by focusing on the first interband transition (labelled 

“1-2” in red in Fig. 3(c) and 4) as displayed in Fig. 5(a). 

 

FIG 4. Magneto-optical measurements at different temperatures from 50 to 200 K. Dots represent the 

experimental data. Solid lines correspond to the calculated inter Landau level transitions using the fitting 

parameters listed in Table I. 

The temperature dependence of the magneto-optical oscillations highlights the strong influence of the 

split-off band on Ω. By increasing the temperature, the first interband transition undergoes a redshift as 

seen in Fig. 5(a), meaning that |Ω| is decreased as represented by the fits in Fig. 5(b). From the XRD 

measurements showing a slight increase of the tetragonality (see Fig. 2(e)), we know that 𝛿 increases by 

~15 meV between 4 and 200K, as demonstrated by Eq. (1). This results in a slight increase of |Ω| with 

temperature, however, we unambiguously observe the opposite behavior, meaning that the evolution of 

Ω(𝑇) is mainly governed by ∆(𝑇), see Eq. (2). Overall, the measured evolution of Ω(𝑇) can only be 

explained by a decreasing ∆ when the temperature is increased, going from 220 meV to 120 meV at 4K 

and 200K, respectively. This evolution also confirms that the LH and HH (p-like) bands must lie above the 

S and SO bands. 



 

FIG 5. (a) Magneto-optical spectra at B=15 T for different temperatures, waving the attention on the first 

interband absorption (black arrow) that is redshifted when temperature is increased. (b) Fit of the first 

interband at each temperature, giving accurately |Ω|(𝑇) from the extrapolation at zero field. (c) Band 

structure resulting from the magneto-optical fits at different temperature. 

The fits result in the determination of the band structure plotted in Fig. 5(c). One can note the nearly 

temperature independent Dirac node spacing, due to the increased band edge mass when Ω(𝑇) is 

decreased. Interestingly, at 100K, we find ∆≈ 𝛿 ≈ 160 meV, meaning that the LH-SO mixing is unusually 

strong. Indeed, we determine that the SO component weights from 11% at 4K to 30% at 200K on the LH 

band edge (see Appendix B4). For temperature higher than 100K, the curvature of the S band is even 

reversed as seen in Fig. 5(c). This phenomenon appears when ∆< −3𝐸𝑔 2⁄  and is an original consequence 

of (i) the small spin-orbit parameter found in this compound and (ii) its inverted band structure (see 

Appendix B3). 

Table I. Band parameters leading to the best fit of the magneto-optical data in temperature. 

T [K] 𝑬𝒈 [meV] 𝚫 [meV] 𝜹 [meV] 𝒗 [x106 m/s] 

4 -110 ±2.5 220 ±10 150 ±5 0.97 ±0.01 

50 -107.5 ±2.5 180 ±10 155 0.97 ±0.01 

100 -107.5 ±2.5 160 ±10 158 0.96 ±0.01 

150 -105 ±2.5 140 ±10 162 0.95 ±0.01 

200 -105 ±5 120 ±20 165 0.95 ±0.01 

 

 



V. CONCLUSION 

We have thus shown that the Dirac nodes in Cd3As2 can be tuned by strain. By understanding the intrinsic 

tetragonal distortion of Cd3As2 to be the cause of Dirac nodes creation, we have been able to enhance the 

separation of these Dirac nodes using compressive biaxial strain. XRD and magneto-optical spectroscopy 

have probed the giant strain-induced enhancement of this separation. Our work thus demonstrates that 

many properties of Cd3As2 that are driven by its topological band structure, can be largely enhanced by 

strain. Those may include non-linear optical phenomena [7] and spintronic conversion [12]. 

The temperature dependence of the Cd3As2 band structure that we elucidate, strongly reinforces our 

analysis and highlights the importance of the often-neglected strain-induced mixing of the LH and SO 

bands. This mixing is of interest as it drastically alters, among others, the spin properties (𝑔-factor) and is 

therefore, important to consider for the conception of efficient quantum-dot based spin qubits when LH 

states are involved [16,42–45]. This unique property certainly requires further investigations in Cd3As2 

films. [36] 
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APPENDIX A: STRAIN CHARACTERIZATION 

The strain is determined with respect to a bulk Cd3As2 which lattice parameters are measured in Ref. [28]. 

