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Plasmons are elementary quantum excitations of conducting materials with Fermi surfaces. In
two dimensions they may carry a static dipole moment that is transverse to their momentum which
is quantum geometric in nature, the quantum geometric dipole (QGD). We show that this property
is also realized for such materials confined in nanowire geometries. Focusing on the gapless, intra-
subband plasmon excitations, we compute the transverse dipole moment Dx of the modes for a
variety of situations. We find that single chiral fermions generically host non-vanishing Dx, even
when there is no intrinsic gap in the two-dimensional spectrum, for which the corresponding two-
dimensional QGD vanishes. In the limit of very wide wires, the transverse dipole moment of the
highest velocity plasmon mode matches onto the two-dimensional QGD. Plasmons of multi-valley
systems that are time-reversal symmetric have vanishing transverse dipole moment, but can be made
to carry non-vanishing values by breaking the valley symmetry, for example via magnetic field. The
presence of a non-vanishing transverse dipole moment for nanowire plasmons in principle offers the
possibility of continuously controlling their energies and velocities by the application of a static
transverse electric field.

I. INTRODUCTION

Plasmons are fundamental excitations of metals, in
which electronic charge oscillates against the fixed pos-
itively charged background of a material, with accom-
panying electric fields that allow for self-sustaining col-
lective motion [1–4]. The behavior can be understood
at a semiclassical level, by solving Maxwell’s equations
in the presence of a frequency-dependent conductivity,
which encodes information about the electron dynamics
in the material [5]. Beyond their bulk realization, plas-
mons may be confined to the surfaces of some solids, with
charge oscillations whose amplitudes evanesce quickly
inside the material [6, 7]. The development of two-
dimensional electron systems in semiconductors [8] al-
lowed such confined plasmons [9, 10] to be realized with
a degree of tunability not possible at the surface of a
bulk material. In more recent years, the advent of van
der Waals materials, particularly graphene, has greatly
enriched the set of interesting physical possibilities for
two-dimensional plasmons [11–16]. These include a myr-
iad of applications and phenomena, in areas as diverse as
terahertz radiation, biosensing, photodetection, quantum
computing and more [17–30].
Beyond all this, plasmons are interesting for basic

physical reasons: they represent quantum, bosonic exci-
tations of charged fermions with a Fermi surface [31, 32].
Their quantum nature can in principle become evident
through manifestations of their quantum geometry. In
two-dimensional materials this nature becomes particu-
larly important because it makes possible strong light-
matter interactions, allowing for probes well below the
wavelength of light at plasmonic frequencies [33–36].

Moreover, Berry curvature in the electronic structure of
the host material may lead to chiral behavior even in the
absence of a magnetic field [37]. More generally quantum
effects may lead to non-reciprocal behavior of plasmons
[38, 39]. Indeed, in some systems plasmons have internal
structure in the form of a static dipole moment, which
leads to non-reciprocity in their scattering from point im-
purities or other circularly symmetric scattering centers
[40]. This quantum geometric dipole (QGD) moment is
present in collective excitations of insulators – excitons –
as well [41]. In both cases, the QGD is transverse to the
momentum of the collective mode.

An interesting question is whether effects of this trans-
verse dipole moment can be directly observed, indepen-
dent of its impact on scattering. One way to approach
this question is to consider its effect on plasmons in a
confined geometry, which may tend to orient the dipole
moment in a way that allows coupling to electric fields.
The simplest such geometry is quasi-one-dimensional, in
which one might expect the dipole moment to align per-
pendicular to the channel axis. This is the subject of
our study. Our principle results demonstrate that such
transverse dipole moments are relatively common in this
geometry: they can appear even when the corresponding
two-dimensional bulk system does not carry a QGD.

In what follows, we consider a system that supports
a plasmonic QGD, a layer of gapped chiral fermions, in
which the single-particle states are confined to be within
a narrow channel. Such systems arise naturally in the
context of transition metal dichalcogenides (TMD’s) [42]
and for graphene, which, when placed on a boron nitride
or silicon carbide substrate, may develop a gap at its
Dirac points as large as 0.5eV [43, 44] The single-particle
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FIG. 1: Sketch of a plasmon mode in a nanowire. (a)
Ground state density, with heavier shading indicating
regions of higher electron density. (b) Snapshot of a
plasmon mode in a nanowire of a conventional electron
gas. Regions of heavier shading indicate larger electron
density. Arrows in interior of wire indicate direction of
current at that moment in time. The charge density
oscillates spatially with wavevector 2π/Ky, where Ky is
the longitudinal momentum. (c) Snapshot of a plasmon
mode in a nanowire of chiral fermions. The oscillating
charge density is shifted transverse to the wire axis,
yielding a dipole moment Dx.

electronic structure of such nanowires is sensitive to the
precise nature of their edges [45–48], and may or may not
involve the mixing of valleys [46, 49]. For simplicity, our
studies focus on infinite mass boundary conditions [50]
for which there is no such valley mixing.

Plasmons in nanowires of chiral fermions [51] share
many properties with those of scalar fermions [52, 53].
Prominent among these are the presence of collective
modes with an essentially linear dispersion, and gapped
intersubband modes. As we explain below, for a single
chiral fermion, all these modes support transverse dipole
moments with magnitude proportional to the longitudi-
nal momentum of the plasmon. This orthogonality of the
dipole moment and momentum is exactly as one finds
for the QGD in two dimensions [40, 54]. A sketch of
this phenomenon is illustrated in Fig. 1. Interestingly,
in these quasi-one dimensional systems it appears even
when there is no intrinsic gap in the spectrum, so that
the QGD vanishes in the corresponding two dimensional
system [40, 54], the gaps introduced by the transverse
confinement stabilize the dipole moment.

Another feature of quasi-one dimensional chiral

fermions is that they may host edges states. Because
the charge associated with these states is located near
the channel edges, they potentially could have important
consequences for the transverse dipole moment hosted by
a plasmon state. We find generically that their effect is
more quantitative than qualitative, but under some cir-
cumstances they can distinguish the number of plasmon
modes with significant non-vanishing dipole moment val-
ues.

For systems with pairs of Dirac points connected by
time reversal symmetry, the transverse dipole moment
vanishes, but non-vanishing values can be introduced into
their plasmons by breaking this symmetry, for example
with a magnetic field. An interesting physical conse-
quence of this physics is that this dipole moment can
be coupled to a transverse electric field [55], allowing a
degree of continuous control over the plasmon frequency
and velocity that is unavailable in other nanowire sys-
tems.

This article is organized as follows. In Section II we
discuss the single-particle wavefunctions for the confined
states, and, when appropriate, for edge states of the
massive chiral fermions we consider, assuming infinite
mass boundary conditions. These states are the system-
specific inputs to the calculations of plasmon modes. In
Section III we explain our method for deriving the plas-
mon modes, both their energies and wavefunctions. The
latter are used to compute dipole moments for the states,
and we explain how this is done at the end of this section.
A description of our numerical results follows in Section
IV. We begin there by presenting results for a generic sys-
tem, and then for parameters relevant to TMD materials,
showing that the latter are somewhat unusual in hav-
ing many modes with different dispersions but the same
dipole moment. We then demonstrate that, for large sys-
tem widths, the dipole moments tend to the values ex-
pected of two-dimensional systems. Finally we consider
more realistic TMD systems with two valleys, for which
the transverse dipole moment must vanish when there
is time-reversal symmetry. We show that introducing a
magnetic field breaks the symmetry between valleys and
allows a dipole moment to emerge. Finally, we conclude
in Section V with a summary of our results, and discus-
sions of their experimental relevance as well as interesting
open questions.

