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Minimally entangled typical thermal states (METTS) are a construction that allows one to to
solve for the imaginary time evolution of quantum many body systems. By using wave functions
that are weakly entangled, one can take advantage of efficient representations in the form of matrix
product states. We generalize these ideas to arbitrary variational wave functions and we focus, as
illustration, on the particular case of restricted Boltzmann machines. The imaginary time evolution
is carried out using stochastic reconfiguration (natural gradient descent), combined with Monte
Carlo sampling. Since the time evolution takes place on the tangent space, deviations between the
actual path in the Hilbert space and the trajectory on the variational manifold can be important,
depending on the internal structure and expressivity of the variational states. We show how these
differences translate into a rescaled temperature and demonstrate the application of the method to
quantum spin systems in one and two spatial dimensions.

I. INTRODUCTION

Quantum Monte Carlo is a powerful method that can
be applied to problems with hundreds of degrees of free-
dom in arbitrary dimensions. However, while in princi-
ple can be considered an unbiased numerical technique,
in many cases it suffers from some pathological draw-
backs. Among these, there is the infamous sign prob-
lem, that appears in fermionic and frustrated systems,
when the complicated nodal structure of the wave func-
tion does not guarantee a well defined positive transition
probability[1–9]. Other situations arise when the Monte
Carlo updates necessary to make the simulation ergodic
are complicated or numerically costly, or when the sys-
tem is close to a phase transition and global updates are
required to fight critical slowing down.

Alternatives to QMC that can overcome such draw-
backs are not many, and also suffer from limitations.
Useful practical approaches that rely on exact diagonal-
ization are limited to small system sizes [10–24]. In quasi
one-dimensional systems, a family of methods based on
the density matrix renormalization group can essentially
provide numerically exact results for models with frus-
tration [25–34] and recent advances have put quasi two-
dimensional frustrated lattice problems within reach [35].
At this point, it is important to point out that these
approaches rely, one way or another, on representations
of the transfer matrix or the thermal density matrix of
the quantum many-body problem in the form of ma-
trix product states (MPS) or matrix product operators
and, as a consequence, they are limited by the entangle-
ment growth in the system as temperature is lowered,
implicitly imposing a numerical barrier that is hard to
overcome. Recent proposals using entanglement purifi-
cation with neural networks provide an interesting alter-
nate route [36].

In a thermal state, the expectation value of observ-
ables is identical to the value in the canonical ensem-
ble at some temperature T . This idea lies at the foun-
dation of the statistical mechanics and the canonical to
micro-canonical correspondence, relating the thermody-

namic behavior of systems at temperature T to the mi-
crostates of a system at some energy E(T ). A generic
chaotic closed system out of equilibrium is expected to
relax to a thermal state after some time. This prob-
lem does not require a thermal bath and, in the con-
text of the microcanonical ensemble energy is conserved.
However, in order for this to actually occur, certain con-
ditions need to be satisfied: The expectations values
of observables within an energy window around E(T )
need to vary smoothly, or rather, to be very “similar”.
This is the premise behind the eigenstate thermalization
hypothesis (ETH)[37, 38], and the idea of “typicality”.
According to this, a thermal state can be represented
accurately by a typical pure state in the microcanon-
ical ensemble. This can be exploited to carry out fi-
nite temperature calculations with pure states, which
is the foundation behind “minimally entangled typical
thermal states” (METTS)[39, 40] and “canonical ther-
mal pure quantum states”(CTPQS)[16, 18, 21]. In a
nutshell, the recipe is very simple: start from a random
state, such a linear combination of basis states with ran-
dom coefficients |ψ0〉, and evolve it with the operator
|ψ(β)〉 = exp (−βH/2)|ψ0〉 (β as customary represents
the inverse temperature T ). Observables are hence ob-

tained as 〈Â〉T = 〈ψ(β)|Â|ψ(β)〉/〈ψ(β)|ψ(β)〉. In the
case of METTS, the initial random states are product
states, e.g. quantum spins pointing in random directions
on the Bloch sphere. In a nutshell, the algorithm is iden-
tical to projector Monte Carlo[41, 42], but with the initial
state being evolved using a numerically exact method.
On the other hand, METTS approaches are based on
a variational representation of the quantum many-body
states in the form of an MPS, and their remarkable ac-
curacy relies on the extraordinary representation power
of these wave functions. The fact that entanglement at
finite temperatures remains under control when the ini-
tial state is a random product state has enabled some
outstanding progress toward understanding the thermo-
dynamic behavior of frustrated magnets [43].