A pristine Cd3As2 crystallizes in a tetragonal lattice with 𝑎𝑏𝑢𝑙𝑘 = 𝑏𝑏𝑢𝑙𝑘 = 12.67 Å  and 𝑐𝑏𝑢𝑙𝑘 = 25.48 Å . 

The XRD measurements presented in the main text give, at high temperature, 𝑎 = 𝑏 = 12.540 ± 0.003 

Å  and 𝑐 = 25.660 ± 0.005 Å . Therefore, the lattice mismatches between our strain epilayers and the 

bulk are calculated as: 

{

𝜀∥ =
𝑎 − 𝑎𝑏𝑢𝑙𝑘
𝑎𝑏𝑢𝑙𝑘

= −0.010 ± 0.001

𝜀⊥ =
𝑐 − 𝑐𝑏𝑢𝑙𝑘
𝑐𝑏𝑢𝑙𝑘

= +0.007 ± 0.001
 

The in-plane strain in our samples is thus compressive and around 1 %. From the determination of 𝜀∥ and 

𝜀⊥, one can deduce the Poisson ratio of Cd3As2 under a (001) biaxial strain (at room temperature): 

𝜆 = 2
𝐶12
𝐶11

=
𝜀⊥
𝜀∥
= 0.7 

 

 



APPENDIX B: MODIFIED KANE MODEL 

1. Band structure of tetragonal Cd3As2 

The tetragonal lattice of Cd3As2 being nearly cubic, we model this system with the Kane Hamiltonian 

developed for cubic lattices, in which a biaxial strain has been implemented [15,34–36,38]: 

𝐻𝑘 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑔 𝑃⊥𝑘− −𝑃⊥𝑘+ 0 0 0 0 𝑃∥𝑘𝑧

𝑃⊥𝑘+ −
ℏ2𝑘𝑧

2

2𝑚̃
0 0 0 0 0 0

−𝑃⊥𝑘− 0 −
2Δ

3

√2Δ

3
0 0 0 0

0 0
√2Δ

3
−(𝛿 +

Δ

3
) 𝑃∥𝑘𝑧 0 0 0

0 0 0 𝑃∥𝑘𝑧 𝐸𝑔 𝑃⊥𝑘+ 𝑃⊥𝑘− 0

0 0 0 0 𝑃⊥𝑘− −
ℏ2𝑘𝑧

2

2𝑚̃
0 0

0 0 0 0 𝑃⊥𝑘+ 0 −
2Δ

3

√2Δ

3

𝑃∥𝑘𝑧 0 0 0 0 0
√2Δ

3
−(𝛿 +

Δ

3
))

 
 
 
 
 
 
 
 
 
 
 
 
 

(B1) 

with 𝑘± = (𝑘𝑥 ± 𝑘𝑦) √2⁄  and 𝑘𝑧 along the [001] direction. The matrix is given in the following basis: 𝑖|𝑆 ↓

>, |(𝑋 − 𝑖𝑌) ↓> √2⁄ , − |(𝑋 + 𝑖𝑌) ↓> √2⁄ , |𝑍 ↑>, 𝑖|𝑆 ↑>, |(𝑋 + 𝑖𝑌) ↑> √2⁄ , |(𝑋 − 𝑖𝑌) ↑> √2⁄ , |𝑍 ↓>. 

𝐸𝑔 is the band gap separating the S band from the HH band. A negative energy gap means that the S band 

lie below the HH band. Because the spin-degenerate HH band has no 𝑘𝑧-interaction with the other bands 

considered in this model, its 𝑘𝑧-dispersion is flat in the Kane model. However, second order interactions 

with other remote bands at higher or lower energies induce a small negative parabolic curvature for the 

HH bands, given by the effective mass 𝑚̃ > 0. This work does not pretend to provide any determination 

for 𝑚̃ as the magnetic field is applied along the 𝑧-direction and thus, only probe the in-plane motions of 

electrons. We arbitrary fix it to 0.40 𝑚0 all over the manuscript. 𝑃⊥ and 𝑃∥ are respectively the in-plane 

and out-of-plane Kane matrix elements. They are related to the electron velocity as follow 𝑣 =

√2 3⁄ 𝑃⊥ ℏ⁄  [20]. Δ is the spin-orbit parameter. 