Our paper also contains three appendices. Appendix
A presents further details of how the single particle states
are derived. In Appendix B we explain qualitatively why
there are multiple gapless plasmon modes in the systems
we consider, focusing on the case of a system with two
occupied transverse states as an example. Finally, Ap-
pendix C presents an explicit expression for the plasmon
transverse dipole moment which is appropriate for infi-
nite mass boundary conditions, showing how under ap-
propriate circumstances modes of different energies can
have the same dipole moment.
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II. CHIRAL FERMIONS ON A NANOWIRE:

SINGLE PARTICLE STATES

We begin by deriving the single-particle states for our
nanowire models. The Hamiltonian we adopt for the non-
interacting system in two dimensions is

Hτ
0 =

(

m −iτ∂x − ∂y
−iτ∂x + ∂y −m

)

, (1)

where τ = ±1 indicates a valley degree of freedom, here in
TMD materials τ = 1(−1) corresponds to the K(K ′) val-
ley. We have adopted units such that ~ = vF = 1, where
vF is the velocity of the chiral particles in the absence of
the mass parameter m. Its spectrum has a gap ∆ = 2m.
This Hamiltonian is an appropriate long-wavelength de-
scription of TMD materials when excitations involving
spin flips are ignored, and in the limit m→ 0 it also de-
scribes the single particle physics of graphene [42, 56, 57].
Eigenstates of H0 consist of right-and left-moving solu-
tions in the x̂-direction,

(

E +m
±τkx + iky

)

e±ikxx+ikyy

with energies

E =
√

m2 + k2x + k2y. (2)

We choose an orientation in which the electrons are con-
fined in the x̂ direction and are free to move along ŷ.

To confine the electrons, we adopt for simplicity infinite
mass boundary conditions [50],

ψ1

ψ2

∣

∣

∣

∣

x=0,L

= ±iλ0, (3)

where λ0 = sgn(C) is the sign of the Chern number out-
side the wire, and in writing this we have assumedm ≥ 0.
(Details of how one arrives at Eq. 3 are presented in Ap-
pendix A.) Note that, without loss of generality, we may
assume a Chern number (of magnitude 1/2 [58]) for each
valley in the material (i.e., inside the wire) with the sign
of λ given by τ . This choice of boundary condition has
the advantage of admitting confined solutions without
admixing valleys, but the resulting confined states de-
pend on their momentum ky along the wire. This latter
property is generic for chiral fermions [46, 48, 51], al-
though in the special case where there are only two val-
leys, with equal momentum components along the wire
direction, this momentum dependence is lifted [46] (at
the cost of admixing valleys.) The momentum depen-
dence of the confined wavefunctions is a significant differ-
ence from the typical situation for electrons with scalar
single-particle states [52]. Note that the parameter λ0
enters the boundary condition because one must choose
the mass term outside the wire to tend to either ∞ or
−∞, and the choice of this sign determines whether the
wire supports edge states, as we discuss further below.

Eigenstates of H0 which satisfy the boundary condi-
tions have the form (see Appendix A)

~ψτ
~k
(~r) = A(τ ;~k)

(

E +m
τkx + iky

)

eikxx+ikyy +B(τ ;~k)

(

E +m
−τkx + iky

)

e−ikxx+ikyy, (4)

with

A(τ ;~k) = τN
√

(E +m)2 + (τkx − iky)2
√

m+ iλ0τkx, (5)

B(τ ;~k) = −τN
√

(E +m)2 + (τkx + iky)2
√

m− iλ0τkx, (6)

with a normalization constant given by

N =
{

8LyE(E +m)2
[

L(m2 + k2x) + λ0τm
]}−1/2

, (7)

in which Ly and L are the length and the width of the
wire respectively. The allowed values of kx satisfy the
transcendental equation

e2ikxL =
m− iλ0τkx
m+ iλ0τkx

, (8)

which in turn quantizes their values,

kxL = −λ0τ arctan(
kx
m

) + nπ, (9)

where n = 1, 2, 3, ...
In addition to these confined states, there may also be

edge states, depending on the relative sign of the wire
and the vacuum Chern numbers. Potentially these could
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be important, as their location near the sample edges
suggests they can make large dipole moment contribu-
tions. Thus in our calculations below we will consider
both systems with and without edge states. We will see
that ultimately in most cases their impact is quantitative,
but not qualitative.

In systems with time reversal symmetry, edge states
come in pairs on each edge running in opposite directions,

with the member of each pair associated with one or the
other valley. For systems with a single chiral fermion,
for which time reversal symmetry is necessarily broken,
a single edge state is present on each edge. These edge
states exist only when the wire material and vacuum are
topologically distinct, i.e. the signs of their Chern num-
bers are opposite,

λ0λ = −1. (10)

The edge states correspond to evanescent solutions of the Hamiltonian equation (see Appendix A), with wavefunc-
tions

~ψτ
0,~k

(~r) = A0(τ ;~k)

(

m+ E
i(τkx + ky)

)

e−kxx+ikyy +B0(τ ;~k)

(

m+ E
i(−τkx + ky)

)

ekxx+ikyy (11)

and

A0(τ) = τ

√

((m+ E)2 − (τkx − ky)2)(m+ kx)

8E(E +m)2Ly (m− L(m2 − k2x))
, (12)

B0(τ) = −τ

√

((m+ E)2 − (τkx + ky)2)(m− kx)

8E(E +m)2Ly (m− L(m2 − k2x))
, (13)

and energy

E =
√

m2 − k2x + k2y. (14)

In these expressions the evanescent wave vector kx satisfies the transcendental equation

e−2kxL =
|m| − kx
|m|+ kx

. (15)

Note that Eq. 15 only has solutions when the wire is
wider than a minimal value (L∗), given by

L∗ =
~vF
m

. (16)

where we have replaced the explicit functional depen-
dence on ~vF . Examples of the single particle dispersions
relevant to our model are given in Figs. 2a and 2b.
Knowing how to construct these wavefunctions and en-

ergies, we next describe how they are used to compute
the plasmon modes and their dipole moments.

III. PLASMON WAVEFUNCTIONS, ENERGIES,

AND DIPOLE MOMENTS

In our study we are interested in the intrinsic dipole
moment of plasmon states of a one dimensional chan-
nel. Most previous studies of these focus on the dielectric
function, as computed in the random phase approxima-

tion (RPA) [52, 59, 60]. This reveals the plasmon fre-
quencies and their impact on the charge response of the
system to applied electric fields. For our purpose we need
access to the plasmon wavefunctions. The approach we
adopt casts the plasmon wavefunction as a linear com-
bination of particle-hole excitations around a Fermi sea
ground state. While equivalent to RPA, it is best un-
derstood as a time-dependent Hartree approximation. In
this section we explain how this approach is implemented
and how the intrinsic transverse dipole moment may be
extracted from it.

