
This is the accepted manuscript made available via CHORUS. The article has been
published as:

One-particle entanglement for one-dimensional spinless
fermions after an interaction quantum quench

Matthias Thamm, Harini Radhakrishnan, Hatem Barghathi, Bernd Rosenow, and Adrian
Del Maestro

Phys. Rev. B 106, 165116 — Published 18 October 2022
DOI: 10.1103/PhysRevB.106.165116

https://dx.doi.org/10.1103/PhysRevB.106.165116


One-particle entanglement for one dimensional spinless fermions after an interaction
quantum quench

Matthias Thamm,1 Harini Radhakrishnan,2, 3 Hatem Barghathi,2, 3 Bernd Rosenow,1 and Adrian Del Maestro2, 3, 4

1Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany
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Particle entanglement provides information on quantum correlations in systems of indistinguish-
able particles. Here, we study the one particle entanglement entropy for an integrable model of
spinless, interacting fermions both at equilibrium and after an interaction quantum quench. Using
both large scale exact diagonalization and time dependent density matrix renormalization group
calculations, we numerically compute the one body reduced density matrix for the J-V model, as
well as its post-quench dynamics. We include an analysis of the fermionic momentum distribution,
showcasing its time evolution after a quantum quench. Our numerical results, extrapolated to the
thermodynamic limit, can be compared with field theoretic bosonization in the Tomonaga-Luttinger
liquid regime. Excellent agreement is obtained using an interaction cutoff that can be determined
uniquely in the ground state.

I. INTRODUCTION

If a quantum system is in a pure state after a sud-
den change to the system – a quantum quench [1] – the
growth of entanglement entropy under a spatial biparti-
tion plays the role of thermal entropy [2, 3] in describing
how expectation values of local observables can be com-
puted from a statistical ensemble [4–7]. For systems of
N indistinguishable particles, a bipartition can also be
made in terms of subgroups of n and N − n particles [8–
11]. This particle entanglement entropy provides com-
plementary information as compared to the spatial mode
entanglement and is sensitive to both interactions and
particle statistics at leading order [12–23], phase tran-
sitions [24, 25], and possibly to many body localization
[26, 27]. Unlike mode entanglement, particle entangle-
ment is not sensitive to the choice of modes (e.g. spa-
tial, momentum, or energy), and could play a role in
characterizing phases of matter through the information
content encoded in correlations between particles. There
are also routes to potential experimental measurement,
either through correlation function coherences [28, 29] or
via its transfer to accessible modes [30]. In a dynam-
ical setting, an equivalence was recently demonstrated
between the increase of entropy densities under spatial
and particle bipartitions in the asymptotic steady-state
regime after a quantum quench in a system of interact-
ing one dimensional fermions [31] in the limit n,N →∞;
n/N ∼ const.

Numerical results also indicate that the particle en-
tanglement entropy density is a decreasing function of
the order n of the reduced density matrix, which can
be understood in terms of higher-order correlations act-
ing as a constraint on the available particle configura-
tions. For an integrable model, it is even possible to
obtain the entanglement entropy density after an inter-

action quench from knowledge of only the diagonal com-
ponents of the n = 2 density matrix [32]. These results
accentuate the potential of particle entanglement entropy
as an alternative to the usual spatial entanglement in un-
derstanding non-classical correlations in non-equilibrium
quantum dynamics.

Thus it is natural to explore the entanglement entropy
associated with low order density matrices. The idea of
expanding the entropy density as a series in irreducible
correlations between groups of n particles is explicit in
classical non-equilibrium mechanics [33, 34]. However,
in general, density matrices are very challenging to com-
pute, but in one dimension (1d), even after a quantum
quench, bosonization gives access to low-order reduced
density matrices as correlation functions of bosonic ex-
ponentials [35–38]. Here, we study the properties of the
n = 1 reduced density matrix (RDM), both in equilib-
rium and after a quantum quench, with a focus on the
von Neumann and Rényi entropies. This represents the
first step in the systematic expansion in terms of multi-
particle correlations discussed above. For n = 1, the
1-RDM is proportional to the familiar equal time Green
function which captures the momentum distribution, and
is experimentally accessible in a wide variety of scenarios
(e.g. via interference [28, 29] or Raman scattering [39] in
trapped low dimensional ultracold gasses, or through the
spectral function in angle resolved photoemission spec-
troscopy [40]). Bounds have been proven on the spectrum
of 1-RDMS, and there are conjectures for the spectrum
of the 2-RDM [41, 42].

We perform exact computations of the 1-RDM for an
interacting lattice model of spinless fermions in one di-
mension, the J-V model. This model, which can be ex-
actly solved by mapping to the XXZ spin chain [43, 44]
at fixed magnetization, has proven to be a fruitful play-
ground for studying quasi-thermalization and the dynam-
ics of correlation functions and spatial entanglement af-
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ter a quantum quench [45–49]. Here, we are interested in
particle entanglement entropy in this system, and apply
large scale exact diagonalization (up to N = 19 particles
on L = 38 sites at half filling), both in equilibrium and
after an interaction quantum quench. Both the transient
dynamics and asymptotic steady state after a quantum
quench are analyzed by performing unitary time evolu-
tion starting from an initial state of free fermions to long
times. These results are extended to even larger system
sizes while preserving periodic boundary conditions using
GPU accelerated time-dependent density matrix renor-
malization group (tDMRG) calculations allowing us to
study systems up to L = 102 sites. Here, the presence of
periodic boundary conditions is important, allowing for
the computation of the momentum distribution directly
from the eigenvalues of the 1-RDM, maintaining trans-
lational invariance and ensuring accuracy of measured
quantities at small momenta.

We consider a wide range of attractive and repulsive
interactions spanning a continuous and discrete quantum
phase transition in the model. For a quantum quench
to a state with strong interactions, outside the quantum
liquid regime, we find that both the transient and long
time momentum distribution can develop non-monotonic
behavior as a function of momentum q – a signature of
strong spatial correlations and particle localization in the
ground state. The large system sizes studied allow us to
perform reliable finite size scaling to the thermodynamic
limit where a comparison can be made with continuum
field theory calculations.

Bosonization is routinely used to compute universal
quantities, and here we use it to study the 1-RDM whose
short-distance behavior reflects the dynamics of high en-
ergy excitations. This is accomplished by the introduc-
tion of an interaction cutoff (different from the often used
UV lattice cutoff), which is needed due to the short-range
nature of interactions in the J-V model under study.
This cutoff is unambiguously determined from our equi-
librium numerics and applied to make microscopic pre-
dictions after the quench via bosonization. Good agree-
ment is found across the phase diagram for the 1-particle
von Neumann and Rényi entanglement entropies high-
lighting the utility of continuum field theory to describe
both short and long time dynamics.

In the following, we briefly describe the main results
and contributions of this work. We study N one dimen-
sional spinless fermions on a lattice of L sites with hop-
ping J and nearest neighbor interaction V (see micro-
scopic Hamiltonian in Eq. 2 for details). For |V/J | < 2,
the low energy sector is a Luttinger liquid, while the sys-
tem undergoes a continuous quantum phase transition
to an insulating solid phase at V/J = 2. For attrac-
tive interactions, there is a discontinuous transition to
a phase separated clustered solid at V/J = −2. This
phase diagram is reflected in Figure 1 which shows the
von Neumann entanglement entropy S1 computed from
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FIG. 1. Interaction dependence of one particle von Neumann
entanglement entropy S1 obtained numerically from the J-V
model and from an effective low energy Luttinger liquid cal-
culation (dashed lines) with a fixed interaction cutoff. Here,
Sff is the entropy for free fermions. The main panel depicts
the equilibrium ground state entropy with numerical data
from DMRG for a system of L = 102 lattice sites at half
filling (crosses). The solid line represents finite size scaling
of numerical data to the thermodynamic limit. The excel-
lent agreement with the finite size DMRG data shows that
the system with N = 51 fermions is large enough to describe
the thermodynamic limit accurately in the whole LL phase.
The inset depicts finite size exact diagonalization results for
N = 12 fermions on L = 24 sites after an interaction quan-
tum quench (circles) in the asymptotic steady state. The solid
line shows the thermodynamic limit of the numerical data ob-
tained from finite size scaling the time averaged one particle
entropy (circles) after the interaction quench. The dashed line
is the result of non-equilibrium bosonization using the same
value of the interaction cutoff as in the main panel.

the spectrum of the 1-RDM, ρ1(q):

S1 = − N

2kF

∫
dq ρ1(q) ln ρ1(q) , (1)

where kF is the Fermi momentum at half-filling. Here we
have subtracted off the 1-particle entanglement of free
fermions: Sff = lnN to highlight the role of interactions.
At V/J = 2, there is a change of slope in the entangle-
ment as the system enters the solid phase via a second
order transition, and S1 − Sff asymptotically approaches
ln 2 (dotted line) for V/J � 2 reflecting the two-fold de-
generacy of the charge density wave ground state. Mov-
ing across V/J = −2, the entanglement entropy echoes
the first-order transition by a sudden jump in S1 − Sff

to ≈ ln 2 (dotted line). Here, the large entanglement
entropy is due to the translational symmetry of the clus-
tered N fermions state representing the solid phase. In
the Luttinger liquid phase, we show the bosonization re-
sult for the entanglement as a dashed red line, for a fixed
value of the interaction cutoff. The deviation for strong
negative interactions reflects the divergence K → ∞ of
the Luttinger parameter when approaching the first order
phase transition at V/J = −2. The solid red line repre-
sents the extrapolation to the thermodynamic limit of the
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FIG. 2. Dependence of eigenvalues of the one body density
matrix ρ1 on the rescaled waiting time 2vt/L after the quan-
tum quench computed via exact diagonalization for a final
interaction strength V/J = −0.5. We show a quarter of the
spectrum with 0 < q < kF for a system of N = 12 fermions on
L = 24 lattice sites. The largest contributions to the one par-
ticle entanglement entropy come from the eigenvalues close to
the Fermi levels which show the largest oscillation amplitude
and the recurrence time L/(2v) that appears in the entropy.

numerical exact diagonalization and DMRG data, high-
lighting the reliable nature of our finite size scaling pro-
cedure. The inset shows the t → ∞ asymptotic limit of
the 1-particle entanglement entropy after the J-V model
is quenched from non-interacting fermions to a final in-
teraction strength V at t = 0 for a finite size system
of N = 12 fermions on L = 24 sites. Here, the dashed
line is computed via non-equilibrium bosonization using
the same cutoff as in the equilibrium case. The solid
purple line again shows the extrapolation to the thermo-
dynamic limit. A comparison with the main panel shows
the growth of entanglement after the quantum quench in
this quantum liquid regime.