In this work, we take a similar route, but using neural
network wave functions instead. Although our consider-
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ations are general, for illustration purposes we here focus
on the simplest form, a restricted Boltzmann machine
(RBM). Same as MPS wave functions, RBMs are agnos-
tic to the underlying physics of the problem, and hold a
remarkable representation power.

This manuscript is organized as follows: In sec.II we
review how typicality can be used to calculate thermody-
namic properties of quantum systems; sec. III discusses
the practical implementation of these ideas using vari-
ational Monte Carlo; sec.IV demonstrates the methods
with applications to one- and two-dimensional quantum
spin systems; finally, we close with a discussion.

II. TYPICAL THERMAL STATES

In this section we follow the reasoning outlined in Ref.
40 to describe thermal averages in terms of typical states.
We consider a set of initial states {|φ0(ξ)〉}ξ with ξ drawn
from a probability distribution function P0(ξ) such that∫

dξP0(ξ) |φ0(ξ)〉〈φ0(ξ)| = 1. (1)

We have not explicitly introduced a particular form for
these states, yet. The index ξ labels a set initial random
product states. Each drawn initial state is evolved in
imaginary time β = 1/T as:

|φ(β; ξ)〉 = e−
1
2βĤ |φ0(ξ)〉

Introducing Z(β; ξ) = 〈φ(β; ξ)|φ(β; ξ)〉, the partition
function can expressed as Z(β) =< Z(β, ξ) >P0

and the
evolution operator in imaginary time as

1

Z(β)
e−βĤ =

< |φ(β; ξ)〉〈φ(β; ξ)| >P0

< Z(β; ξ) >P0

Then, for any observable given by operator Â, its thermal
average can be expressed as

A(β) =
< Z(β; ξ)A(β; ξ) >P0

< Z(β; ξ) >P0

,

where

A(β; ξ) =
〈φ|Â|φ〉
〈φ|φ〉

∣∣∣∣∣
(β;ξ)

is the “local” expectation value of the operator in state
|φ(β; ξ)〉. Introducing a finite temperature distribution
Pβ(ξ) = (Z(β, ξ)/Z(β))P0(ξ), the thermal average can
be expressed compactly as A(β) =< A(β; ξ) >Pβ .

The importance weights Z(β, ξ))/Z(β) can be obtained
without explicitly calculating 〈φ(β; ξ)|φ(β; ξ)〉 for each β.
Instead we only need the initial Z(0; ξ) and, for each β,
the expectation value of Hamiltonian:

E(β; ξ) =
〈φ|Ĥ|φ〉
〈φ|φ〉

∣∣∣∣∣
(β;ξ)

Then, we can exploit that the imaginary time evolution
gives

∂

∂β
lnZ(β; ξ) = −E(β; ξ).

Hence,

Z(β; ξ) = Z(0; ξ) e−
∫ β
0
dβ′E(β′;ξ).