A. Hamiltonian and Plasmon Raising Operator

Our Hamiltonian is a sum of single particle and inter-
action parts, Ĥ0 + V̂ . The first of these is

Ĥ0 =
∑

m

∑

ky

∑

τ,s

Em,τ (ky)c
†
m,τ,s(ky)cm,τ,s(ky) (17)
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FIG. 2: (a) Lowest three positive energy electric subbands for a single valley chiral fermion with two confined states (solid
lines) and an edge state (dashed line). The vacuum and wire have opposite Chern number signs λλ0 = −1. The half gap
m = 0.8eV, wire width is L = 50 Å, vF ~ = 3.39eV·Å. (b) Lowest two positive energy electric subbands for a single valley
chiral fermion with no edge state. The vacuum and wire have the same Chern number signs, λλ0 = 1. The half gap
m = 0.8eV, wire width is L = 50 Å, vF ~ = 3.39eV·Å.

where c†m,ky,τ,s
creates an electron in subband m with

longitudinal momentum ky , with valley and spin indices
τ and s, respectively. E(m, ky, τ) is the single particle
energy, as computed in the previous section. For the
interaction term we write

V̂ =
1

2

∑

s,s′

∫

d2r

∫

d2r′ : ~Ψ†
s(~r)·~Ψs(~r)V (~r−~r′)~Ψ†

s′(~r
′)·~Ψs′(~r

′) :

(18)

where the (vector) field operator ~Ψ†
s(~r) creates an elec-

tron of spin s in the two orbitals of the chiral fermion
system at the location ~r, and : Ô : denotes normal order-

ing of an operator Ô. We expand the field operator in
terms of single particle wire states,

~Ψs(~r) =
∑

n,ky,τ

cn,τ,s(ky)~ψ
τ
~k,s

(~r). (19)

In writing this we have identified ~k ≡ (kx(n), ky), al-
lowing us to adopt a simplified indexing for the single-

particle states ~ψτ
~k,s

(~r) which correspond to the states an-

nihilated by cn,τ,s(ky). Adopting the same notation for
these annihilation operators, c~k,τ,s ≡ cn,τ,s(ky), brings

the interaction to a form which may be written as

V̂ =
∑

s,s′

∑

n1,n2,n3,n4

ky1,ky2,ky3,ky4
τ1,τ2,τ3,τ4

V τ1,τ2,τ3,τ4
~k1,~k2,~k3,~k4

c†~k1,τ1,s′
c†~k2,τ2,s

c~k3,τ3,s
c~k4,τ4,s′

, (20)

where V τ1,τ2,τ3,τ4
~k1,~k2,~k3,~k4

= 1
2

∫

d2r
∫

d2r′ ~ψτ1
~k1

(~r)∗ · ~ψτ4
~k4

(~r)V (~r − ~r ′)~ψτ2
~k2

(~r ′)∗ · ~ψτ3
~k3

(~r ′). In writing this we have taken note of

the fact that for each subband there is a single quantized transverse momentum magnitude, kx(n), whose states with
positive and negative values are admixed to form the transverse states discussed in the last section.
In what follows we adopt a contact interaction V (~r − ~r′) = u0δ(~r − ~r′). This yields intrasubband plasmon modes

that disperse linearly with longitudinal plasmon momentum Ky. If a 1/r potential is instead used, one expects to find
ω(Ky) ∼ Ky lnKy for at least one gapless plasmon mode; however in practice the divergence of the slope is extremely
difficult to see [52]. Thus the contact interaction introduces significant simplification in the computation of the matrix
elements, without loss of any essential qualitative behavior in the plasmon mode. In practice, we choose the value
of u0 to match results for the slope of a plasmon mode as computed using the Coulomb interactions in a graphene
system [61].
Collective excitation of the system can be obtained from operators satisfying the equation [31, 62]

[Ĥ, Q̂†
Ky

] = ~ωKy
Q̂†

Ky
. (21)
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In general analytic solutions to Eq. 21 are not available. However in the case of plasmons, corresponding to charge

density excitations in the system, one may approximate the form of the plasmons raising operator Q̂†
Ky

as a linear

combination of single particle-hole pairs [31],

Q̂†
Ky

≡
∑

m1,m2,k′

y,τ,s

am1,m2,τ (k
′
y ;Ky)c

†
m1,τ,s(Ky + k′y)cm2,τ,s(k

′
y), (22)

and then treat the commutator [V̂ , Q̂†
Ky

] in the time-dependent Hartree approximation,

[V̂ , Q̂†
Ky

] ≈2
∑

s,s′

∑

n1,n2,n3,n4

∑

τ1,τ4,τ

∑

ky1,k′

y

V τ1,τ,τ,τ4
n1,n2,n3,n4

(Ky + k′y , ky1,Ky + ky1, k
′
y)an3,n2,τ,s(ky1;Ky)

× c†n1,τ1,s′
(Ky + k′y)cn4,τ4,s′(k

′
y)(nF (n2, ky1, τ)− nF (n3,Ky + ky1, τ)). (23)

Together with the commutator involving the single particle Hamiltonian Ĥ0, one arrives at an eigenvalue equation for
the particle-hole weights an1,n2,ky,τ,s(Ky) and the plasmon frequency ω(Ky),

2
∑

n1,n2

∑

ky1

∑

τ,s

V τ ′, τ, τ, τ ′

n′

1
,n2,n1,n′

2

(Ky + k′y, ky1,Ky + ky1, k
′
y)an1,n2,τ,s(ky1;Ky)(nF (n2, ky1, τ)− nF (n1,Ky + ky1, τ))

=
[

ωKy
− En′

1
,τ ′(Ky + k′y) + En′

2
,τ ′(k′y)

]

an′

1
,n′

2
,τ ′,s′(k

′
y;Ky). (24)

In this work we work strictly in the zero temperature limit, so that nF (n, ky, τ) = 1(0) if the state (n, ky, τ) is occupied
(unoccupied) in the ground state.
We solve Eq. 24 numerically by retaining a discrete set of points in the ky sum, so that it becomes a matrix

eigenvalue equation. Because we are interested in the lowest lying plasmon modes, we further simplify the equation
by retaining only intra-band particle-hole excitations, so that we take an1,n2,τ,s(ky;Ky) 6= 0 only when n1 = n2; we
have verified that keeping inter-subband excitations has little effect on our results. We have further verified that
increasing the number of ky points used for the results reported below have little effect on them.

B. Plasmon Dipole Moment

In previous work [40, 54] we demonstrated that two-body excitations, including excitons and plasmons, may carry
an internal dipole moment that is tied to the quantum geometry of their wavefunctions. One sees this by defining
Berry connections specific for the electrons (α=1) and holes (α=2),

A
(α)(K) = i〈uK,α|~∇K|uK,α〉

with

|uK,α〉 = eiKrα |ΦK〉 ,

where |ΦK〉 is the wavefunction of the excited state. These connections can be directly related to the average electric
dipole moment d of a plasmon,

d = e < ΦK|r1 − r2|ΦK >

= ie
[

〈uK,1|~∇K |uK,1〉 − 〈uK,2|~∇K |uK,2〉
]

= e
[

A
(1)(K)−A

(2)(K)
]

≡ eD(K), (25)

where D is the quantum geometric dipole. This quantity is relevant to plasmons because they may be understood
as particle-hole excitations around a Fermi surface. In a two-dimensional system one finds D(K) is orthogonal to
K, and for small K it is linear in K. This geometry suggests that when plasmons carry a non-vanishing D in a
two-dimensional material, plasmons confined to a one-dimensional channel of the same system may carry a transverse
dipole moment. We can check this by computing the plasmon dipole moment directly. For a wire oriented along the
ŷ-direction, following the reasoning above, for a plasmon state |ΦKy

〉 with momentum Ky along the wire one may
write

Dx(Ky) = A(1)
x −A(2)

x = 〈ΦKy
|xe − xh|ΦKy

〉. (26)
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Recalling the notation above in which a vector ~k = (kx(n), ky) specifies an electron state with longitudinal momentum

ky in a transverse state n, we write ~ψτ
~k
→ ~ψτ

n,ky
, yielding an explicit expression,

Dx(Ky) =
∑

m1,m2,
m′

1
,m′

2

∑

ky,τ,s

a∗m′

1
,m′

2
,τ,s(ky ;Ky)am1,m2,τ,s(ky ;Ky)

×

(

δm2,m′

2

∫

x~ψτ∗
m′

1
,ky+Ky

(~r) · ~ψτ
m1,ky+Ky

(~r)d2r − δm1,m′

1

∫

x~ψτ
m′

2
,ky

(~r) · ~ψτ∗
m2,ky

(~r)d2r

)

. (27)

In our numerical calculations, Eq. 27 is used to compute the dipole moment of a plasmon state. As we shall see,
one finds that plasmons of a single chiral Dirac fermion nanowire generically have non-vanishing Dx(Ky), but with
increasing wire width, this vanishes unless the corresponding two-dimensional system has a non-vanishing quantum
geometric dipole.
Having explained in this and the previous section how the plasmons and their dipole moments can be computed,

we now turn to our numerical results.