𝛿 is the crystal field splitting that models the tetragonal distortion. In fact, it is the energy lifting of the |𝑍⟩ 

orbital (due to the lattice elongation along 𝑧) compare to the other two p-type orbitals |𝑋⟩ and |𝑌⟩. This 

distortion has two effects: (i) the LH band is shift away from the HH band and thus, under a compressive 

biaxial strain (𝛿 > 0), make the two Dirac nodes appear; (ii) the Hamiltonian is no longer diagonalizable 

in a good basis of Bloch functions, thus, the LH and SO bands are mixed [38]. 

At 𝑘 = 0, Eq. (B1) gives the twofold-degenerate four band energies: 



{
 
 
 
 

 
 
 
 

𝐸(𝑆) = 𝐸𝑔
𝐸(𝐻𝐻) = 0

𝐸(𝐿𝐻) = −
∆ + 𝛿

2
+
1

2
√(∆ − 𝛿)2 + 4

𝛿∆

3

𝐸(𝑆𝑂) = −
∆ + 𝛿

2
−
1

2
√(∆ − 𝛿)2 + 4

𝛿∆

3

 (B2) 

 

2. Deviation from a cubic lattice 

In this model, the tetragonal deformation is considered with respect to a cubic lattice of parameter 𝑎0, 

and underlies in the parameters 𝐸𝑔 and 𝛿. They can be revealed explicitly by replacing  

{
𝐸𝑔(𝜀⊥̃) = 𝐸𝑔(𝜀⊥̃ = 0) + 𝐴(2 − 𝜆)𝜀⊥̃ − 𝑏(1 + 𝜆)𝜀⊥̃ 

𝛿 = 3𝑏(1 + 𝜆)𝜀⊥̃
(B3) 

where 𝐴 and 𝑏 are the hydrostatic and shear deformation potentials [36,38], 𝜆 depends on the elastic 

constants (𝜆 = 2𝐶12 𝐶11⁄  for the distortion along [001] of our case). Note that 𝜀⊥̃ corresponds to the in-

plane lattice mismatch with respect to a cubic lattice. It is given by: 

𝜀⊥̃ =
2𝑎 − 𝑎0
𝑎0

 

with 𝑎0 =
𝑐−2𝑎𝜆

1+𝜆
, the lattice parameter considering a cubic crystal. Therefore, one can write: 

𝜀⊥̃ =
1 − 𝜒

𝜆 + 𝜒
 

where we have defined the tetragonality as 𝜒 = 𝑐/2𝑎. Because its value remains close to 1, Eq. (B3) can 

be simplified into: 

{
𝐸𝑔(𝜀⊥̃) = 𝐸𝑔(𝜀⊥̃ = 0) + 𝐴(2 − 𝜆)𝜀⊥̃ − 𝑏(1 − 𝜒) 

𝛿 = 3𝑏(1 − 𝜒)
 (B4) 

The value of 𝑏 can be accurately extracted from our XRD and magneto-optical measurements that give 

respectively 𝜒 and 𝛿. The hydrostatic deformation potential 𝐴 can be deduced from the Poisson ratio of 

Cd3As2 determined in Appendix A. The band edges versus tetragonality (deviation from cubic) are 

calculated using Eq. (B2) and Eq. (B4) and plotted in Fig. 6 for 𝜆 = 0.7. 



 

FIG 6. Band edges of Cd3As2 versus its tetragonality. 𝜆 = 0.7 is used for this figure, which gives 𝐴 = −1.6 

eV. The other parameters are determined as 𝑏 = −2.1 eV, 𝐸𝑔(𝜀⊥̃ = 0) = −90 meV and ∆= 220 meV. 

 

3. 𝒌𝒛-dispersion 

At 𝑘⊥ = 0, beside the HH band which is a parabolic band (𝐸 = −
ℏ2𝑘𝑧

2

2𝑚̃
), the three other dispersions are 

solutions of: 

(𝐸 − 𝐸𝑔)[3𝐸(∆ + 𝐸) + 𝛿(2∆ + 3𝐸)] = (2∆ + 3𝐸)𝑃∥
2𝑘𝑧

2 

which gives the behavior shown in Fig. 1. A Taylor expansion near 𝐸𝑔 gives the parabolic band edge mass 

of the S band: 

ℏ2

2𝑚∗
= 𝑃∥

2
2∆ + 3𝐸𝑔

3𝐸𝑔(∆ + 𝐸𝑔) + 𝛿(2∆ + 3𝐸𝑔)
 

The S band reverses its curvature for ∆< −3𝐸𝑔/2, as observed in temperature (see Fig. 5(c)). 