In translationally invariant systems, the 1-RDM de-
pends only on the difference between the two spatial co-
ordinates, and can hence be diagonalized by a Fourier
transform. The resulting ρ(q, t) obtained from exact di-
agonalization is displayed in Fig. 2 as a function of 2vt/L,
where t is the waiting time after the quench, v is the
renormalized velocity of low energy excitations, and L is
the system size. Quasi-periodic oscillations, due to the
presence of multiple velocity scales, whose amplitude in-
creases with momentum q are observed.

For a strong interaction quench from non-interacting
fermions to deep inside the phase separated cluster solid,
the q-dependence of the distribution function at fixed
waiting times can develop a non-monotonicity as seen in
Figure 3. For times still in the transient range, this can
occur near the Fermi momentum, whereas, at long wait-
ing times, it appears even at small q. A detailed study
of the interaction and time dependence of this quantity
is discussed in Section VI.

The main contributions of this work are i) providing
a definitive picture of the 1-RDM and entanglement in
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FIG. 3. Momentum distribution function at two different
times, after a quantum quench at t = 0 to a final interaction
strength V/J = −6.5 deep in the phase separated clustered
solid. The system consists of N = 12 fermions on a ring
of L = 24 sites. The inset shows the equilibrium ground
state distribution function which demonstrates pronounced
oscillations due to the existence of a short momentum scale
resulting from large clusters of N fermions. Lines are a guide
to the eye.

a one-dimensional integrable model both in equilibrium
and after a quantum quench; and ii) utilizing a self-
consistent procedure to regularize field theory computa-
tions to make predictions about the post-quench density
matrix and entanglement entropy.

The remainder of the manuscript is organized as fol-
lows. In Section II we introduce the microscopic lattice
model under study and describe its phase diagram in de-
tail. We then bosonize its low energy sector in Section
III and derive an expression for the momentum distribu-
tion in equilibrium. This field theory calculation is then
compared against exact diagonalization and DMRG re-
sults in Section IV. Section V explores the 1-particle en-
tanglement entropy after an interaction quantum quench,
again comparing field theory with numerical results. The
explicit post-quench waiting time dependence of the 1-
RDM is investigated in Section VI before we provide
some final concluding remarks and possible future re-
search directions in Section VII.

II. MODEL AND PHASE DIAGRAM

We study a system of N spinless fermions on a one-
dimensional lattice with L sites at half-filling L = 2N
described by the J-V Hamiltonian

H = −J
L∑

i=1

(c†i+1ci + c†i ci+1) + V

L∑

i=1

nini+1 . (2)

Here J is the hopping amplitude, V is the nearest neigh-

bor interaction, c†i creates a fermion at site i, and ni =

c†i ci is the occupation number operator for site i. In
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the case of even number of particles N we use anti-
periodic boundary conditions and for odd N we use peri-
odic boundary conditions, which ensures that the ground
state is always non-degenerate.

Depending on the strength of the interaction parame-
ter V/J , the system is in one of three phases, where the
exact phase boundaries are known from a mapping to a
spin-1/2 XXZ model [43, 44]:

i) For V/J < −2 the system is a phase separated solid,
where the strong attractive interactions favor clus-
tering of fermions such that the ground state for
V/J → −∞ becomes

∣∣ΨV/J→−∞
〉

=
1√
L

L∑

n=1

Tn |11 · · · 1100 · · · 0〉 , (3)

where |11 · · · 1100 · · · 0〉 is the state for which the first
N sites are occupied by a fermion and the remaining
N sites are empty. Here, T is the translation oper-
ator that shifts each fermion one site to the right,
e.g. T |011001〉 = |101100〉. Due to the fixed particle
number at half filling, this ground state is not iden-
tical to the ferromagnetic ground state of an unre-
stricted XXZ chain. However, the restriction to half
filling, corresponding to fixed zero-magnetization in
the XXZ model, does not alter the points of the
phase transitions [50].

ii) For the other strongly interacting case V/J > 2, the
system is in the charge density wave phase where
strong repulsion results in a ground state with max-
imal separations between the fermions. For a lattice
at half filling, the ground state in the limit V/J →∞
becomes

∣∣ΨV/J→+∞
〉

=
1√
2

(|10101 · · ·〉+ |01010 · · ·〉) . (4)

iii) In the intermediate region, −2 < V/J < 2, the sys-
tem is in the Tomonaga-Luttinger liquid (LL) phase,
where the relatively weak interactions allow the de-
scription with an effective low-energy theory.

III. 1-PARTICLE REDUCED DENSITY
MATRIX IN A LUTTINGER LIQUID

In this paper, we study the one-particle entanglement
entropy from the J-V model in the LL phase (iii). In the
following, we measure lengths in units of the lattice con-
stant. We start with deriving an analytical result for the
one body density matrix ρ1(x, 0) for the corresponding
LL model of length L. From the LL 1-RDM, we compute
the one-particle entanglement entropy, and then compare
with numerical results obtained for the J-V model. In
this phase with intermediate interaction strength, observ-
ables are dominated by low energy excitations in the form
of density fluctuations around a static average density

background. Such fluctuations of the density are bosonic
in nature, which allows us to describe the low energy
physics with an effective Hamiltonian [37] in bosoniza-
tion notation after linearizing the dispersion around the
Fermi points

H =
∑

q 6=0

[ω0(q) +m(q)] b†qbq

+
1

2

∑

q 6=0

g2(q)
(
bqb−q + b†qb

†
−q

)
,

(5)

where b†q (bq) are bosonic creation (annihilation) opera-

tors with [bq, b
†
q′ ] = δq,q′ , ω0(q) = vF |q|, and we work in

units where ~ = 1. The sum is taken over discrete mo-
menta qn = n2π/L with n ∈ Z \ {0}. The nearest neigh-
bor coupling in the lattice model has a finite interaction
range, which we take into account by assuming that g2(q)
and m(q) vanish for momenta qε� 1 larger than an in-
teraction cutoff ε [51]. For small |q|, the parameters have
a linear q dependence, m(q) = g4|q|, g2(q) = g2|q|, where
g2 and g4 can be related to the parameters of the J-V
model as discussed below. As ω0(q) is the dispersion for
free fermions, the terms g2 and g4 are zero in this case.
By comparing the final bosonization results with numeri-
cal simulations of the J-V chain the interaction cutoff can
be unambiguously determined. The Hamiltonian Eq. (5)
is quadratic in the boson operators and can therefore be
solved analytically. In order to compute the one body
density matrix, we use refermionization to express the
fermionic field operators ψα(x) in terms of bosonic fields
as

ψα(x) =
χα√
2πη

eı(ϕ0,α+α 2πx
L Nα)e−ıφα(x) (6)

φα(x) = −
∑

q>0

√
2π

qL
e−qη/2

[
eıαqxbαq + e−ıαqxb†αq

]
, (7)

where α = (−)1 indicates right (left) moving fermions,
χα = eαı

π
2N−α are Klein factors with χ†αχα = 1, η is

a short distance cutoff measured in units of the lattice
spacing (not to be confused with the interaction cutoff
ε), and φα(x) are Hermitian operators [52, 53]. Here,
Nα is the particle number operator, and ϕ0,α, Nα are
zero mode operators satisfying the commutation rela-
tion [Nα, ϕ0,α] = i. The one-body density matrix can
be obtained from the one point correlation functions for
left and right movers in terms of the fermion operators
Eq. (6) via

ρ1(x, 0) =
1

N

[
e−ıkF xC+(x, 0) + eıkF xC−(x, 0)

]
(8)

Cα(x, 0) = 〈ψ†α(x)ψα(0)〉 (9)

with Fermi momentum kF = πN/L.
To relate the results for the effective LL model to nu-

merical results of the J-V model at half filling, we use
Bethe ansatz results obtained via a mapping to the spin-
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1/2 XXZ chain [52]

K ≡
√
vF + g4 + g2

vF + g4 − g2
=

π

2 cos−1
(−V

2J

) (10)

v

J
=

1

1− (2K)−1
sin
[
π(1− (2K)−1)

]
, (11)

where K is the LL interaction parameter, and v|q| is the
dispersion relation for low energy excitations. We use the
above expressions for v and K in the diagonalized version
of the LL Hamiltonian Eq. (5) to parametrize the interac-
tion strength and velocity. We will see below that K and
v are indeed the relevant parameters for describing the
1-RDM as K determines the exponent of the interaction
contribution, and v is the velocity with which information
spreads though the system after an interaction quantum
quench.

The Hamiltonian Eq. (5) can be diagonalized using a
Bogoliubov transformation

aq = cosh(θq)bq + sinh(θq)b
†
−q

a†−q = sinh(θq)bq + cosh(θq)b
†
−q ,

(12)

in contrast to simply diagonalizing the Hamiltonian in
a basis (b†q, b−q) (as one would do for a fermionic BCS
Hamiltonian), since this would not preserve the bosonic
commutation relations [54, 55]. The choice of coefficients
in Eq. (12) guarantees bosonic commutation relations

[aq, a
†
q′ ] = δq,q′ , [aq, aq′ ] = 0, [a†q, a

†
q′ ] = 0, and one finds

that

∑

q

f(|q|)
a†qaq

cosh2(θq) + sinh2(θq)

=
∑

q

f(|q|)b†qbq + f(|q|) sinh(θq) cosh(θq)

sinh2(θq) + cosh2(θq)

×
(
bqb−q + b†qb

†
−q

)
. (13)

Choosing f(|q|) = ω0(q) + m(q) and tanh(2θq) =
g2(q)/f(|q|), which in the limit q → 0 is given by
g2/(vF + g4), the Hamiltonian becomes diagonal

H =
∑

q

ω(q)a†qaq (14)

ω(q) =
√

(ω0(q) +m(q))2 − g2(q)2 ≡ v|q| . (15)

This allows us to evaluate the ground state expectation
values

〈a†qaq′〉 = δqq′fb(q) (16)

〈aqaq′〉 = 0 = 〈a†qa
†
q′〉 . (17)

where fb(q) is the Bose-Einstein distribution function
with energies ω(q).