IV. RESULTS

In this paper we focus on intraband plasmons, which
for our contact interaction disperse linearly with momen-
tum from zero energy. In general we find that the number
of such gapless plasmon modes is equal to the number of
subbands which cross the Fermi energy, all of which may
carry non-vanishing transverse dipole moments. We be-
gin by considering the computationally simplest case of
a single chiral fermion flavor. In principle such a system
might be created on the surface of a topological insulator
infused with ferromagnetically ordered dopants that gap
the surface states everywhere except in a narrow chan-
nel, where plasmons can be hosted. We also consider
single chiral fermions for parameters similar to those of
TMD materials, for which we find that nearly all the
modes have the same dipole moment. An exception to
this behavior occurs when there are edge states, in which
case there is a single plasmon mode with nearly vanishing
dipole moment.

A surprising aspect of our results is that transverse
dipole moments seem to occur rather ubiquitously for
the quasi-one-dimensional chiral fermions we examine,
whereas in two dimensions one finds a non-vanishing
QGD only when the single particle Hamiltonian carries
a non-vanishing Chern number [40]. To understand this
we consider the limit of wide ribbon widths, and find
that indeed the transverse dipole moment quantitatively
matches the two-dimensional QGD, so that there is no
contradiction in these results.

Finally for this section, we turn to more common sit-
uations for nanoribbons of van der Waals materials, for
which the effects of multiple valleys and time-reversal
symmetry lead to vanishing transverse dipole moment.
We show that this can be made non-vanishing by break-
ing the symmetry between valleys with a magnetic field.

A. Single Chiral Fermion

Our model Hamiltonian for a single chiral fermion is
Ĥ = Ĥ0 + V̂ , with Ĥ0 and V̂ given by Eqs. 17 and
18, respectively, in which only a single valley flavor τ is
retained. For such systems we need to choose whether
the vacuum outside the same system has the same or
opposite Chern number as the one-dimensional system,
i.e. whether λλ0 = 1 or −1, as discussed in Section II.
This determines whether the wire hosts edge states. For
the realization described above one may toggle between
the two cases by flipping the direction of the magnetic
impurities defining the channel. The qualitative behavior
of the system turns out to be the same irrespective of
whether the wire hosts edge states.

We begin with typical results, illustrated in Figs. 3a -
3d for a 50Å wide system, choosing Hamiltonian param-
eters and Fermi energies such that the subbands are rea-
sonably well-separated in energy, and that a small num-
ber of transverse subbands are occupied in the ground
state. Figs. 3a and 3b for boundary conditions in which
there are no edge states (λλ0 = 1.) One observes several
gapless plasmons, which at long wavelengths disperse lin-
early with momentum, as expected for this model. The
gapless modes illustrated all lie above the energies of the
particle-hole continuum. In general, the number of gap-
less modes is equal to the number of occupied subbands;
we demonstrate this explicitly for the case of two oc-
cupied subbands in Appendix B. Importantly, all the
plasmon modes exhibit non-vanishing transverse dipole
moments, with magnitudes proportional to the plasmon
momentum. As we discuss below, while this behavior is
consistent with the (two-dimensional) quantum geomet-
ric properties of the system hosting the wire, it can be
present in the wire geometry even when absent in the
corresponding two-dimensional system.

An interesting possibility for these system is that they
may host edge states. These appear in our system when
λλ0 = −1. As explained above, because of their physical
location, one might expect them to have notable conse-
quences for the transverse dipole moments of the nanorib-
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bons. In fact we find that, for these kinds of generic pa-
rameters, the qualitative results are largely unaffected by
the presence of edge states. This is illustrated in Figs.
3c and 3d. We see the results are qualitatively rather
similar to those of Figs. 3a and 3b.
Surprising behavior of the transverse dipole moment

emerges for systems with relatively large gaps. Fig. 4a
illustrates such a case, in which the Hamiltonian param-

eters have been chosen to model a single valley of WSe2
[42], and λλ0 = 1 (no edge states on the wire). Fig. 4b
illustrates the transverse dipole moment of these plas-
mon modes. Remarkably, one finds essentially the same
value for all the modes. This can be understood by close
examination of the expression for the plasmon dipole for
small momentum Ky, which we show in Appendix C to
have the form

Dx(Ky) =
∑

τ

τKy(Lm+ λ0τ)

2ε3F

∑

n

∑

ky,s

|an,n,τ,s(ky ;Ky)|
2

L+ λ0τm
m2+kx(n)2

+O(K2
y ). (28)

where kx(n) is the quantized transverse momentum of
the nth subband. Note that in this expression, in the
present case where we consider a single valley (indexed
by τ), one may set λλ0 = τλ0. In situations where the
gap parameter m is large, the last term in the denom-
inator becomes negligible, so that the remaining sum
∑

n

∑

ky ,τ,s
|an,n,τ,s(ky;Ky)|

2 is determined only by the

normalization of the plasmon wavefunction, and the re-
sulting dipole moment becomes independent of the spe-
cific plasmon mode.
Figs. 4c and 4d illustrate the corresponding results for

the same parameters, but with λλ0 = −1. In this case
the systems hosts edge states in addition to the confined
single-particle states, so that there are five occupied sub-
bands. Here all but one of the plasmon modes host the
same non-vanishing dipole moment, while the remain-
ing mode does not. The result again can be understood
from Eq. 28. In this case one finds that the mode with
vanishing dipole moment has nearly all its weight in the
edge state, for which kx(n) ≈ im, so that the denomina-
tor becomes divergent. More physically, because of the
relatively large gap, the penetration length of the edge
state into the bulk becomes independent of ky, as does
the single-particle transverse wavefunction. In this case
the plasmon cannot sustain a transverse dipole moment.
It is interesting to note that the difference in behaviors
apparent in Figs. 4b and 4d in principle offers an interest-
ing way to distinguish when the one-dimensional channel
is in a topological setting from a situation in which it
is not: with the application of a transverse electric field
coupling to the dipole moment, the energies and corre-
sponding velocities of all the plasmon modes would shift
in the non-topological case, whereas in the topological
case one of these modes will be insensitive to the electric
field.