Until now, we have not imposed any conditions on the
structure of the random initial states. In the METTS
algorithm, one chooses them over a Gaussian distribution
of random product states. For instance, if the quantum
degree of freedom is spins S = 1/2 on a lattice L with N
sites, they will be given as:

|φ0(ξ)〉 = ⊗l∈L
(
ξl↑| ↑〉l + ξl↓| ↓〉l√
|ξl↑|2 + |ξl↓|2

)
. (2)

In this case, the label ξ represents the set of ξ ∈ CN×2
complex numbers that are distributed according to:

P0(ξ) =

(
1

π

)2N

exp

−∑
l∈L

∑
σ=↑,↓

|ξlσ|2


This choice of distribution is not the only possible one.
However, the average of the outer product has to be equal
to the identity, Eq.1 and a Gaussian distribution is the
easiest and most straightforward choice that satisfies this
condition. In addition, it also gives us a uniform random
distribution over the Bloch sphere for each site[40].

III. METHOD

While the concepts described in the previous section
offer a prescription to calculate thermodynamic proper-
ties of quantum many-body states, exact calculations can
only be carried out in small systems. In order to scale the
computations to large system sizes, we require to make
some sacrifices: We will use a variational representation
of the wave functions. For this particular task, the math-
ematical structure of the wave function has to be flexible
enough to be able to represent any quantum state in the
spectrum, and not just the ground state. In the orig-
inal formulation of METTS, matrix product states are
used. In our case, we generalize the method to arbitrary
variational states and we focus, as illustration, on the
particular case of restricted Boltzmann machines.

In this section we review how to carry out the time
evolution of a many-body state on a variational manifold,
following an elegant geometrical interpretation presented
in Ref.44. The time-evolved state will describe a “tra-
jectory” that will be constrained to this manifold and
will deviate from the exact trajectory in the full Hilbert
space. We will find that these deviations can be partially
accounted by rescaling the “projected imaginary time”
τ such that it corresponds to an actual physical inverse
temperature β.
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FIG. 1. Cartoon illustrating imaginary time evolution in the
projected variational manifold. The actual time evolved state
differs from the projected one. These difference can be ac-
counted for by a re-scaling of the temperature (see text).

A. Variational Imaginary Time Evolution

For each random starting state |φ0(ξ)〉, the time-
evolved wave function |φ(β, ξ)〉 is obtained by solv-
ing the first order differential equation ∂

∂β |φ(β, ξ)〉 =

−(1/2)Ĥ|φ(β, ξ)〉, with the constraint that the new wave
function has to live on the same variational manifold.

We hereby proceed to summarize projective variational
imaginary time evolution for complex holomorphic vari-
ational wave functions. In this discussion we follow the
notation and formalism as detailed in Ref.44. The states
|φ(β, ξ)〉 are approximated by a class of variational wave
functions ψM which are holomorphic in terms of param-

eters ~θ ∈ CM and define a sub-manifold in the Hilbert
space H, M = ψM(CM ) ⊂ H. The projected time evo-
lution results in a series of “equations of motion” for
the parameters θµ(τ), which are completely equivalent to
the well known “stochastic reconfiguration” (SR) method
[45–48] –also known as “natural gradient descent”[49]–
used to carry out ground state calculations. In other
words, SR consists of projecting out the ground state by
evolving the state in imaginary time on the variational
manifold. Therefore, any variational Monte Carlo code
that implements SR, already contains all the ingredients
to evolve any variational state in imaginary time. We
refer the reader to a pedagogical description in Ref.[50]
for a detailed derivation.

Evolving the state in imaginary time evolution within
the manifold requires to perform a local projection at
each step. The variational parameters that best represent
the time-evolved state are obtained by minimizing the
projection error

∥∥∥∥P̂TH

(
d

dτ
|ψM〉+

1

2
Ĥ|ψM〉

)∥∥∥∥2
where use the Fubini-Study metric to measure the “dis-
tance” between two wave functions[51, 52] with the pro-

jector P̂TH defined as

P̂TH =

(
1− |ψM〉〈ψM|
〈ψM|ψM〉

)
.

which projects out radial dependence, given by the |ψM〉
direction.