Using Eq. (6) in Eq. (8) together with the Baker-
Hausdorff formula eAeB = eA+Be[A,B]/2, the one point
correlation function becomes

Cα(x, 0) =
1

2πη
eα

πx
L [Nα,ϕ0,α]e

1
2 [φα(x),φα(0)]

× 〈eı(φα(x)−φα(0))〉 . (18)

Here, we use the boson cummulant formula

〈eı(φα(x)−ψα(0))〉 = e−
1
2 〈(φα(x)−ψα(0))2〉, which is valid in

equilibrium for a quadratic Hamiltonian, for any linear
combination of bosons

∑
nAnbn +Bnb

†
n. In addition,

1

2
[φα(x), φα(0)]

=
1

2

∑

q>0

2π

qL

[
e−qı(−ıη−αx) − e−ıq(−ıη+αx)

]
. (19)

Due to the regularization η, we can perform the q sum,
where we use that for any complex number z with Im[z] >
0 holds [53]

∑

q>0

2π

qL
e−ıqz = − ln

[
1− e−ı 2πL z

]
(20)

= − ln
[
2ıe−ı

π
L z sin

(π
L
z
)]

. (21)

One needs to be careful when using logarithm laws with
complex numbers, as we need to stay on the main branch
of the logarithm: ln(z) = ln(|z|) + ı arg(z). With this in
mind, we find for Eq. (19)

1

2
[φα(x), φα(0)]

=
1

2

{
− ln

[
2ıe−ı

π
L (−αx−ıη)sin

(π
L

(αx+ ıη)
)]

+ ln
[
−2ıeı

π
L (−αx+ıη)sin

(π
L

(αx− ıη))
)]}

(22)

= −1

2
ln

∣∣∣∣∣
sin
(
π
L (αx+ ıη)

)

sin
(
π
L (αx− ıη)

)
∣∣∣∣∣

− ı arg
[
sin
(π
L

(αx+ ıη)
)]
− ıπ

2
− ı π

L
αx . (23)

In the limit η/x → 0, the arg term is 0 for αx > 0 and
±π if αx < 0 such that

lim
η/x→0

e
1
2 [φα(x),φα(0)] = −sgn(αx)ıe−ı

π
Lαx . (24)

In order to evaluate the expectation value in Eq. (18) by
using the boson cummulant formula, we need the expec-
tation values 〈φα(x)φα(x′)〉. To compute them by utiliz-
ing the expectation values Eq. (16), we insert the inverse
of the transformation Eq. (12) into the expression for
φα(x), Eq. (7), such that

φα(x) = −
∑

q>0

√
2π

qL
e−qη/2

×
[
eıαqx

(
cosh(θq)aq − sinh(θq)a

†
−q

)

+ e−ıαqx
(
cosh(θq)a

†
q − sinh(θq)a−q

) ]
. (25)
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Using the expectation values of pairs for aq operators
with 〈a†qaq′〉 = δqq′fb(q), we find

〈φα(x)φα(x′)〉 =
∑

q>0

2π

qL
e−qη

×
{
eıα(x−x′) [(1− fb(q)) cosh2(θq) + fb(q) sinh2(θq)

]

+ e−ıα(x−x′) [fb(q) cosh2(θq) + (1− fb(q)) sinh2(θq)
] }
.

(26)

At zero temperature, the Bose-Einstein distribution be-
comes fb(q > 0) = 0, such that we find for the exponent
appearing in the correlation function

− 1

2
〈(φα(x)− φα(0))2〉

=
1

2

∑

q>0

2π

qL
e−qη

(
cosh2(θq) + sinh2(θq)− 1 + 1

)

×
[
−2 + eıαqx + e−ıαqx

]
. (27)

Here, we added a zero (−1 + 1) to separate the free term
Eq. (21) from the interaction term of the correlation func-
tion. Including the −1 in the interaction term ensures
that it vanishes in the non-interacting case where θq → 0.
We now precisely define the interaction cutoff ε by using
it to describe the q dependence of the interaction term
as [37]

cosh2(θq) + sinh2(θq)− 1 ≈ K +K−1 − 2

2
e−ε|q| (28)

≡ γ2
eqe
−ε|q| , (29)

where now K = limq→0 e
2θq and γeq are independent of

q. While ε appears to be a free parameter of the model,
we will show later that for not too strong interactions, a
fixed value can be chosen such that the analytic calcu-
lation reproduces numerical results from exact diagonal-
ization and DMRG for a range of interaction strengths.
In addition, ε regularizes the interaction part of the cor-
relation function and therefore allows us to take the limit
ηq → 0 when keeping εq finite.

At zero temperature, we use Eq. (21) to perform the q
sums in Eq. (27), and find

F 0
α(x; η) ≡ −1

2
〈(φα(x)− φα(0))2〉0

=
1

2

∑

q>0

2π

qL
e−ıq(−ıη)

[
−2 + eıαqx + e−ıαqx

]
(30)

= ln
[
−2ıe−

π
Lη sin

(π
L
ıη
)]

− 1

2
ln
[
2ıe−ı

π
L (αx−ıη)sin

(π
L

(αx− ıη)
)]

− 1

2
ln
[
2ıe−ı

π
L (αx+ıη)sin

(π
L

(αx+ ıη)
)]

, (31)

such that the interaction term can be obtained from the
free one by multiplying with a factor γ2

eq while changing

the regularization to include the interaction cutoff, i.e.
η → η + ε,

− 1

2

[
〈(φα(x)− φα(0))2〉 − 〈(φα(x)− φα(0))2〉0

]

= γ2
eqF

0
α(x; η + ε) . (32)

We use this and the translational invariance of the ex-
pectation value, i.e. 〈φα(x)φ(x′)〉 = 〈φα(x − x′)φ(0)〉,
to obtain the expectation value that appears in the one
point correlation function

e−
1
2 〈(φα(x)−φα(0))2〉

=
−ı sin

(
π
L ıη
)

∣∣sin
(
π
L (αx+ ıη)

)∣∣

[
ı sin

(
π
L ı(η + ε)

)

|sin
(
π
L (αx+ ı(η + ε))

)
|

]γ2
eq

.

(33)

Using Eq. (24) and Eq. (33) in the expression for the cor-
relation function Eq. (18), taking the limit η/x, η/L→ 0,
where sin(πıη/L)/η → πı/L, ı sin(ıb) = −| sin(ıb)|, and√

sin(b+ ıc) sin(−b+ ıc) = ı| sin(b+ ıc)|, we find

Cα(x, 0) =
ıπ

2πL

sgn(αx)∣∣sin
(
π
L (αx)

)∣∣

∣∣∣∣∣
sin
(
π
L ıε
)

sin
(
π
L (αx+ ıε)

)
∣∣∣∣∣

γ2
eq

(34)

=
αı

2 sin(πx/L)

∣∣∣∣∣
sin(πıε/L)

sin
(
π
L (x+ ıε)

)
∣∣∣∣∣

γ2
eq

. (35)

Using that α = −1 for left movers and α = +1 for
right movers, we obtain the full one body density matrix
Eq. (8)

ρ1(x, 0) = ρ0
1(x, 0)

∣∣∣∣∣
sin(πıε/L)

sin
(
π
L (x+ ıε)

)
∣∣∣∣∣

γ2
eq

(36)

ρ0
1(x, 0) =

1

N

sin(kFx)

L sin(πx/L)
. (37)

We show in Appendix A that Eq. (37) is equivalent to the
exact one body density matrix for non-interacting lattice
fermions. Because x is a relative coordinate and we are
interested in the short distance behavior that dominates
the Fourier transform and the entropy, we consider the
limit of large L with x/L� 1 and neglect terms of order
O(x/L). For the leading term L sin(πx/L) → πx we
then arrive at the following expression for the one body
density matrix:

ρ1(x, 0) =
sin(kFx)

Nπx

(
ε2

x2 + ε2

)γ2
eq/2

+O
( x
L

)
, (38)

which is normalized such that Lρ1(0, 0) = 1 where
kF = πN/L. Because the particle number N appears ex-
plicitly in the normalization, we cannot directly take the
thermodynamic limit. Therefore, we first compute the
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FIG. 4. Distribution functionNρ1(q), Eq. (39), obtained from
the x/L � 1 limit of the one body reduced density matrix
in the Luttinger liquid model for a fixed interaction cutoff
ε = 0.84 and various interaction strengths V/J . Without in-
teractions, γeq = 0, the distribution function is a step function
up at the Fermi momenta kF = ±π/2.

entropy density, and only then take the thermodynamic
limit 1/N → 0. To diagonalize ρ1(x, 0), we compute the
Fourier transform which yields

ρ1(q) =

∫ ∞

−∞
dx ρ1(x, 0)e−ıqx

=
Γ[ 1

2 (−1 + γ2
eq)]
√
π

2πNΓ(γ2
eq/2)

[f1(q̃) + f1(−q̃)]

−
2Γ(−γ2

eq) sin
(
πγ2

eq/2
)

2πN
[f2(q̃) + f2(−q̃)] (39)

where q̃ = εq, k̃F = εkF , L/(2π)
∫
dq ρ1(q) = 1, and

f1(q̄) = (k̃F + q̃) 1F2

[{
1

2

}
,

{
3

2
,

3− γ2
eq

2

}
,

1

4
(k̃F + q̃)2

]

f2(q̃) = (k̃F + q̃)|k̃F + q̃|γ
2
eq−1

× 1F2

[{
γ2

eq

2

}
,

{
1 + γ2

eq

2
,

2 + γ2
eq

2

}
,

1

4
(k̃F + q̃)2

]
.

Here, pFq are the generalized hypergeometric functions.
From the Fourier transformed one body density matrix
ρ1(q) we obtain the fermionic distribution function as
Nρ1(q), which in the absence of interactions γeq = 0
reduces to a step function θ(|q| − kF ), and in presence of
interactions decays like a power law (see Fig. 4).

Using that the 1-RDM is diagonal in Fourier space,
we can directly compute the one-particle Rényi entan-
glement entropy

Sα =
1

1− α
ln

(
N

2kF

∫
dq ρ1(q)α

)
(40)

S1 = − N

2kF

∫
dq ρ1(q) ln ρ1(q) , (41)

where α = 1 is the von Neumann entropy, and the factor
N/(2kF ) = (2π/L)−1 originates from turning the sums
into integrals in the limit of large L. When comparing to
numerical results, we additionally subtract the entropy
for free fermions Sff .