B. Relationship to Two-Dimensional QGD

While the presence of an intrinsic dipole moment as-
sociated with plasmons in these one-dimensional systems

is consistent with the presence of a QGD D in their two-
dimensional realizations [40], it is not necessary forD 6= 0
for these one-dimensional plasmons to carry a transverse
dipole moment. Figs. 5a and 5b illustrate this for the
situation in which the gap parameter m vanishes, so that
D = 0 for plasmons in this system in two dimensions
[40]. Clearly one finds a non-vanishing transverse dipole
for such plasmons, and indeed the results are qualita-
tively similar to those found for λλ0 = 1. Note that one
does not expect the one-dimensional system to host edge
states when ∆ = 2m = 0.
While for these relatively narrow systems we see lit-

tle difference in the behavior of one-dimensional plas-
mons between systems in which D 6= 0 and D = 0, the
distinction becomes relevant as the conducting channel
gets wider. We illustrate this by computing the plas-
mon transverse dipole moment both for a chiral fermion
system with vanishing gap (m = 0), for which D = 0
[40], and for a gapped chiral fermion, for which it does
not, and examine the plasmon behavior as the width L
increases while the Fermi energy εF is held fixed. Fig.
6a illustrates the behavior of the velocity of the fastest
plasmon for a system with m = 0, and the associated
dipole moment can be seen to vanish as L becomes large
(Fig. 6b). Figs. 6c and 6d illustrate the corresponding
quantities for a system with m 6= 0, for which the trans-
verse dipole moment matches onto the (two-dimensional)
quantum geometric dipole magnitude |D|. The robust-
ness of the plasmon dipole moment with increasing L is
thus a signature of its quantum geometric nature.

C. Mulitple Valleys: Vanishing Dipole for

Time-Reversal Symmetric Systems

While the systems discussed above involve relatively
simple Hamiltonians, their physical realizations require
time-reversal symmetry-breaking, for example via ferro-
magnetic insulating films which would need to be pat-
terned onto the surface of a topological insulator. A much
simpler system to realize would be a nanoribbon of tran-
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FIG. 3: Intraband plasmon energies and transverse dipole moments for K valley excitations. The wire width is
L = 60 Å, assumed gap ∆ = 0.4 eV, vF ~ = 3.94 eV·Å, Fermi energy εF = 0.806 eV for (a) and (b), Fermi energy
εF = 1.128 eV for (c) and (d), . (a) Plasmon energies when 4 subbands are occupied (no edge state due to boundary
condition). There are 4 plasmon modes in total. (b) Transverse dipole moments corresponding to (a). (c) Plasmon
energies when 5(=4+1) subbands (including an edge state) are occupied. (d) Transverse dipole moments
corresponding to (b). Insets: showing the single particle spectrum and the dashed line indicated the Fermi energy.

sition metal dichalcogenide (TMD) material, which in
most cases preserves time reversal symmetry. Such sys-
tems typically have two valleys, which are time-reversal
partners of one another. With time-reversal symmetry
intact, one does not expect plasmon modes to carry an
intrinsic dipole moment. Figs. 7a and 7b illustrate such
a situation.

Non-vanishing dipole moments in such systems can be
induced by breaking the symmetry between valleys. In
TMD materials, spin-orbit coupling leads to a splitting
between spin-up and spin-down states in opposite direc-

tions for the two valleys [42], so that a magnetic field
imbalances the populations of the valleys through the
Zeeman coupling. For magnetic fields that are not too
large, such that the magnetic length ℓ =

√

~c/eB, with
B the magnetic field, is larger than the ribbon width,
the orbital motion of the electrons will largely be unaf-
fected by the field. To a good approximation one then
only needs to include the spin dependence of the Fermi
surfaces to account for the field.

Figs. 7c and 7d illustrate such a situation in a ribbon
of width L = 50Å, for system parameters modeled after
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FIG. 4: Intraband plasmon energy and transverse dipole moments for K valley excitations. Parameters are given by L = 86
Å, ∆ = 1.6 eV, vF ~ = 3.94 eV·Å, Fermi energy εF = 1.007 eV. (a) Intraband plasmon energies when 4 subbands are occupied.
(b) Transverse dipole moments corresponding to (a). (c) Intraband plasmon energies when 5 modes are occupied (including
edge states). (d) Transverse dipole moments corresponding to (c).

the hole bands of WSe2, with a magnetic field B = 10T,
for which ℓ ≈ 81Å. While the bands for each valley have
the same dispersion, the Zeeman coupling leads to a dif-
ference of ∼ 8meV in the extrema of the K and K ′

bands, yielding different carrier populations in each of
them. While this leads to little change in the plasmon
dispersions (compare Figs. 7a and 7c), the plasmons now
carry dipole moments with small magnitudes (Fig. 7d.)
Interestingly, these dipole moments can have either sign.
At the more extreme end, this effect can used to com-
pletely depopulate one of the valleys of carriers. This
situation is illustrated in Figs. 8a and 8b. Interestingly
this yields a plasmon dipole moment that is relatively

large.

V. SUMMARY AND DISCUSSION

In some two-dimensional conducting systems, plasmon
excitations come with an intrinsic dipole moment that
is quantum geometric in nature [40]. In this work, we
have explored conditions under which this kind of dipole
moment might be found for quasi-one-dimensional ge-
ometries of the corresponding systems, using an RPA
approach. Our studies focused on chiral fermions, as
might be found on the surface of a topological insulator,
or in two-dimensional van der Waals materials such as
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FIG. 5: Intraband plasmon energies and transverse dipole moments for K valley excitations in a situation where 4 subbands
are occupied, for a gapless chiral fermion. Parameters are L = 50 Å, ∆ = 0 eV,vF ~ = 3.94 eV·Å, Fermi energy εF = 1.007 eV.
(a) Plasmon energies. (b) Corresponding transverse dipole moments.

graphene or TMD’s, and we adopted a simplified model
with infinite mass boundary conditions at the system
edges. We found that the presence of a transverse dipole
moment is more ubiquitous in the wire geometry than
in the two-dimensional system: the opening of a gap in
the spectrum due to transverse confinement is sufficient
to stabilize it, even when the corresponding gapless spec-
trum has no such dipole moment in two dimensions. The
connection with the quantum geometric dipole is made by
considering the wide wire limit, for which the plasmons
retain dipole moments when the corresponding two di-
mensional system has a non vanishing quantum geomet-
ric dipole.

These plasmons differ from the corresponding modes of
more conventional semiconducting quantum wires (e.g.,
GaAs): the topological character of the chiral fermions
allow the possibility that they support edge states, which
we find are present for sufficiently wide wires. Their pres-
ence increases the number of gapless plasmon modes sup-
ported by the systems, but they only differ in their quali-
tative behavior for systems with relatively large gaps. In
this limit we found that the dipole moments of the plas-
mon modes supported by the transverse confined states
became degenerate across the modes, whereas a single
plasmon associated with the edge states has vanishing
dipole moment.

Single chiral fermion flavors can only be found in sys-
tems with broken time-reversal symmetry. In principle
a conducting channel of these could be fabricated on
the surface of topological insulator with ferromagneti-
cally ordered magnetic ions on its surface, with a one-
dimensional channel cut through. Systems with both
chiral fermions and time-reversal symmetry support mul-
tiple flavors of chiral fermions (valleys), which are time-

reversal partners of one another. Plasmons in these sys-
tems do not carry dipole moments. However in TMD’s
they can be induced by the introduction of a magnetic
field, which due to spin-orbit coupling imbalances the car-
rier populations in different valleys. For low carrier den-
sities one may find complete depletion of some valleys,
leading to relatively large transverse dipole moments in
the plasmons.

A transverse dipole moment associated with a plasmon
in a nanowire will in principle be signaled by a sensitiv-
ity of its frequency and speed to the application of a
transverse electric field [55]: these will both vary linearly
with electric field. For example, for the system param-
eters considered in Figs. 8a and 8b, an external electric
field of 0.01 V·Å−1 will modify the speed of the plasmon
by approximately 3.2 × 106m/s, and its energy by ap-
proximately 3%. Control of plasmon energies in such a
continuous way in a single system could in principle bring
new capabilities to plasmonic systems incorporating such
nanowires.