Algorithm 1 Imaginary time Evolution

Require: ∆τ (fixed imaginary time step)
Require: ξ ∼ P0 (draw random product state coefficients)
Require: θ0 (initial VWF coefficients)

Require: E0 = 〈Ĥ〉(θ0)

Require: σ2
0 = (〈Ĥ2〉 − 〈Ĥ〉2)(θ0)

Require: A0 = 〈Â〉(θ0)
Require: τ0 = 0, β0 = 0, Z0 = 1

while Ei not converged do
i← i+ 1
θi ← θi−1 −∆τ∇θ〈Ĥ〉(θi−1)

Ei ← 〈Ĥ〉(θi)
σ2
i ← (〈Ĥ2〉 − 〈Ĥ〉2)(θi)

Ai ← 〈Â〉(θi)
τi ← τi−1 + ∆τ
βi ← βi−1 − (Ei − Ei−1)/σ2

i

Zi ← Zi−1 ∗ exp(−(βi − βi−1)Ei)
end while

In order to minimize this cost function we recast the
problem in terms of dθµ/dτ ≈ ∆θµ/∆τ which are defined
by the tangent space vectors of the variational manifold:

|vµ〉 = P̂TH

∂

∂θµ
|ψM〉.

The parameter updates ∆~θ are given in terms the system
of equations:

gµν∆θν = −∆τ

2

〈vµ|Ĥ|ψM〉
〈ψM|ψM〉

,

where g is the induced metric tensor:

gµν =
〈vµ|vν〉
〈ψM|ψM〉

.

The resulting evolution of |ψM〉 can be expressed com-
pactly as

P̂TH

d

dτ
|ψM〉 = −1

2
P̂TMĤ|ψM〉,

where we introduce the variational tangent space projec-
tor:

P̂TM = Gµν
|vµ〉〈vν |
〈ψM|ψM〉

; Gµνgνσ = δµσ

In practice, the prodecure to time evolve an initial ran-
dom state is summarized in the psudocode 1. As dis-
cussed above, each initial trial wave function is drawn
from a distribution P0(ξ) and the parameters are evolved
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FIG. 2. Specific heat of the Heisenberg chain comparing re-
sults obtained with restricted Boltzmann machines and other
methods: (a) DMRG for L = 32, (b) L = 64 and Bethe
Ansatz. We use Nh = 3N hidden variables and n = 50 ran-
dom initial states.

in imaginary time by a small fixed time step ∆τ . At each
time step, expectation values of the energy, variance of
the energy, and observables of interest are calculated:

E(~θ(τ ; ξ)) =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

∣∣∣∣∣
~θ(τ ;ξ)

, (3)

σ2(~θ(τ ; ξ)) =
〈ψ|(Ĥ − E)2|ψ〉

〈ψ|ψ〉

∣∣∣∣∣
~θ(τ ;ξ)

, (4)

A(~θ(τ ; ξ)) =
〈ψ|Â|ψ〉
〈ψ|ψ〉

∣∣∣∣∣
~θ(τ ;ξ)

. (5)

These expectation values are then averaged over many
initial realizations of ξ.

B. Beta Correction

Since the approximate imaginary time evolution cor-
responds to projecting onto the variational manifold, the
time-evolved state will deviate from the exact one. This
deviation from the true path can be decomposed locally
into two contributions (see Fig.1):

P̂TH

d

dτ
|ψM〉 = −1

2
γP̂TMĤ|ψM〉+ |η〉 (6)

where |η〉 is some error direction orthogonal to both,

|ψM〉 and (Ĥ − E)|ψM〉. The factor γ ∈ [0, 1] represents
the fraction of the distance traveled in the exact imagi-
nary time direction, that can be explicitly calculated as

γ =
〈ψ|(Ĥ − E)P̂TM(Ĥ − E)|ψ〉

〈ψ|(Ĥ − E)2|ψ〉
= − 1

σ2

dE

dτ
(7)
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FIG. 3. Specific heat of the 2D Heisenberg model compar-
ing results obtained with restricted Boltzmann machines and
quantum Monte Carlo for two system sizes (a) 6× 6 and (b)
8 × 8 with varying number of initial random states n and
Nh = N hidden variables. The shaded area represents the
error for the dashed curve.