In the absence of interactions, γeq = 0, the one-body
density is given by %0

1(x, 0) in Eq. (37). Performing the
Fourier transform, we recover the expected zero temper-
ature distribution function

N%0
1(q) = θ(|q| − kF ) . (42)

Using this expression in Eq. (41), one finds the free
fermion von Neumann entropy [42, 56–61]

Sff = − N

2kF

∫ kF

−kF
dq

1

N
ln

1

N
= ln(N) . (43)

The same one-particle entanglement entropy is obtained
for any other Rényi power α > 1 [60], which can be seen
from Eq. (40)

Sα,ff =
1

1− α
ln

(
N

2kF

∫ kF

−kF
dq

1

Nα

)

=
1

1− α
ln

1

Nα−1

= ln(N) = Sff . (44)

IV. NUMERICAL RESULTS FOR
EQUILIBRIUM 1-PARTICLE ENTANGLEMENT

To study how well the low energy field theory approach
describes the J-V model in Eq. (2) in the LL phase and to
fix the interaction cutoff, we perform a series of numerical
calculations on finite sized systems. The software needed
to reproduce all results is open source and has been made
available online [62].

We first utilize exact diagonalization (ED), where we

construct all
(

2N
N

)
basis states for a lattice with L = 2N

sites and N fermions to determine the corresponding ma-
trix elements of Eq. (2) and construct the Hamiltonian
as a sparse matrix. We then use the Lanczos algorithm
[63] to determine the ground state |Ψ0〉, from which the
full density matrix can be determined as ρ = |Ψ0〉 〈Ψ0|.
The reduced one-body density matrix is obtained by fix-
ing one coordinate in the anti-symmetrized many particle
wave function Ψ0(i1, ..., iN ) = 〈i1, ..., iN |Ψ0〉 and tracing
out the other N − 1 particle positions [31]

ρi1,j11 =
∑

i2,...,iN
j2,...,jN

Ψ∗0(i1, ..., iN )Ψ0(j1, ..., jN ) . (45)

As a second numerical approach, we consider approxi-
mate methods that allow us to consider much larger sys-
tems. For this, we obtain the ground state |Ψ0〉 using
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DMRG, and the implementation of states as matrix prod-
uct states (MPS) in ITensors.jl [64] allows to directly
compute the reduced one body density via

ρi1,j21 =
1

N
〈Ψ0| c†i1cj1 |Ψ0〉 , (46)

where c†i is the creation operator on lattice site i.
From the reduced density matrix, we compute the one-

particle Rényi entanglement entropy for Rényi index α
using

Sα =
1

1− α
ln(Tr[ρα1 ]) , (47)

where the von Neumann entropy is obtained as the limit
α→ 1:

S1 = Tr[ρ1 ln(ρ1)] . (48)

A. Symmetry Decomposition of the Lattice
Hamiltonian

While ED provides approximation-free access to the
ground state, scaling of the size of the Hamiltonian
∝
(

2N
N

)
makes it prohibitive to consider systems with

L & 40. Using a series of optimizations, we are able to
compute one particle entanglement entropies with ED for
systems with up to N = 19 fermions with 1TB of system
memory. The crucial factor for reducing the complexity
of the problem is the use the symmetries of the Hamil-
tonian Eq. (2), which we define below by their action on
the occupation numbers of the states. We discuss the ac-
tion of the symmetry operators on the fermion operators

ci , c
†
i in greater detail in Appendix B.

1. Translation symmetry

Translation symmetry T which moves each fermion one
site to the right, e.g. T |011001〉 = |101100〉, commutes
with the Hamiltonian, [H,T ] = 0, due to the boundary
conditions, which allows us to group basis states in sym-
metry cycles such that each state of a cycle ν is mapped
onto another state in the same cycle by T . Choosing one
state |ϕν〉 from each cycle, the so-called cycle leader, we
can define new basis states as linear combinations

|φν,q〉 =
1√
Mν

Mν∑

m=1

eı
2πq
Mν

(m−1)Tm−1 |ϕν〉 , (49)

where Mν is the length of cycle ν with TMν = 1 within
the cycle. Because T commutes with H, the Hamiltonian
becomes block diagonal when sorting the basis states ac-
cording to the values of q. The main advantage of using
this basis is that the ground state always lies in the q = 0
block [65], and it is therefore sufficient to compute and
store only this single block, reducing the size of the re-
quired basis roughly by a factor of 1/L.

2. Particle hole symmetry

At half filling, the particle-hole operator P , which flips
all occupation numbers P |101001〉 = |010110〉 is another
symmetry of the Hamiltonian which also commutes with
the translation operator, [T, P ] = 0. Because P 2 = 1,
the particle-hole operator has eigenvalues nP = ±1. If
P |φν̃,q〉 lies in a different cycle than |φν̃,q〉, we can use
P to further subdivide the q = 0 block by using the
projection (1± P )/

√
2 onto its eigenstates

|θν̃,q,nP=±1〉 =
1√
2

(|φν̃,q〉 ± P |φν̃,q〉) . (50)

3. Reflection symmetry

The third symmetry we exploit is spatial inversion
R, which reflects the occupation numbers R |011011〉 =
|110110〉 about a site and commutes with the Hamilto-
nian [R,H] = 0. However, in general, R does not com-
mute with T , but fortunately in the q = 0 block trans-
lation and spatial inversion do commute. Since R2 = 1,
the eigenvalues are also given by nR = ±1 and the pro-
jection operator is (1±R)/

√
2. If R maps either |φν,q〉 or

|θν̃,q,nP 〉 into another cycle, projecting onto eigenstates of
R further subdivides the q = 0 block of the Hamiltonian
in analogy to Eq. (50).

We therefore only need to construct the q = 0, nR =
+1, nP = +1 block of the Hamiltonian which is a major
reduction in memory and time complexity for obtaining
the ground state. We can further use translation symme-
try in a similar way to reduce the computational effort
when computing the reduced density matrix from the
ground state. In addition, for our ED implementation,
we encode states using a 64bit integer basis, where each
bit of the binary representation of an integer represents
the occupation number of the site at the corresponding
position [66]. This has the advantage that symmetry
operation can be implemented very efficiently using low-
level bit operations and that we avoid all overhead of us-
ing vectors containing the occupation numbers for each
state.

B. Density Matrix Renormalization Group

In order to study systems with L ≥ 40 and thus
improve finite size scaling to the thermodynamic limit,
we additionally use the DMRG implementation of the
ITensors.jl software package [64] for the Julia program-
ming language. As an approximate method, DMRG does
not need to explore the entire Hilbert space and therefore
requires fewer resources, but at the price of inaccuracies
with magnitudes that are difficult to estimate a priori.
We therefore also use ED as a benchmark to estimate the
reliability of DMRG results, where a direct naive DMRG
application to the J-V model with periodic boundary
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conditions leads to significant errors already for systems
of size N > 17. We thus use a number of checks and de-
tailed knowledge of the physical system to stabilize the
DMRG calculation.

1. Initial state

It is crucial to construct very good initial states, so that
the algorithm starts as close as possible to the ground
state. For this purpose, we combine a state which is a su-
perposition of random states of the correct particle num-
ber, with a V/J dependent fraction of the corresponding∣∣ΨV/J→±∞

〉
state (Eq. (3), Eq. (4)).

2. Orthogonal subspace

The most important step for stabilizing convergence of
DMRG to the ground state is to construct an orthogo-
nal subspace to the ground state and enforce orthogo-
nality to a basis in this subspace during each sweep of
DMRG. This feature has already been implemented in
ITensors.jl with the intent to obtain excited states.
The consideration of symmetry cycles Eq. (49) already
reveals good candidates for orthogonal subspaces, be-
cause states with different q are orthogonal to each other.
Using all states from blocks q > 0 is overkill, slowing
down the DMRG algorithm and requiring huge amounts
of memory, eliminating the advantages of the approxima-
tion method. We therefore only consider a subspace in
which DMRG is most likely to converge if it misses the
ground state. For V/J > 0 using the two states with

maximal particle separation |ψ>,ν〉 = T ν(
∏N
j=1 c

†
2j) |0〉

this is:

|Ψ⊥,>〉 =
1√
2

[|ψ>,0〉 − |ψ>,1〉] , (51)

and for negative interactions there are L states with full

clustered fermions |ψ<,ν〉 = T ν(
∏N
j=1 c

†
j) |0〉. Their span

is given by

|Ψ⊥,<,q〉 =
1√
N

L−1∑

ν=0

cos

(
2πνq

L

)
|ψ<,ν〉 (52)

|Ψ⊥,<,q+N 〉 =
1√
N

L−1∑

ν=0

sin

(
2πνq

L

)
|ψ<,ν〉 . (53)

C. Ground State DMRG and ED Results

By forcing the ground state to be orthogonal to these
states, we are able to consider systems with sizes N = 51
or larger at half filling with periodic boundary condi-
tions. Fig. 5 shows the 1-particle entanglement entropy

−101 −100 0 100 101

V/J

0.0

0.2

0.4

0.6

S
α
−
S

ff α = 1

α = 2
α = 3
α = 5

FIG. 5. One-particle Rényi entanglement entropy Sα for dif-
ferent values of the Rényi index α as a function of the in-
teraction strength V/J where Sff is the 1-particle entropy
for free fermions. The crosses are obtained using DMRG for
N = 51 on a lattice of L = 102 sites. Solid lines depict ex-
trapolation to the thermodynamic limit from ED and DMRG
data, and dashed horizontal lines show theory predictions for
|V/J | → ∞. Phase transitions in the J-V model are marked
with vertical lines at V/J = ±2.

(crosses) calculated with DMRG for N = 51 for a large
range of interaction strengths spanning all phases in the
J-V model. For V/J = −2, the first order phase transi-
tion is clearly visible and Sα − Sff remains stable, reach-
ing the theoretical value ln(2) [11] for large negative V/J .
For free fermions, where V/J = 0 in the LL phase, the
one-particle entanglement entropy vanishes as expected
[11]. Additionally, at the second-order phase transition
into the charge density wave phase near V/J = 2, a
change in the slope of the entropy is visible, which then
slowly approaches the theoretical value ln(2) [11].

For comparison with field theory, we first estimate the
thermodynamic limit N → ∞ by finite size scaling of
the numerical results for the one-particle entanglement
entropy, with a general scaling form introduced by Haque
et al. [11] and confirmed in subsequent works [18, 19]:

Sα(N,V/J) = ln(N) +Aα(V/J) +O(N−λ) , (54)

with λ > 0. In subsequent figures, we will focus on the
behavior of the constant correction Aα(V/J) to the lead-
ing order logarithmic scaling.