Our studies suggest further directions for exploration.
Beyond the gapless plasmons we have focused on in this
work, nanowires support gapped, intersubband plasmons
at higher frequencies [52]. Preliminary work [63] indi-
cates that these also obtain non-vanishing dipole mo-
ments in chiral fermion settings, and they offer a way
to detect this physics at higher frequencies. One may
also consider the presence and role of transverse dipole
moments in more complicated settings than considered
in this work. For example, understanding the behavior
of nanowire plasmons for other classes of boundary con-
ditions, in particular those for which valley mixing is in-
duced at the single-particle level [46, 48], would likely be
important for many types of nanowires. While we expect
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FIG. 6: Single valley intraband plasmon velocity E
Ky

and transverse dipole moment evaluated at fixed plasmon

momentum Ky = 9.8× 10−5Å
−1

. Results are shown for the highest energy intraband plasmon. (a) Plasmon velocity
for fixed Fermi energy 0.252 eV with zero gap. Horizontal axis shows the width of the wire. The energy gap is set to
zero, so that two-dimensional quantum geometric dipole D vanishes. The cusps in the curve correspond to level
anticrossings. (b) Transverse plasmon dipole moments corresponding to (a). Inset is a log-log plot of the same
results. This quantity extrapolates to zero in this case. (c) Plasmon velocity for fixed Fermi energy 1.007 eV.
Horizontal axis shows the width of the wire. The energy gap is that of the WSe2, i.e. ∆ = 2m = 1.60eV. The cusps
in the curve corresponds to level anticrossings. (d) Transverse plasmon dipole moments corresponding to (c). Inset
is a log-log plot of the same results. The L→ ∞ value of the dipole moment |D| ≈ 6.00× 10−4 for these system
parameters. The limiting value is the same as the 2D QGD.

more realistic boundary conditions to modify details of
the transverse dipole moment when the two valleys are
coupled, a nonvanishing value should still be expected
when time reversal symmetry is broken. In particular for
systems where the chiral fermions have a non-vanishing
mass in their Hamiltonians, we expect a transverse dipole
moment to be particularly stable with respect to bound-

ary conditions at the edge. The robustness of the effect
in this case is emphasized by the results illustrated in
Fig. 6, where we see the transverse dipole moment limits
to the two-dimensional value for wide ribbons. This sug-
gests that bulk behavior plays an important role in this
physics.

Finally, one may also consider the effects of trans-
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FIG. 7: Intraband plasmon energies and associated transverse dipole moments when two valleys that are
time-reversal partners are retained. L = 50 Å, ∆ = 1.6 eV, vF~ = 3.94 eV·Å. (a) Plasmon energies when 2 subbands
are occupied in each valley. The Fermi energy εF = 1.008 eV. (b) Transverse dipole moment corresponding to (a).
Due to the symmetry, all the plasmon modes have vanishing dipole. (c) Plasmon energies for imbalanced valleys
where 2 subbands are occupied in each valley. Fermi energy in K valley is εF (τ = 1) = 1.008 eV, while in K ′ valley
εF (τ = −1) = 1.000 eV. The different effective Fermi energies can be induced by a magnetic field coupling to
electron spins. (d) Transverse dipole moments corresponding to (c). Due to broken valley symmetry, all the plasmon
modes yield nonvanishing dipole.

verse dipole moments on plasmon nanochannel networks,
which arise naturally in moiré superlattices, and which
have been shown to support their own unique dynamics
[29, 30, 64]. Such systems under some circumstances may
become spontaneously valley-polarized, opening another
avenue for the broken time-reversal symmetry needed for
transverse dipole moments.

Plasmon modes can be generally understood as collec-
tive oscillations of the electric dipole moments of con-

ducting systems. That such oscillations can occur with a
static component which depends on the plasmon momen-
tum is a relatively new insight, allowing the possibility
of new physical phenomena. Nanowires offer a setting in
which the direction of these dipole moments are fixed,
so that they can be interrogated with electric fields. For
systems that support them, we expect they will admit
new plasmonic phenomomena of fundamental interest.
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FIG. 8: Plasmon energies and transverse dipole moments in a 50 Åwire with Fermi energy εF =-0.838 eV, for a
typical TMD (WSe2) half gap of 0.8 eV, and Zeeman splitting of 8 meV. The boundary condition is chosen so that
their are no edge modes. Only one subband of one valley is occupied in this situation. (a) Plasmon energies. (b)
Transverse dipole moments.
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APPENDIX A: NANOWIRE WITH INFINITE MASS BOUNDARY CONDITION

In order to model chiral Dirac fermions confined to a quasi-one-dimensional channel, we consider a two-dimensional
system with a position-dependent mass term,

m̃(x) =

{

m, 0 < x < L,

V0, x < 0 or x > L.

The Hamiltonian of the system is, in general,

H =

(

m̃ iτkx − iky
iτkx + iky −m̃

)

,

where τ is the valley index. We find stationary states by matching eigenstates of H in the regions −∞ < x < 0
(region I), 0 ≤ x ≤ L (region II) and x > L (region III) at the locations x = 0 and x = L. We ultimately take
the limit V0 → ±∞ (infinite mass boundary conditions [50]), but some care must be taken with regard to whether
the Chern numbers in the central and outer regions are the same or different. These Chern numbers are given by
C = τ sgn(m̃)/2, so that the two cases are distinguished by the sign of mV0. For the regions outside the nanowire,
we denote the sign of the Chern numbers by λ0 ≡ sgn(τV0). Outside the wire one has for region I

ψI(~r) = C1

(

V0 + E
i(−τ0k1 + ky)

)

ek1x+ikyy,

with k21 = V 2
0 − E2 + k2y, where E is the energy of the state, while in region III,

ψIII(~r) = C3

(

V0 + E
i(τ0k3 + ky)

)

e−k3x+ikyy,

with k23 = V 2
0 −E2 + k2y. Writing the upper and lower components of the spinors as ψ1 and ψ2, respectively, with the

limit |V0| → ∞ we obtain [50]

ψ1

ψ2

∣

∣

∣

∣

x=0

= iλ0,
ψ1

ψ2

∣

∣

∣

∣

x=L

= −iλ0. (29)

In the interior of the wire (region II), the general form of the wavefunction is

ψ~k(~r) =
eikyy

√

2E(E +m)

[

A

(

E +m
τkx + iky

)

eikxx +B

(

E +m
−τkx + iky

)

e−ikxx

]

(30)

with A and B constants to be determined. Using Eqs. 29 one finds

A

B
= −

E +m− iλ0(−τkx + iky)

E +m− iλ0(τkx + iky)
(31)

and

A

B
= −e−2ikxL

E +m+ iλ0(−τkx + iky)

E +m+ iλ0(τkx + iky)
. (32)

These two equations are consistent provided

e2ikxL =
m− iλ0τkx
m+ iλ0τkx

= e−2iλ0τ arctan( kx
m

),

or equivalently,

kxL = −λ0τ arctan(
kx
m

) + nπ.