 

4. LH-SO mixing 

The band energies obtained at 𝑘 = 0 show that the mixing of LH and SO corresponds to an avoided-

crossing between two levels of energy −∆ and −𝛿 (see Eq. B2). The Bloch functions are mixed at 𝑘 = 0 

following [38]: 

|𝑆𝑂⟩ = −𝛽 |
3

2
;±
1

2
⟩ + 𝛼 |

1

2
;±
1

2
⟩ 



|𝐿𝐻⟩ = 𝛼 |
3

2
;±
1

2
⟩ + 𝛽 |

1

2
;±
1

2
⟩ 

With |𝐽; ±𝑚𝐽⟩ the Bloch functions basis for the cubic case, |𝛼|2 + |𝛽|2 = 1, and 

{
 
 

 
 𝛼 =

2|𝛿|

3√𝑛(𝑛 − 𝑝)

𝛽 = −
𝛿

|𝛿|
√
𝑛 − 𝑝

2𝑛

     with     𝑛 = √𝑝2 +
8

9
𝛿2     and     𝑝 = Δ −

𝛿

3
 

 

5. Modelling an anisotropic in-plane strain 

We consider here the effects of an anisotropic in-plane strain on Cd3As2 band structure, i.e, 𝜀𝑥𝑥 ≠ 𝜀𝑦𝑦. 

This situation is not realized in the present experimental work, but worth being theoretically addressed 

as it is experimentally feasible [46]. Bir and Pikus have determined that such a strain induces a 𝑘-

independent interaction 𝑀 between p-type bands [36]. Therefore, the HH and LH band crossing is lifted 

by an anisotropic in-plane strain. Figure 7 shows the vanishing Dirac nodes under this crystal deformation. 

These dispersions have been calculated using Bir and Pikus strain Hamiltonian [36,47], which gives an 

interacting gap 2𝑀 that writes: 

2𝑀~ − √3𝑏(𝜀𝑥𝑥 − 𝜀𝑦𝑦) 

 

FIG 7. Calculated dispersions of Cd3As2 using parameters listed in Table I at T=4 K. In black dots are the 

dispersions under a homogeneous in-plane strain, while in red lines are the dispersions considering a huge 

anisotropic in-plane strain. 

 

 

 

 



APPENDIX C: LANDAU LEVELS AND MAGNETO-OPTICAL OSCILLATOR STRENGTH 

Under an applied magnetic field along [001]//𝑧, we perform the following Peierls substitution in the 

Hamiltonian (B1): 𝑘+ = 𝜉𝑎
⊺ and 𝑘− = 𝜉𝑎, with 𝜉 = 𝑒𝐵 ℏ⁄  the square magnetic length and 𝑎 and 𝑎⊺ the 

usual ladder operators. The Hamiltonian (B1) is then projected in a harmonic oscillator functions basis and 

gives: 

𝐻𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑔 𝑃⊥𝜉√𝑛 + 1 −𝑃⊥𝜉√𝑛 0 0 0 0 𝑃∥𝑘𝑧

𝑃⊥𝜉√𝑛 + 1 −
ℏ2𝑘𝑧

2

2𝑚̃
0 0 0 0 0 0

−𝑃⊥𝜉√𝑛 0 −
2Δ

3

√2Δ

3
0 0 0 0

0 0
√2Δ

3
−(𝛿 +

Δ

3
) 𝑃∥𝑘𝑧 0 0 0

0 0 0 𝑃∥𝑘𝑧 𝐸𝑔 𝑃⊥𝜉√𝑛 𝑃⊥𝜉√𝑛 + 1 0

0 0 0 0 𝑃⊥𝜉√𝑛 −
ℏ2𝑘𝑧

2

2𝑚̃
0 0

0 0 0 0 𝑃⊥𝜉√𝑛 + 1 0 −
2Δ

3

√2Δ

3

𝑃∥𝑘𝑧 0 0 0 0 0
√2Δ

3
−(𝛿 +

Δ

3
))