For reliable finite size scaling, we calculate Sα − Sff

for systems with N = 2, 3, . . . , 19 fermions using ED and
fermion numbers between N = 17 and N = 51 using
DMRG and then extrapolate linearly to 1/N → 0 (white
filled circles in Fig. 6). We find very good 1/N scaling and
excellent agreement between exact ED (colored circles
in Fig. 6) and approximate DMRG (crosses in Fig. 6)
everywhere in the LL phase.
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V/J = −0.9
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FIG. 6. Finite size scaling of the equilibrium one-particle
von Neumann entanglement entropy S1 for various interac-
tion strengths V/J where the free fermion contribution Sff has
been subtracted. Results obtained with DMRG (crosses) and
ED (circles) are shown together along with a linear extrap-
olation to the thermodynamic limit 1/N → 0. ED provides
access to lattices at half filling with up to N = 19 fermions
and using DMRG lattices with more than N = 51 fermions
can be studied.

−2 −1 0 1 2
V/J

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
α

α = 1.0

α = 2.0

α = 5.0

FIG. 7. Interaction strength V/J dependence of the constant
contribution to the 1-particle Rényi entanglement entropies
extrapolated to the thermodynamic limit Aα for Rényi indices
α = 1, 2, and 5 together with the prediction from bosoniza-
tion for a fixed interaction cutoff ε = 0.84. We find very good
agreement between the Luttinger liquid prediction and the nu-
merical results for the J-V model in region V/J ∈ [−0.5, 1.5].

D. Comparison with Luttinger Liquid Theory

We perform this finite size scaling for all calculated
interaction strengths V/J and plot the constant contri-
bution to the 1-particle entanglement entropies (Aα, cir-

−2 −1 0 1 2
V/J

0.5

1.0

1.5

2.0

2.5

ε fi
t

ε = 0.84

−2 0 2
V/J

0.0

0.1

0.2

0.3

A
α

FIG. 8. Effective interaction cutoff εfit as a function of the
interaction strength V/J (red circles) obtained by fitting the
Luttinger liquid prediction for the one-particle von Neumann
entanglement entropy for each interaction strength individ-
ually to the numerical data of the J-V model. We find an
extended flat region of the effective cutoff ε = 0.84 (dashed,
black line) that is nearly independent of interaction strength.
The inset depicts numerical results for the Rényi entropies
with α = 1 (red circles), α = 2 (yellow circles), and α = 5
(blue circles) together with the field theory prediction using
the fitted interaction dependent cutoff εfit.

cles) as a function of V/J in Fig. 7 along with the nu-
merically integrated Luttinger liquid result from Eq. (39)
and Eq. (47) (dashed lines) for a fixed interaction cutoff
ε = 0.84 determined via fitting. We find excellent agree-
ment between LL theory with this fixed cutoff and nu-
merical results for the J-V model for small to moderate
interaction strengths −0.5 < V/J < 1.5. Close to the
phase transitions and especially for large negative inter-
action strengths V/J → −2, where γeq →∞, significant
deviations from the low energy LL theory are apparent.

To systematically study for which interactions the J-
V model can be accurately described by the LL model,
we fit the bosonization prediction for each interaction
strength individually to the finite size scaled data for the
von Neumann entropy A1(V/J) as defined in Eq. (54),
to determine an effective interaction cutoff εfit(V/J) (red
circles in the main panel of Fig. 8). We find an extended
region with ε = 0.84 (dashed, black line) for small neg-
ative and positive interactions V/J where the cutoff has
minimal dependence on the interaction strength. With
the obtained effective cutoff, we can fit the LL model at
every point in the LL phase to the J-V model with ex-
cellent agreement as shown in the inset of Fig. 8 where
we plot the 1-particle entanglement entropies from nu-
merics and for the effective interaction cutoff εfit. An
interaction dependent cutoff for large interactions is also
a consequence of approximating the q dependence of the
exponent γeq by the cutoff e−ε|q| in field theory calcula-
tions (see Eq. (29)) in order to make the q sums analyti-
cally tractable.
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V. 1-PARTICLE ENTANGLEMENT ENTROPY
AFTER A QUANTUM QUENCH

We next consider free fermions for t < 0 and suddenly
turn on the V/J interaction at t = 0, so that the J-V
Hamiltonian for this quench is given by

H = −J
L∑

i=1

(c†i+1ci + c†i ci+1) + V (t)

L∑

i=1

nini+1 , (55)

with V (t) = θ(t)V . This allows us to study the growth
and spread entanglement entropy after the quench by
considering the difference Sα − ln(N), in which the en-
tropy of free fermions is subtracted. We again start by
computing the one body density

ρ1(x, 0; t) =
1

N

[
e−ıkF xC+(x, 0; t) + eıkF xC−(x, 0; t)

]

(56)

Cα(x, 0; t) = 〈ψ†α(x, t)ψα(0, t)〉 (57)

for the quench in the LL model

H =
∑

q

[ω0(q) +m(q, t)] b†q(t)bq(t)

+
1

2

∑

q

g2(q, t)
(
bq(t)b−q(t) + b†q(t)b

†
−q(t)

)
, (58)

where in this case g2(q, t) = θ(t)g2(q) = θ(t)g2|q|,
m(q, t) = θ(t)g4|q|, and again, ω0(q) = vF |q|. Anal-
ogous to the equilibrium case, we can diagonalize the
Hamiltonian for any fixed time t > 0 using the same
Bogoliubov transformation Eq. (12) with tanh(2θq) =
g2(q)/(ω0(q) + g4(q)), but now the operators aq(t) are
time dependent. For t > 0 this yields the diagonal Hamil-
tonian

H =
∑

q

v|q|a†q(t) aq(t) (59)

v =
√

(vF + g4)2 − g2
2 . (60)

Since the Hamiltonian for t > 0 is diagonal in the aq
operators, we can use the trivial time evolution

aq(t) = e−ıv|q|taq . (61)

Substituting this time evolution into the inverse of the
transformation Eq. (12), we obtain the time evolution of
the bq operators as [37]

bq(t) = wq(t) bq + uq(t) b
†
−q (62)

wq(t) = cos(v|q|t)− ı sin(v|q|t) cosh(2θq)

uq(t) = −ı sin(v|q|t) sinh(2θq) .
(63)

A very important conceptual difference to the equilib-
rium case is that the Hamiltonian is not diagonal in the
aq operators for t → 0−, and therefore we cannot easily

write down expectation values of the aq operators. How-
ever, since H is diagonal in the bq operators for t→ 0−,
we can use bq(t = 0) ≡ bq and

〈b†qbq′〉 = fb(q)δq,q′

〈bqbq′〉 = 0 = 〈b†qb
†
q′〉 .

(64)

This together with the more complicated time evolution
of the bq operators Eq. (62) gives rise to a different expo-
nent γ ≥ γeq as we show in the following. Up to Eq. (24)
the calculation for the correlation function is analogous
to the equilibrium case such that

Cα(x, t) =
eα

ıπx
L

2πη
e

1
2 [φα(x,t),φα(0,t)]e−

1
2 〈(φα(x,t)−φα(0,t))2〉 .

(65)

The exponential e
1
2 [φα(x,t),φα(0,t)] is unchanged by the

time dependence and is still given by Eq. (24). In order
to evaluate 〈φα(x, t)φα(0, t)〉, we use the time evolution
of the bq operators from Eq. (62) in the definition of the
bosonic fields

φ(x, t) = −
∑

q>0

√
2π

qL
e−

qη
2 [eıαqx(wq(t)bα,q + uq(t)b

†
α,−q)

+e−ıαqx(w∗q (t)b†α,q + u∗q(t)bα,−q)] .

(66)

Analogous to the equilibrium case, we use 〈b†qbq〉 = fb(q),
to obtain

〈φ(x, t)φ(x′, t)〉 = −
∑

q>0

2π

qL
e−qη

×
{
eıαq(x−x

′)
[
(1− fb(q))|wq(t)|2 + fb(q)|uq(t)|2

]

+ e−ıαq(x−x
′)
[
(1− fb(q))|uq(t)|2 + fb(q)|wq(t)|2

] }
.

(67)

We again consider the zero temperature case with fb(q >
0) = 0. This allows us to rewrite the desired exponential
term from Eq. (65) as follows

− 1

2
〈(φα(x, t)− φα(0, t))2〉

=
∑

q>0

2π

qL
e−qη

(
|wq(t)|2 + |uq(t)|2

)

×
[
−1 +

1

2
eıαqx +

1

2
e−ıαqx

]
. (68)

Using |wq(t)|2 + |uq(t)|2 = cosh2 (2θq) −
cos (2v|q|t) sinh2 (2θq), the above becomes

− 1

2
〈(φα(x, t)− φα(0, t))2〉

=
∑

q>0

2π

qL
e−qη

(
2 sin2 (v|q|t) sinh2 (2θq) + 1

)

×
[
−1 +

1

2
eıαqx +

1

2
e−ıαqx

]
. (69)
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We define the momentum dependence of interaction pa-
rameter in the quench case as

sinh2(2θq) ≈
(
K −K−1

2

)2

e−ε|q| ≡ γ2 e−ε|q| . (70)

The free term 〈(φα(x, t) − φα(0, t))2〉0 is equivalent to
that in Eq. (31). To compute the interaction term, we
need to compute the q-sum, where we can use Eq. (21)
such that

exp

[
κ
∑

q>0

2π

L
e−ıqz(x) sin2 (v|q|t)

]

=
[sin

(
π
L (z(x)− 2v|q|t)

)
sin
(
π
L (z + 2v|q|t)

)
]κ/4

sin
(
π
Lz(x)

)κ/2 .

(71)

The interaction term is then found to be

e−
1
2 [〈(φα(x,t)−φα(0,t))2〉−〈(φα(x,t)−φα(0,t))2〉0] (72)

=

∣∣∣∣∣
sin
(
π
L (ı(η + ε))

)

sin
(
π
L (αx+ ı(η + ε))

)
∣∣∣∣∣

γ2

×

∣∣∣∣∣
sin
(
π
L (αx+ 2vt+ ı(η + ε))

)

sin
(
π
L (2vt+ ı(η + ε))

)
∣∣∣∣∣

γ2/2

×

∣∣∣∣∣
sin
(
π
L (αx− 2vt+ ı(η + ε))

)

sin
(
π
L (−2vt+ ı(η + ε))

)
∣∣∣∣∣

γ2/2

. (73)

Inserting the above and Eq. (23) into Eq. (65), and taking
the limit η/L→ 0, yields the correlation function for α-
movers. Adding together the right and left movers as in
Eq. (36) gives the final expression

ρ(x, t) = ρ0
1(x, 0)

∣∣∣∣
sin(πıε/L)

sin(π(x+ ıε)/L)

∣∣∣∣
γ2

(74)

×

∣∣∣∣∣
sin
(
π
L (x− 2vt+ ıε)

)
sin
(
π
L (x+ 2vt+ ıε)

)

sin
(
π
L (−2vt+ ıε)

)
sin
(
π
L (2vt+ ıε)

)
∣∣∣∣∣

γ2/2

.