Using Eqs. 31 and 32, one obtains the expressions

A ≡ A(τ ;~k) = τN
√

(E +m)2 + (τkx − iky)2
√

m+ iλ0τkx,
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and

B ≡ B(τ ;~k) = −τN
√

(E +m)2 + (τkx + iky)2
√

m− iλ0τkx,

where N is a normalization constant,

N =
{

8LyE(E +m)2
[

L(m2 + k2x) + λ0τm
]}−1/2

,

with Ly the length of the one-dimensional region.
In addition to these confined states, the wire edges may support edge states. This can occur only if the Chern

numbers of the interior and exterior regions have different Chern numbers, which occurs when

λλ0 = −1,

with λ = τ sgn(m). One finds these states by considering states that are evanescent not just in regions I and III but
also in region II. These have the form

ψII(~r) = A

(

m+ E
i(τkx + ky)

)

e−kxx+ikyy +B

(

m+ E
i(−τkx + ky)

)

ekxx+ikyy,

where here k2x = m2 − E2 + k2y. Applying Eqs. 29 gives

A(m+ E) +B(m+ E)

A(τkx + ky)−B(τkx − ky)
= −λ0, (33)

A(m+ E)e−kxL +B(m+ E)ekxL

A(τkx + ky)e−kxL −B(τkx − ky)ekxL
= λ0. (34)

Eliminating A and B in eqs. 33 and 34, we arrive at a transcendental equation for kx,

e−2kxL =
|m|+ λ0λkx
|m| − λ0λkx

. (35)

Eq. 35 may be solved if and only if λ0λ = −1 and mL > 1. These are the conditions under which the quasi-
one-dimensional system hosts edge states. Using Eqs. 33 and 34, the explicit forms for the coefficients turn out to
be

A ≡ A0(τ) = τ

√

((m+ E)2 − (τkx − ky)2)(m+ kx)

8E(E +m)2Ly (m− L(m2 − k2x))
,

and

B ≡ B0(τ) = −τ

√

((m+ E)2 − (τkx + ky)2)(m− kx)

8E(E +m)2Ly (m− L(m2 − k2x))
.

APPENDIX B: ANALYTICAL SOLUTION FOR INTRABAND PLASMONS AT SMALL MOMENTUM

The appearance of multiple plasmon modes may appear surprising. In this section we show that this is to be
expected, given the structure of the transverse wavefunctions for the systems we consider. To do this we first develop
an alternative, equivalent formalism by which one may find the plasmon excitations, and then apply it to the simple
situation of two occupied subbands to show that there is more than a single gapless plasmon mode.

A. Equivalent Dielectric Formalism

For simplicity, we consider a massless chiral fermion system (m = 0), which is equivalent to a single valley of
graphene, for which we set τ = 1. First, we start from eq. 24, and obtain the equivalent dielectric formalism for
calculating plasmon frequency. The contact interaction matrix element may be written in the form

Vn1,n2,n3,n4
(ky1, ky2, ky3, ky4) =

u0
2
Ly

∫ L

0

dx
[

( ~A†
n1,ky1

e−ikx(n1)x + ~B†
n1,ky1

eikx(n1)x) · ( ~An4,ky4
eikx(n4)x + ~Bn4,ky4

e−ikx(n4)x)
]

×
[

( ~A†
n2,ky2

e−ikx(n2)x + ~B†
n2,ky2

eikx(n2)x) · ( ~An3,ky3
eikx(n3)x + ~Bn3,ky3

e−ikx(n3)x)
]

,
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where the spinor coefficients ~An,ky
and ~Bn,ky

may be read off from Eq. 30, and kx(n) are the quantized wavevectors
defined in Appendix A. By defining

fσ1,σ2,σ3,σ4

n1,n2,n3,n4
≡

∫ L

0

dxe−iσ1kx(n1)x−iσ2kx(n2)x+iσ3kx(n3)x+iσ4kx(n4)x,

and

~Dn,ky,σ ≡

{

~An,ky
, σ = 1,

~Bn,ky
, σ = −1,

the interaction matrix elements can be written in the compact form

Vn1,n2,n3,n4
(ky1, ky2, ky3, ky4) =

u0
2
Ly

∑

σ1,σ2,σ3,σ4

[

~D†
n1,ky1,σ1

· ~Dn4,ky4,σ4

] [

~D†
n2,ky2,σ2

· ~Dn3,ky3,σ3

]

fσ1,σ2,σ3,σ4

n1,n2,n3,n4
.

In the single valley case, the self-consistent equation for the plasmon wavefunction (Eq. 24) can now be written as

am1,m2,(k
′
y ;Ky) =

u0Ly

ωky
− εm1

(k′y +Ky) + εm2
(k′y)

×
∑

n2,n3,ky1

∑

σ1,σ2,σ3,σ4

[

~D†
m1,k′

y+Ky,σ1
· ~Dm2,k′

y,σ4

] [

~D†
n2,ky1,σ2

· ~Dn3,ky1+Ky,σ3

]

fσ1,σ2,σ3,σ4

m1,n2,n3,m2

× [nF (n2, ky1)− nF (n3, ky1 +Ky)]an3,n2
(ky1;Ky)

Defining

χσ1,σ4

m1,m2
(Ky) ≡ Ly

∑

n2,n3,ky1

∑

σ2,σ3

fσ1,σ2,σ3,σ4

m1,n2,n3,m2

[

~D†
n2,ky1,σ2

· ~Dn3,ky1+Ky,σ3

]

[nF (n2, ky1)−nF (n3, ky1+Ky)]an3,n2
(ky1;Ky),

and

ξm1,m2,ky
(Ky) ≡

∑

σ1,σ2

[

~D†
m1,ky+Ky,σ1

· ~Dm2,ky,σ2

]

χσ1,σ2

m1,m2
(Ky),

one finds

ξm′

1
,m′

2
,k′

y
(Ky) = u0

∑

m1,m2,ky

[

Ly

∑

σ′

1
,σ′

2
,σ2,σ1

f
σ′

1
,σ2,σ1,σ

′

2

m′

1
,m2,m1,m′

2

[

~D†

m′

1
,k′

y+Ky,σ′

1

· ~Dm′

2
,k′

y,σ
′

2

] [

~D†
m2,ky,σ2

· ~Dm1,ky+Ky,σ1

]

×
[nF (m2, ky)− nF (m1, ky +Ky)]

ωky
− εm1

(ky +Ky) + εm2
(ky)

]

ξm1,m2,ky
(Ky). (36)

The quantity ξ may be understood as a dielectric function, with the expression inside the square brackets of Eq.
36 representing a generalized polarization function Πm1,m2,ky ;m′

1
,m′

2
,k′

y
(Ky, ω). Non-trivial solutions to this equation

must obey

det(I − u0Π(Ky, ω)) = 0.