Here we assume that the contribution from the error
direction |η〉 is fairly negligible (which is a reasonable as-
sumption for imaginary time evolution as opposed to real
time evolution). Thus, the remaining error corresponds
to the parametrization of the imaginary time. Therefore,
we re-parameterize τ in terms of β as:

dβ

dτ
= γ; β(τ ; ξ) = −

∫ τ

0

dτ ′
1

σ2

dE

dτ ′

∣∣∣∣
~θ(τ ′;ξ)

Following Eq.(7), this parameterization also enforces that
dE/dβ = −σ2.

C. Restricted Boltzmann Machines

Although our considerations are independent of the
choice of variational wave function, in the following we fo-
cus on a particular example for demonstration purposes:
a restricted Boltzmann machine(RBM). An RBM wave
function for a system of N spins S = 1/2 (s = ↑, ↓) and
Nh hidden variables is defined as:

|ψ(~θ)〉 =
∑
{~s}

ψ(~s; ~θ)|~s〉

where ~s = (s1, s2, · · · , sN ) and

ψ(~s; ~θ) = e
∑
l∈L alsl

Nh∏
i=1

cosh

(
bi +

∑
l∈L

Wil · sl
)

It is parametrized by a set of complex values ~θ =

(~a,~b,W ) ∈ CN × CNh × CNh×N that are used as vari-
ational parameters to minimize some cost function. This
cost function is usually a measure of the “distance” be-

tween |ψ(~θ)〉 and a target wave function.
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FIG. 4. Energy of the 2D Heisenberg model comparing results
obtained with restricted Boltzmann machines and quantum
Monte Carlo for two system sizes (a) 6× 6 and (b) 8× 8 with
n = 100 initial random states n and Nh = N hidden variables.
Errors are smaller than the symbol size.

Besides being proposed as ground state estimators for
variational calculations [50, 53–55], their representation
power has been instrumental to a number of other ap-
plications, such as the calculation of spectral functions
[56–58].

D. RBM Initialization

In order to implement the procedure with RBMs, it is
necessary to first draw a random set of initial product
wave functions as described in sec.II. Fortunately, it is
possible to exactly represent (up to an overall constant) a
state |φ0(ξ)〉 in Eq.(2) by setting bl,W = 0 and matching
the al bias term to the corresponding random spin at l

al =
1

2
ln(ξl+/ξl−)

In practice, a very small Gaussian noise has to be added
to W, b such that the derivatives needed in the imaginary
time evolution are not zero. Notice that there is no re-
quirement that the initial state has to be a product state,
so the validity of the method is not affected.

IV. NUMERICAL RESULTS

We have implemented the imaginary time evolution
for the spin S = 1/2 Heisenberg model in one and two
dimensions:

Ĥ =
∑
〈i,j〉

~Si · ~Sj

where the sum sums over nearest neighboring sites on a
one-dimensional chain, or a square lattice.
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FIG. 5. Magnetic susceptibility of the 2D Heisenberg model
comparing results obtained with restricted Boltzmann ma-
chines and quantum Monte Carlo for two system sizes (a)
6× 6 and (b) 8× 8 with n = 100 initial random states n and
Nh = N hidden variables. The shaded area represents the
error for the dashed curve.

Besides the energy Eq.(3), we calculate the specific
heat as Cv = −β2/NdE/dβ = β2/Nσ2, where σ is the
standard deviation of the energy. As an initial bench-
mark, in Fig.2 we show the specific heat for chains with
L = 32 and L = 64 sites and periodic boundary con-
ditions obtained with n = 50 initial states and Nh =
3N hidden variables, together with finite-temperature
density matrix renormalization group [31] and Bethe
ansatz[59] results for comparison. The curves are barely
distinguishable in this scale.