The 1-RDM consists of the free part ρ0
1(x, 0) Eq. (37),

the interaction factor with exponent with γ2 6= γ2
eq, and

a time dependent oscillatory term with exponent γ2/2.
To obtain the one-particle entanglement entropy with
Eq. (40), we need to numerically compute the Fourier
transform of Eq. (74). However, we can already ex-
tract information about the time dependence from the
real space correlation function. We find that the entropy
obtained from the LL correlation function is strictly pe-
riodic with period ∆t = L/(2v) and plateaus centered
around tn,plateau = L/(2v)(n + 1/2), n ∈ N0 (see inset
of Fig. 9) corresponding to times where all sine functions
turn into cosine functions in Eq. (74). Because the size of
the plateaus is proportional to L and the time scale for in-
crease and decrease from the plateaus is independent of L
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FIG. 9. Thermodynamic limit growth of the 1-particle von
Neumann entanglement entropy as a function of the interac-
tion strength V/J after the quantum quench at t = 0 obtained
from the Luttinger liquid steady state limit (red, dashed line)
in Eq. (76). Blue circles show the result of finite size scaling
of the plateau values shown in the inset. The inset depicts
the first plateau of the entanglement entropy obtained by nu-
merical integration from the time dependent one body density
matrix in Eq. (74) for several system sizes L = 2N . We ob-
serve that the plateau size increases linearly with L while the
region where the entropy increases to the plateau and the
time scale where it drops from the plateau is independent of
the system length. In the thermodynamic limit, the average
of the entropy and the plateau values agree with each other.
The main panel demonstrates that the plateau value of the
entropy coincides with the entropy obtained from the steady
state result for the 1-RDM in the thermodynamic limit.

(inset Fig. 9), the average converges to the plateau value
in the thermodynamic limit. We compute the plateau
values for many system lengths by numerically Fourier
transforming Eq. (74), evaluating the entanglement en-
tropy at t0,plateau, and performing finite size scaling to
show the thermodynamic limit averaged entropies with
blue circles in Fig. 9.

The steady state estimate of the entropy can also be
analyzed by generalizing the scaling form introduced in
Eq. (54) to include the post-quench waiting time:

Aα(V/J, t) = lim
N→∞

Sα(N,V/J, t)− ln(N) . (75)

Its steady state value can be obtained from the 1-RDM
in the x/L� 1 limit (dashed, red line in Fig. 9) obtained
from Eq. (74)

ρt→∞(x) =
sin(kFx)

Nπx

(
ε2

x2 + ε2

)γ2/2

+O
( x
L

)
, (76)

similar to the equilibrium case Eq. (36) and Eq. (38) with
γeq replaced by γ.
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FIG. 10. Evolution of the one-particle entanglement entropy after the quantum quench at t = 0 for systems with L = 2N sites
at an interaction strength of V/J = −0.5. (a) Rescaled waiting time 2vt/L dependence of the von Neumann entanglement
entropy. (b) Running average of the von Neumann entanglement entropy depicting the convergence to the steady state entropy.
We observe a steep increase of the entropy on a very short time scale after the quench and then recurrences with length N
where the entropies oscillate around a constant steady state value (empty circles). The fast decrease in the distance between
the steady state values with N suggests fast convergence to the thermodynamic limit.

A. Post-Quench Numerical Results

1. Exact Diagonalization

We again use exact diagonalization to compute the
waiting time dependence of the one-particle entangle-
ment entropy after the quench. For this, we first obtain
the ground state at t < 0 for free fermions |Ψ(0)〉 and
compute the time evolution using the full set of eigen-
states |Ψα〉 and eigenvalues Eα for the final Hamiltonian
with interaction strength V/J [31]

|Ψ(t)〉 = e−ıtH |Ψ(0)〉

=
∑

α

e−ıEαt 〈Ψα|Ψ(0)〉 |Ψα〉 , (77)

where we can exploit that 〈Ψα|Ψ(0)〉 is only non-zero for
|Ψα〉 from the q = 0 translational symmetry block. This
still requires the full eigensystem of a dense block of the
Hamiltonian whose size scales ∝

(
2N
N

)
and a full diagonal-

ization has a time complexity cubic in the Hamiltonian
size, which limits us to a maximum of N = 13 fermions
on the lattice. From |Ψ(t)〉, we obtain the density matrix
ρ(t) = |Ψ(t)〉 〈Ψ(t)| and trace out N − 1 particle posi-
tions to obtain ρ1(|i− j|, t) enabling computation of the
1-particle entanglement entropy at each time t. We in-
deed observe the recurrence time ∆t = L/(2v) (Fig. 10a)
predicted by the LL theory, which indicates that after
the quench, density waves propagate with velocity v, (see
Eq. (60)) through the lattice of length L, where the max-
imal distance between two points is L/2 due to the pe-
riodic boundary conditions. We show the waiting time
dependence of the von Neumann entropy for several lat-
tice sizes (solid lines) in Fig. 10a together with the steady
state values (empty circles) obtained by averaging the en-
tropy S1−ln(N) for times after the initial increase. Here,

the entanglement entropy has plateaus with length pro-
portional to L and regions, independent of the system
size, where the entropy decreases and then increases to
the next plateau. Convergence to the steady state can
thus be understood from a running average (Fig. 10b),
and in the thermodynamic limit, where the plateau size
is infinite, the system reaches the steady state with en-
tanglement entropy obtained by finite size scaling the
entropy averages from the finite systems. Even for these
relatively small systems, the fast decrease between con-
secutive steady state averages shows fast convergence to
the thermodynamic limit. Such advantageous finite size
scaling properties of the particle entanglement entropy
were recently reported [31]. To estimate errors in the
steady state averages, we use a blocking method [67] by
consecutively averaging neighboring values in the time
series and computing the error of the mean in each aver-
aging step until it reaches a plateau. To further include
errors due to the finite time step and the endpoint of the
time series, we additionally divide the time series into the
individualNb recurrence blocks with entropy averagesMi

and add the error of the means mean(Mi)/
√
Nb, as well

as the difference between the mean of the entropy time
series and the average of the Mi to the blocking error.

2. Time Dependent Density Matrix Renormalization Group

To further enhance our ability to extrapolate to the
thermodynamic limit post-quench, we perform time evo-
lution using approximate methods in ITensors.jl [64].
To efficiently perform time evolution of the initial state
obtained with DMRG as in the equilibrium case, we ap-
proximate the time evolution operator e−ıHδt for a time
step δt by using a symmetrized second order Trotter de-
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FIG. 11. Finite size scaling of the steady state one-particle
von Neumann entanglement entropy S1(t → ∞) for vari-
ous values of the post quench interaction strength V/J ob-
tained with ED (filled circles) and with DMRG (filled crosses).
We estimate the thermodynamic limit values of the entropy
(empty circles) using linear extrapolation to 1/N → 0.

composition [68, 69]

e−ıδtH ≈ e−ıδt h1,2/2e−ıδt h2,3/2 · · · e−ıδt hL,1/2×
× e−ıδt hL,1/2e−ıδt hL−1,L/2 · · · e−ıδt h1,2/2 +O(δt3) ,

(78)

where hi,i+1 = −J(c†i+1ci + c†i ci+1)+V nini+1. To derive
Eq. (78) the J-V Hamiltonian

H =

L∑

i=1

hi,i+1 =
∑

i even

hi,i+1 +
∑

i odd

hi,i+1 ≡ Heven +Hodd

(79)

is split into the two internally commuting partsHeven and
Hodd. The commutator [Heven, Hodd] is neglected, which
introduces an error O(δt3). To maintain accuracy, it is
therefore necessary to chose a small time step δt such that
performing time evolution for a finite time interval t can
require a large number t/δt of time consuming applica-
tions of the operator. Only by using GPUs for computing
the time evolution were we able to perform the calcula-
tion for systems up to N = 15 fermions, which would be
intractable with ED.

3. Finite size scaling

We compute the 1-particle entanglement entropy for
different interaction strengths V/J to again linearly
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FIG. 12. 1-particle entanglement entropies extrapolated from
the numerical steady state estimates to the thermodynamic
limit as a function of the post quench interaction strength
V/J (circles) for Rényi indices α = 1 (red), α = 2 (yellow),
α = 3 (green), and α = 5 (blue). Dashed lines depict the cor-
responding theory predictions from the steady states after the
quench in the Luttinger liquid model using a fixed interaction
cutoff ε = 0.84 obtained from ground state calculations. Sim-
ilar to the equilibrium case, we find good agreement between
LL prediction and numerical data for moderate interaction
strengths.

extrapolate to the thermodynamic limit, 1/N → 0
(Fig. 11). In the case of small interactions, we can per-
form the time evolution on V100 GPUs for systems with
up to L = 30 lattice sites, however, the ground states
obtained with DMRG require more memory for larger
interactions γ2

eq to perform calculations to the same ac-
curacy. While for intermediate interactions. V/J ≥ 1.3
and −0.9 ≤ V/J < 0, we achieve results up to L = 28
sites, the calculation exceeds GPU memory available to
us for L ≥ 28 in the case of very strong interactions
V/J ≤ −1.3. Nonetheless, these additional points of the
1-particle entanglement entropy obtained with the GPU
accelerated tDMRG allow for relative improvements of
the thermodynamic limit extrapolation from finite size
scaling by up to 1.2 % compared to using ED data alone.
We find that even for these relatively small systems, lin-
ear extrapolation accurately describes the data in the
whole Luttinger liquid phase. For all parameters where
we compute 1-particle entanglement entropies for both
ED (circles) and DMRG (crosses), we find excellent
agreement.

B. Comparison with Luttinger Liquid Theory

Performing the finite size scaling for all computed in-
teraction strengths V/J , we obtain the interaction depen-
dence of the steady state 1-particle entanglement entropy
in the thermodynamic limit (circles in Fig. 12) which we
plot together with the entropy obtained from numerically
computing the Fourier transform and numerically inte-
grating the analytical steady state result from bosoniza-
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FIG. 13. Interaction dependence of the effective cutoff εfit

(blue pentagons) obtained by fitting the steady state of the
Luttinger liquid model at each interaction strength V/J in-
dividually to the numerical data of the von Neumann entan-
glement entropy. For comparison, we show again the effective
cutoff obtained from the ground state case (red circles) and
find very good agreement with a quasi-plateau in the region
0 < V/J < 1. The inset depicts numerical data for Rényi en-
tropies with α = 1 (red circles), α = 2 (yellow circles), and
α = 5 (blue circles) together with the fitted field theory steady
state predictions for the effective cutoff εfit.

tion in Eq. (76) (dashed line, Fig. 12) for a fixed interac-
tion cutoff ε = 0.84 determined in the ground state. We
observe very similar agreement between results for the
LL model and numerical results for the J-V model as in
the equilibrium case Fig. 7 when using the same cutoff.