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where 𝑛 = −1, 0, 1, … The magneto-optical transitions occur at 𝑘𝑧 = 0, where the joint density of states 

is maximal. The Landau levels are calculated by diagonalizing 𝐻𝐵(𝑘𝑧 = 0). The latter can be decoupled in 

two 4x4 blocks, whose eigenvalues correspond to the two spin components plotted in red and blue in the 

main text. The Landau levels corresponding to the fit performed at T=4 K (see Fig. 3(b) of the main text) 

are given in Fig. 8. 

 

FIG 8. Calculated Landau levels of Cd3As2 giving the best fit of the magneto-optical data at T=4 K. Spins are 

in color and some Landau level indices are written at the right of the figure. 



By writing the initial and final Landau levels involved in a magneto-optical transitions as the following: 

|𝑖⟩ =

(

 
 
 
 
 
 
 

𝛼1,𝑛|𝑛⟩

𝛼2,𝑛|𝑛 + 1⟩

𝛼3,𝑛|𝑛 − 1⟩

𝛼4,𝑛|𝑛 − 1⟩

𝛼5,𝑛|𝑛⟩

𝛼6,𝑛|𝑛 − 1⟩

𝛼7,𝑛|𝑛 + 1⟩

𝛼8,𝑛|𝑛 + 1⟩)

 
 
 
 
 
 
 

     𝑎𝑛𝑑     |𝑓⟩ =

(

 
 
 
 
 
 
 

𝛽1,𝑛|𝑚⟩

𝛽2,𝑛|𝑚 + 1⟩

𝛽3,𝑛|𝑚 − 1⟩

𝛽4,𝑛|𝑚 − 1⟩

𝛽5,𝑛|𝑚⟩

𝛽6,𝑛|𝑚 − 1⟩

𝛽7,𝑛|𝑚 + 1⟩

𝛽8,𝑛|𝑚 + 1⟩)

 
 
 
 
 
 
 

 

The oscillator strengths of the transitions are proportional |⟨𝑓|𝑑±|𝑖⟩|
2

, where 𝑑± is the dipole operators 

of the 𝜎+ and 𝜎− light polarization used in our case (Faraday geometry). These operators write: 

𝑑± = 𝝐±. 𝒗 =
1

ℏ
∑ 𝜖𝑗

𝜕𝐻𝑘
𝜕𝑘𝑗

𝑗=𝑥,𝑦,𝑧

 

With 𝝐± = (1 √2⁄ ;± 𝑖 √2⁄ ; 0) for the 𝜎+ and 𝜎− polarization. Calculations give simply: 

|⟨𝑓|𝑑+|𝑖⟩|
2 =

2𝑃⊥
2

ℏ
|𝛽1,𝑛+1
∗ 𝛼2,𝑛 − 𝛽3,𝑛+1

∗ 𝛼1,𝑛 + 𝛽5,𝑛+1
∗ 𝛼7,𝑛 + 𝛽6,𝑛+1

∗ 𝛼5,𝑛|
2
 

|⟨𝑓|𝑑−|𝑖⟩|
2 =

2𝑃⊥
2

ℏ
|−𝛽1,𝑛−1

∗ 𝛼3,𝑛 − 𝛽2,𝑛−1
∗ 𝛼1,𝑛 + 𝛽5,𝑛−1

∗ 𝛼6,𝑛 + 𝛽7,𝑛−1
∗ 𝛼5,𝑛|

2
 

 

FIG 9. Calculated magneto-optical transitions between the Landau levels shown in Fig. 8. The 

corresponding oscillator strengths of the transitions are given using a color scale, in units of x108 m²/s². 

Only the transitions having a matrix element above 5000x108 m²/s² are considered. 



The oscillator strengths of the most probable magneto-optical transitions have been calculated and are 

shown in Fig. 9 using a color scale. They greatly confirm our analysis presented in Fig. 3 of the main text, 

showing the most probable transitions. From the matrix elements, the selection rules can be deduced and 

lead to transitions between Landau levels of identical spin and indices that differ by one (𝑛 → 𝑛 ± 1). 
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