B. Intra Subband Solutions for Two Subbands

We now show how this equation leads to multiple gapless plasmons. As a simplest concrete example we consider a
massless chiral fermion system (e.g., single valley of graphene) with two subbands, both of which are occupied in the
ground state, and include only intra-subband excitations in the analysis. In Eq. 36 this entails retaining only pairs
of indices satisfying m1 = m2 and m′

1 = m′
2. One then has

ξm′

1
,m′

1
,k′

y
(Ky) = u0Ly

∑

m1,ky

[

∑

σ′

1
,σ′

2
,σ2,σ1

f
σ′

1
,σ2,σ1,σ

′

2

m′

1
,m1,m1,m′

1

[

~D†

m′

1
,k′

y+Ky,σ′

1

· ~Dm′

1
,k′

y,σ
′

2

] [

~D†
m1,ky,σ2

· ~Dm1,ky+Ky,σ1

]

×
[nF (m1, ky)− nF (m1, ky +Ky)]

ωky
− εm1

(ky +Ky) + εm1
(ky)

]

ξm1,m1,ky
(Ky). (37)
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The relevant spinors entering ~D can be evaluated as

~An,ky
=

1
√

8LLy

1
√

k(k + ky)

(

k + ky + ikx
i(k + ky − ikx)

)

,

and

~Bn,ky
=

1
√

8LLy

1
√

k(k + ky)

(

−(k + ky − ikx)
−i(k + ky + ikx)

)

.

where kx ≡ kx(n) and k =
√

k2x + k2y. We next note that for small Ky, the ky momentum sums involve only very

small intervals, so that one may set all the values of ky in the various ~Dm,ky,σ and ~D†
m,ky,σ

factors appearing in Eq. 37

to their values where the subbands cross the Fermi energy, ky → kF (m), where kF (m) =
√

ε2F − (~vFkx(m))2/~vF ,
with εF the Fermi energy and vF the velocity of the chiral fermion. After some algebra, one finds

∑

σ′

1
,σ′

2
,σ2,σ1

f
σ′

1
,σ2,σ1,σ

′

2

m′

1
,m1,m1,m′

1

[

~D†
m′

1
,k′

y+Ky,σ′

1

· ~Dm′

1
,k′

y,σ
′

2

] [

~D†
m1,ky,σ2

· ~Dm1,ky+Ky,σ1

]

≈
1

LL2
y

[

1 +
1

2

[~vF kF (m1)]
2

ε2F
δm1,m′

1

]

Specializing to the case of just two occupied subbands, using the notation ξm,m,kF (m) → ξm, one finds to linear order
in Ky

(

ξ1(Ky)
ξ2(Ky)

)

= v0





(1 + kF (1)2

2ε2
F

)I1(Ky, ω) I2(Ky, ω)

I1(Ky, ω) (1 + kF (2)2

2ε2
F

)I2(Ky, ω)





(

ξ1(Ky)
ξ2(Ky)

)

where v0 = u0εF
KyL

, vF ~ = 1, and

Im(Ky, ω) =
Ky

εF

∫ kF (m)

kF (m)−Ky

dky
ωky

− εm(ky +Ky) + εm(ky)
. (38)

Non-trivial solutons to Eq. 38 exist when

(a1I1(Ky, ω)− v−1
0 )(a2I2(Ky, ω)− v−1

0 )− I1(Ky, ω)I2(Ky, ω) = 0, (39)

where am = 1 + kF (m)2/2ε2F .
For small Ky, Eq. 38 can be evaluated directly. Writing the (non-interacting) speed of a particle along the wire in

an occupied subband m at the Fermi energy as vm, for small Ky one finds

Im =
K2

y/εF

ω − vmKy
. (40)

Direct substitution of Eq. 40 into Eq. 39 generates a quadratic equation for ω in terms of Ky, with solutions

ω±(Ky) =
1

2

{

v1 + v2 + (a1 + a2)ũ0 ±
[

(v2 + a1ũ0 − v1 − a2ũ0)
2
+ 4ũ20

]1/2
}

Ky,

where ũ0 ≡ u0/L. Thus we generate two non-degenerate collective modes with frequencies different from those of the
non-interacting particle-hole excitations.

APPENDIX C: DEGENERACY OF TRANSVERSE DIPOLE MOMENTS

In Section IV-A, it was shown that under certain circumstances the transverse dipole moment Dx(Ky) can be the
same for multiple plasmon modes at small Ky, even when the frequencies of these modes are quite different. This
behavior is explained by Eq. 28, in which one may see that Dx(Ky) becomes independent of the details of plasmon
wavefunction when m≫ ~vFkx(n) for the subbands n involved in the plasmon wavefunction. (Note in Eq. 28, ~ and
vF have been set to 1.) In this Appendix we present some details of the derivation of Eq. 28.
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Our starting point is Eq. 27, and we consider only intrasubband particle-hole excitations in constructing the low
energy plasmon wavefunctions. This means the quantities we need to focus on have the form

~dm(ky) =

∫

x~ψτ,∗
m,ky

(~r) · ~ψτ
m,ky

(~r)d2r.

Writing the plasmon wavefunctions, Eq. 4, in the form

~ψτ
~k
(~r) = ~Am,ky

eikxx+ikyy + ~Bm,ky
e−ikxx+ikyy,

where kx ≡ kx(m), one finds

~dm(ky) =
L2Ly

2
(| ~Am,ky

|2 + | ~Bm,ky
|2) + 2LyRe( ~A

†
m,ky

· ~Bm,ky
)

∫

xe−2ikxxdx

Reading off the forms of ~Am,ky
and ~Bm,ky

from the wavefunctions in Section II, one finds

| ~Am,ky
|2 = | ~Bm,ky

|2 =
1

2Ly

m2 + k2x
L(m2 + k2x) + λ0τm

,

where we have set ~ = vF = 1. Remarkably, these combinations are independent of ky; because ~D(Ky) involves

the difference of ~dm(ky) at two different ky values, terms involving | ~Am,ky
|2 and | ~Bm,ky

|2 do not contribute to the
dipole moment of the plasmon. For small Ky, the transverse component of the dipole moment can now be written as
Dx ≡

∑

m Dx,m where the sum is over occupied subbands, and

Dx,m(Ky) = Ky∂ky

(

2LyRe( ~A
†
m,ky

· ~Bm,ky

∫

xe−2ikxxdx)

)∣

∣

∣

∣

ky=kF

+O(Ky)
2.

With some algebra one may show

~A†
m,ky

· ~Bm,ky
= −

(mE + iτkxky)(m− iλ0τkx)

2LyE (L(m2 + k2x) + λ0τm)
,

and using this relation, after performing the integration one finds

2LyRe( ~A
†
m,ky

· ~Bm,ky

∫

xe−2ikxxdx) =
mλ0τ

2 (L(m2 + k2x) + λ0τm)
+

τky(Lm+ λ0τ)

2E (L(m2 + k2x) + λ0τm)
.

The first term is independent of ky therefore does not contribute. Using

∂ky

(

ky
E

)∣

∣

∣

∣

ky=kF

=
m2 + k2x
ε3F

,

we arrive at

Dx,m(Ky) =
Ky

2ε3F

τ(Lm+ λ0τ)

L+ λ0τm
m2+k2

x

+O(K2
y).

Thus to linear order in Ky, the transverse plasmon dipole moment is

Dx(Ky) =
∑

τ

τKy(Lm+ λ0τ)

2ε3F

∑

n

∑

ky,s

|an,n,τ,s(ky;Ky)|
2

L+ λ0τm
m2+kx(n)2

,

which is Eq. 28.

[1] D. Pines and P.Noziéres, The Theory of Quantum Liq-
uids: Normal Fermi Liquids. (1966).

[2] D. Bohm and D. Pines, Physical Review 92,



20

609 (1953), URL https://link.aps.org/doi/10.1103/

PhysRev.92.609.
[3] G. Giuliani and G. Vignale, Quantum Theory of the Elec-

tron Liquid (Cambridge University Press, Cambridge,
2005).

[4] C. Kittel, Introduction to Solid State Physics (Wiley,
2004), 8th ed., ISBN 9780471415268, URL http://www.

amazon.com/Introduction-Solid-Physics-Charles-

Kittel/dp/047141526X/ref=dp_ob_title_bk.
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Nano Letters 20, 8711 (2020), pMID: 33237775,
https://doi.org/10.1021/acs.nanolett.0c03519, URL
https://doi.org/10.1021/acs.nanolett.0c03519.

[26] A. Woessner, M. B. Lundeberg, Y. Gao, A. Prin-
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