We again fit an effective interaction cutoff (blue pen-
tagons in Fig. 13) at each interaction strength V/J sep-
arately to match the LL solution to the von Neumann
entropy from the J-V model (red circles in the inset of
Fig. 13). We find very good agreement with the interac-
tion cutoff determined for the equilibrium ground state
case (red circles in the main panel of Fig. 13) which sug-
gests that the parameter ε of the LL calculation can be
fixed by numerical analysis of the J-V model in the region
−0.5 < J/V < 1.5, where the low energy LL approxima-
tion is most accurate resulting in ε = 0.84.

VI. TIME DEPENDENCE OF THE SPECTRUM
OF THE POST-QUENCH 1-BODY REDUCED

DENSITY MATRIX

In this section, we utilize translational symmetry to
monitor the time evolution of each eigenvalue of the 1-
RDM. The initial state of free fermions |Ψ(0)〉 on the lat-
tice is an eigenstate of the translation operator T , where
T |Ψ(0)〉 = |Ψ(0)〉. Also, the post-quench Hamiltonian
commutes with the translation operator, [H,T ] = 0, en-
suring that the time evolved state |Ψ(t)〉 = e−ıtH |Ψ(0)〉
is an eigenstate of T at all times, where T |Ψ(t)〉 = |Ψ(t)〉.

If we now consider the elements of the two-point

correlation matrix 〈c†i cj〉t at time t and use c†i cj =

T †c†i+1cj+1T for i, j ∈ {1, . . . , L − 1}, we can write

〈c†i cj〉t = 〈c†i+1cj+1〉t. For elements that cross the bound-

ary, we need to include the phase factor (−1)N−1 due to

the corresponding boundary conditions, e.g., 〈c†i cL〉t =

(−1)N−1〈c†i+1c1〉t. Therefore, the matrix is translation-

ally invariant with a boundary phase (−1)N−1 and can
thus be diagonalized via Fourier transformation, where
the diagonalized matrix represents the two-point correla-
tion in terms of quasi-momenta modes, i.e.,

〈c̃†q c̃q′〉t = δq,q′〈nq〉t , (80)

where c̃q = L−1/2
∑
j e
−ıqjcj and nq = c̃†q c̃q. Here,

q ∈ {(2m− L+ bN )π/L : m = 0, 1, . . . , L − 1}, with

bN = 3−(−1)N

2 . Accordingly, we obtain the momentum
distribution function for the lattice fermions as

ρ1(q, t) =
1

N
〈nq〉t , (81)

where the canonical ensemble condition
∑
q〈nq〉t = N

fixes the normalization of ρ1(q, t) such that
∑
q ρ1(q, t) =

1. Figure 14 demonstrates the time evolution of Nρ1(q, t)
for different interaction strengths obtained from exact
diagonalization for a system with N = 12 fermions on
L = 24 lattice sites. At time t = 0, we have the
free fermionic occupation probabilities at zero temper-
ature, where 〈nq〉t=0 = 1 for |q| ≤ kF and 〈nq〉t=0 = 0
otherwise. After the quench, the occupation probabil-
ities start to change, and the quench in the LL phase
(−2 < V/J < 2) generates fluctuations that are more
visible near the Fermi level and increase with increasing
interaction strength. This is consistent with the effective
low energy LL description. For V/J = −1.8, the effec-
tive thermalization following the abrupt quantum quench
starts to invoke the extremes of the energy spectrum,
where the linear approximation of the spectrum no longer
holds and band curvature effects may be important. For
comparison, we also consider a quench to an interaction
strength of V/J = −6.5, which is outside of the Luttinger
liquid phase. As illustrated in Fig. 14, the occupation
probabilities show a flatter distribution and substantial
fluctuations.

The time average of the distribution function Nρ1(q, t)
can provide information on quasi-thermalization after the
quantum quench, as illustrated in Fig. 15. Here, ρ1(q, t)
shows a wider distribution, i.e., larger entanglement en-
tropy, if compared with the related equilibrium ground
state distribution function ρ1(q). We can understand
this by comparing the form of the steady-state 1-RDM
ρt→∞(x) (Eq. (76)) with the equilibrium one-body den-
sity function ρ1(x) (Eq. (38)). For the same interaction
strength V/J 6= 0, we have γ > γeq, thus ρt→∞(x) decays
with x faster than ρ1(x). Consequently, their Fourier
transformation should exhibit the opposite behavior.

In Fig. 16 we show the momentum distribution for
fixed waiting times t after a strong interaction quench
to V/J = 20, across the continuous phase transition to



16

−2 0 2
q

0

5

10

15

20

25

30

35
t

V/J = −6.5

kF−kF
−2 0 2

q

V/J = −1.8

−2 0 2
q

V/J = −0.5

−2 0 2
q

V/J = 1.5

0.0

0.2

0.4

0.6

0.8

N
ρ

1
(q
,t

)

FIG. 14. Exact diagonalization results for the time evolution of distribution function Nρ1(q, t) after a quantum quench for
different values of the post quench interaction strength V/J . The initial state at t = 0 is the ground state of N = 12 non-
interacting fermions hopping on a ring of L = 24 sites. The dashed vertical lines mark the Fermi momenta, around which the
fluctuations are more pronounced. Increasing the interaction strength increases the amplitude of fluctuations.
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FIG. 15. Comparison between the time average of the dis-
tribution function Nρ1(q, t) (red diamonds) after a quench to
interaction strength of V/J = −1.8 and the distribution func-
tion Nρ1(q) (blue circles) for the corresponding equilibrium
case. The ED data is for a system of N = 12 fermions at
half-filling.

the density wave phase. We observe similar behavior
as discussed in the introduction in Fig. 3 for a quench
across the discrete phase transition, where the momen-
tum distribution can develop non-monotonic behavior as
a function of q.

VII. CONCLUSION

In this paper we have reported on a comprehensive
study of the one particle reduced density matrix and
its associated von Neumann and Rényi entanglement en-
tropies in the J-V lattice model of spinless fermions in
one spatial dimension at half filling. We have considered
entanglement both in the ground state of the interacting
model, as well as after an interaction quantum quench
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FIG. 16. Momentum distribution function at two different
times, after a quantum quench at t = 0 to a final interaction
strength V/J = 20 deep in the density wave phase. The sys-
tem consists of N = 12 fermions on a ring of L = 24 sites. The
inset shows the equilibrium ground state distribution function
for the same interaction strength. Lines are a guide to the eye.

starting from an initial state of non-interacting fermions.
In both setups, we demonstrate that the 1-particle entan-
glement entropy is sensitive to the continuous and dis-
crete phase transitions known to exist in this integrable
model.

By carefully exploiting translation, reflection, and
particle-hole symmetries of the lattice model in the pres-
ence of periodic boundary conditions, combined with ad-
vances in time-dependent density matrix renormalization
group on massively parallel GPUs, we have pushed the
boundaries of exact and approximate computations of the
1-particle entanglement entropy. Specifically, we study
system sizes up to L = 102 sites in the ground state at
half-filling, and up to L = 30 after the quantum quench.
Here, periodic boundary conditions are essential to ob-
tain the momentum distribution function via a simple
Fourier transform of the one particle reduced density ma-
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trix. Access to these large system sizes are required for
a reliable extrapolation to the thermodynamic limit.

For strong interaction quenches outside of the quan-
tum liquid into the clustered solid (V/J � −2) or den-
sity wave (V/J � 2) phases, the momentum distribution
function obtained from the spectrum of the one parti-
cle reduced density matrix can exhibit a non-monotonic
dependence on momentum. This behavior can occur
for both small and large values of q, and may highlight
dynamic signatures of the asymptotically flat momen-
tum distributions in these two extreme limits of localized
fermions.

For quenches within the quantum liquid regime, we
can utilize continuum field theory calculations based on
bosonization of the fermionic degrees of freedom within
the Luttinger liquid phase (|V/J | ≤ 2). With access to
numerical predictions for L→∞, a comparison between
field theory and numerical results is possible. We use a
self-consistent approach for determining the interaction
cutoff of the Luttinger model necessary due to the finite
range nature of interactions in the lattice Hamiltonian. A
fixed value of the cutoff is determined in the ground state,
which can then be applied to the non-equilibrium post-
quench dynamics. This provides a route to determining
entanglement properties which depend on high energy
degrees of freedom via bosonization.

Much work remains to be done to understand parti-
cle entanglement in interacting quantum many-body sys-
tems. For example, bosonization not only gives access to
the one particle reduced density matrix, but higher or-
der density matrices (e.g. n = 2) are also computable as
correlation functions by similar methods. More gener-
ally, the 1-particle reduced density matrix is the start-
ing point for an expansion of the entanglement entropy
in terms of higher order density matrices. Such a re-
search program will require generalizing the Kirkwood
expansion of the thermal entropy in terms of irreducible
distribution functions [33] to keep track of the required
antisymmetrization of fermionic density matrices.
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Appendix A: Comparison with Lattice Green
Function

Consider a 1D lattice with L sites and periodic bound-
ary conditions, where lengths are measured in units of the
lattice constant. The Hamiltonian for N free fermions is
given by

H = −2
∑

k

cos(k)c†kck , (A1)

where we measure energies in units of the hopping (i.e.
J = 1). Here, our quantization condition for periodic
boundary conditions is

km =
2π

L
m with m ∈ [−N,N) . (A2)

For N odd, the ground state is |Ψ〉 =
∏
|k|<kF c

†
k|0〉 with

kF = π(N − 1)/L and the momentum distribution is

nk = 〈c†kck〉 =

{
1 |k| < kF
0 otherwise

. (A3)

To compute the Green function, we define the Fourier
transform:

cj =
1√
L

∑

k

eıkjck . (A4)

Thus we can write:

〈c†i cj〉 =
1

L

∑

k,k′

e−ıkieık
′j〈c†kck′〉 (A5)

=
1

L

∑

|m|<(N−1)/2

e−ı2πm |i−j|/L

=
1

L

sin πN
L |i− j|

sin π
L |i− j|

. (A6)

The normalization condition that Trρ1 = 1 gives us:

ρ1(|i− j|) =
1

NL

sin
(
πN
L |i− j|

)

sin
(
π
L |i− j|

) . (A7)

This gives the same result as Eq. (37) by using x→ (i−j).

Appendix B: Definition of Symmetry Operators
Based on Fermion Operators

In this appendix, we provide additional details and a
precise definition of a set of lattice symmetry operators,
which are conserved by the J-V Hamiltonian (Eq. (2)).
Starting from the definition of the operators by their ac-
tion on the fermionic occupation basis, we write them

in terms of the fermionic annihilation ci and creation c†i
operators, taking into account the anti-commutation re-

lations {ci , cj} = 0, {c†i , c
†
j} = 0, and {c†i , cj} = δi,j .
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1. Spatial inversion operator R

We start by defining the spatial inversion operator
R = R−1 = R†, which reflects the fermionic occu-
pation numbers across the center of the lattice, e.g.,
R |011001〉 = |100110〉, where 0 and 1 denote the empty
and occupied sites respectively. If we define the occupa-
tion basis in terms of the action of the creation opera-

tor c†j on the vacuum state |0〉, then we have, for exam-

ple, |011001〉 = c†2c
†
3c
†
6 |0〉, with the convention of having

the site labels j of c†j in an ascending order. For the

above case, we can write Rc†2c
†
3c
†
6 |0〉 = c†1c

†
4c
†
5 |0〉, where

R |0〉 = |0〉.
In general, for a lattice with L sites, R sets the oc-

cupation state of site j in the resulting basis ket to the
occupation state of site L−j+1 in the original basis ket.
Based on this, if we define the operator R′ such that

R′c†j = c†L−j+1R
′ , (B1)

with R′ |0〉 = |0〉 and then apply R′ on the above exam-
ple, we find

R′ |011001〉 = R′c†2c
†
3c
†
6 |0〉 = c†5c

†
4c
†
1 |0〉

= −c†1c
†
4c
†
5 |0〉 = − |100110〉 . (B2)

Therefore, R′ 6≡ R, due to the appearance of the negative
phase factor, where, in general, this phase factor depends
on the number of fermions N described by the occupation
basis ket and it is given by (−1)N(N−1)/2.

To obtain a proper definition of R, we consider at-

taching the fermionic strings Kj = e
∑j−1
k=1−ıπnk and

K†j = K−1
j = e

∑j−1
k=1 ıπnk to the operators cj and c†j ,

respectively, where nj = c†jcj . Having the relations

K†j |0〉 = |0〉 and for j ≤ i
[
K†j , c

†
i

]
= 0, allows us to

insert the fermionic strings in the expression of any ba-

sis ket, for example, c†2c
†
3c
†
6 |0〉 = c†2c

†
3c
†
6K
†
2K
†
3K
†
6 |0〉 =

c†2K
†
2c
†
3K
†
3c
†
6K
†
6 |0〉. Also, we have the commutation rela-

tions
[
Ki ci ,Kj cj

]
= 0,

[
c†iK

†
i , c
†
jK
†
j

]
= 0, and for i 6= j,

[
c†iK

†
i ,Kj cj

]
= 0. We take advantage of the above com-

mutation relations and define:

Rc†jK
†
j = c†L−j+1K

†
L−j+1R , (B3)

with R |0〉 = |0〉. Taking the Hermitian conjugate of the

above equation and using R2 = 1 , yields. RKj cj =

KL−j+1cL−j+1R. If we now use R instead of R′ in the
previous example, we get

R |011001〉 = Rc†2K
†
2c
†
3K
†
3c
†
6K
†
6 |0〉

= c†5K
†
5c
†
4K
†
4c
†
1K
†
1 |0〉

= c†1K
†
1c
†
4K
†
4c
†
5K
†
5 |0〉

= c†1c
†
4c
†
5 |0〉 = |100110〉 , (B4)

where we reordered the commuting operators c†jK
†
j af-

ter the action of R takes place, then we removed the

fermionic strings K†j , similarly to their insertion. Accord-

ingly, defining R as in Eq. (B3) prevents the appearance
of any negative factors.

To simplify the definition in Eq. (B3), we first consider
the action of R on the occupation number operators nj =

c†jcj , which is

Rnj = nL−j+1R . (B5)

Hence, RKj = Re
∑j−1
k=1−ıπnk = e

∑L
k=L−j+2−ıπnkR

and thus, Rc†j = c†L−j+1K
†
L−j+1RKj =

c†L−j+1e
ıπnL−j+1e−ıπN̂R, where N̂ =

∑L
k=1 nk. Us-

ing c†jnj = 0, we finally arrive at the useful results:

Rc†j = c†L−j+1e
−ıπN̂R

Rcj = eıπN̂cL−j+1R .
(B6)

2. Particle-Hole exchange operator P

The particle-hole exchange operator P changes the oc-
cupation states of each site on a basis ket of spinless
fermions by emptying the occupied sites and occupy-
ing the empty ones, e.g., P |010011〉 = |101100〉, where
P = P−1 = P †.

Similar to spatial inversion operator case, to avoid neg-
ative phase factors, we include the fermions strings in the
definition of P as

Pc†jK
†
j = Kj cjP , (B7)

and P |0〉 = |11 . . . 1〉. Consequently,

Pnj = (1− nj)P , (B8)

and PKj = Pe
∑j−1
k=1−ıπnk = (−1)j−1K†jP . Thus, we

simplify Eq. (B7) and obtain

Pc†j = (−1)j−1cjP . (B9)

3. Translation operator T

We now consider translations, where the unitary oper-
ator T rotates the occupation basis of the fermionic ring
by one site, e.g., T |010011〉 = |101001〉, where TL = 1
and T |0〉 = |0〉. Similarly to the previous operators, we
define T as

Tc†jK
†
j = c†j+1K

†
j+1T

Tc†LK
†
L = c†1K

†
1T ,

(B10)

hence

Tnj = nj+1T

TnL = n1T .
(B11)
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To simplify the definition in Eq. (B10), we use Eq. (B11)

to write K†j+1TKj = e
∑j
k=1 ıπnkTe

∑j−1
k=1−ıπnk = eıπn1T

and K†1TKL = Te
∑L−1
k=1 −ıπnk = eıπn1e−ıπNT , resulting

in

Tc†j = c†j+1e
ıπn1T

Tc†L = c†1e
−ıπN̂T ,

(B12)

where we used c†1e
ıπn1 = c†1.
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U. Schollwöck, and C. Hubig, Time-evolution meth-
ods for matrix-product states, Ann. Phys. 411, 167998
(2019).

https://doi.org/10.1103/physrevb.104.195101
https://doi.org/10.1103/PhysRevResearch.4.L022023
https://doi.org/10.1063/1.1723737
https://doi.org/10.1103/physrevlett.97.156403
https://doi.org/10.1103/physrevlett.97.156403
https://doi.org/10.1103/physreva.80.061602
https://doi.org/10.1103/physreva.80.061602
https://doi.org/10.1103/physreva.80.063619
https://doi.org/10.1103/physrevlett.106.156406
https://doi.org/10.1103/physrevlett.98.240402
https://doi.org/10.1238/physica.topical.109a00061
https://doi.org/10.1007/s00220-016-2651-6
https://doi.org/10.1007/s00220-016-2651-6
https://doi.org/10.1103/physreva.96.012304
https://doi.org/10.1063/1.1704899
https://doi.org/10.1063/1.1704899
https://doi.org/10.1103/PhysRev.150.321
https://doi.org/10.1103/PhysRev.150.321
https://doi.org/10.1103/physrevlett.98.210405
https://doi.org/10.1103/physrevb.79.155104
https://doi.org/10.1103/physrevb.79.155104
https://doi.org/10.1103/physrevlett.103.100403
https://doi.org/10.1103/physrevlett.103.100403
https://doi.org/10.1103/physrevb.84.085146
https://doi.org/10.1103/physrevb.84.085146
https://doi.org/10.1140/epjb/e2012-30978-y
https://books.google.com/books?id=1MwTDAAAQBAJ
https://arxiv.org/abs/0708.0003
https://arxiv.org/abs/0708.0003
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745585
https://doi.org/10.1088/0953-8984/16/20/005
https://doi.org/10.1088/0953-8984/16/20/005
https://doi.org/10.1103/revmodphys.34.694
https://doi.org/10.1103/physrev.121.659
https://doi.org/10.1103/revmodphys.35.668
https://doi.org/10.1103/physrev.138.b1338
https://doi.org/10.48550/ARXIV.1702.02360
https://doi.org/10.48550/ARXIV.1702.02360
https://arxiv.org/abs/arXiv:1702.02360
https://doi.org/10.1103/physrevb.69.075111
https://github.com/DelMaestroGroup/papers-code-OneParticleEntanglementEntropy
https://github.com/DelMaestroGroup/papers-code-OneParticleEntanglementEntropy
https://github.com/DelMaestroGroup
https://doi.org/10.5281/zenodo.6665139
https://doi.org/10.5281/zenodo.6665139
https://doi.org/10.6028/jres.045.026
https://doi.org/10.48550/arXiv.2007.14822
https://doi.org/10.48550/arXiv.2007.14822
https://arxiv.org/abs/2007.14822
https://doi.org/10.1103/physrevb.105.l121116
https://doi.org/10.1103/physrevb.105.l121116
https://doi.org/10.1103/physrevb.42.6561
https://doi.org/10.1063/1.457480
https://doi.org/10.1063/1.457480
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998

	One-particle entanglement for one dimensional spinless fermions after an interaction quantum quench
	Abstract
	Introduction
	Model and Phase Diagram
	1-Particle Reduced Density Matrix in a Luttinger Liquid
	Numerical Results for Equilibrium 1-Particle Entanglement
	Symmetry Decomposition of the Lattice Hamiltonian
	Translation symmetry
	Particle hole symmetry
	Reflection symmetry

	Density Matrix Renormalization Group
	Initial state
	Orthogonal subspace

	Ground State DMRG and ED Results
	Comparison with Luttinger Liquid Theory

	1-Particle entanglement entropy after a quantum quench
	Post-Quench Numerical Results
	Exact Diagonalization
	Time Dependent Density Matrix Renormalization Group
	Finite size scaling

	Comparison with Luttinger Liquid Theory

	Time Dependence of the spectrum of the post-quench 1-body reduced density matrix
	Conclusion
	Acknowledgments
	Comparison with Lattice Green Function
	Definition of Symmetry Operators Based on Fermion Operators
	Spatial inversion operator R
	Particle-Hole exchange operator P
	Translation operator T

	References