Results for two-dimensional systems (Fig.3) show good
agreement with quantum Monte Carlo data for 6×6 and
8 × 8 lattices [60–62]. As seen in the figure, the accu-
racy varies considerably with the number of initial states
n, and improves noticeably with n = 100 in the region
around the maximum, T ∼ J = 1. We have also studied
the convergence with the number of hidden variables Nh:
even though a larger Nh may help to improve the accu-
racy, we find that with too many hidden variables, the
natural gradient descent may get unstable. In our case
we settle for Nh = N since this choice provides a reliable
comparison.

The specific heat is directly related to the variance of
the energy. While Cv may show some deviation from
the exact results, the energy is actually very accurate,
as shown in Fig.4 where the errors are smaller than the
symbol size.

On the other hand, the errors for the magnetic suscep-
tibility are considerably larger, as shown in Fig.5. This is
due to the non-local nature of the squared magnetization
M2 which involves a summation over all-to-all correla-
tions:

χ =
1

NT
(〈M2〉 − 〈M〉2)
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=
1

NT
(
∑
i,j

〈Szi Szi 〉 − (
∑
i

〈Szi 〉)2). (8)

The structure of the correlations is more sensitive and
a better measure of the expressivity or representation
power of the states. For instance, it has been established
that matrix product states can only realize exponentially
decaying correlations [63] even though the yield energies
with machine precision accuracy in 1D systems.

We point out that, in these figures, the Monte Carlo
sampling error and the error originating from averaging
over a finite number of initial random states is plotted
as a shaded area centered at the mean. In addition, we
account for part of the systematic errors with the beta
correction, as described above. Other sources of error
originating from the representation power of the RBM
wave functions are difficult to estimate. In this scale, the
QMC data is essentially exact and the error is smaller
than the symbol size.

While results improve notoriously with increasing
number of initial random states n, as mentioned earlier
there seems to be an apparent horizontal shift of the Cv
and χ curves at low temperatures. This can be partially
explained in terms of the beta correction. In Fig.6 we
show the actual β as a function of the projected imagi-
nary time τ for two typical runs. While the curves seem
to follow an apparent 1:1 scaling at small β, deviations
appear as we approach zero temperature. The flattening
of the curves for increasing β (small temperature) indi-
cates that the wave function is essentially converging to
the (approximate) ground state. Geometrically, this can

be interpreted as the vector −Ĥ/2|ψM〉 becoming per-
pendicular to the variational manifold, as one would see
in Fig.1. For that reason, the wave function parameters

cannot vary and the state becomes “stuck” in parame-
ter space. Other sources for increase of these deviations
could be multiple, but we believe the most significant
ones are due to: (i) the presence of a finite-size gap in the
spectrum or (ii) a small overlap with the actual ground
state due to the random initial directions of the spins, or
(iii) a poor variational wave function. The most promis-
ing route to improve the expressivity of RBMs is by in-
troducing lattice symmetries[64, 65] which we have not
attempted here.

V. CONCLUSIONS

We have described a method to carry out thermody-
namic simulations of quantum many-body models us-
ing typicality and variational representations of quan-
tum states. We generalize the idea of METTS to arbi-
trary variational forms and efficiently carry out the imag-
inary time evolution using natural gradient descent (or
stochastic reconfiguration). While in principle one could
sample over a random choice of arbitrary initial states
as done in the CTPQS approach[16, 18, 21], the choice
of product states simplifies the formulation considerably.
In particular, these states can be exactly represented as
RBM wave functions. In addition, the low entanglement
growth makes the numerical results more controllable.
We point out that, unlike CTPQS, our simulations do
not account for spatial nor spin symmetries. Incorpo-
rating them into the algorithm may result in improved
accuracy.

The underlying mathematical structure of the wave
functions plays a crucial role in terms of the accuracy
of the method. In particular, the wave functions have to
be able to represent any state along the imaginary time
path. In this work, we pick the particular form of re-
stricted Boltzmann machines as a proof of concept illus-
tration due to their versatility and representation power.
We show that the path they follow in the variational
manifold differs slightly from the actual imaginary time
evolution for temperatures T > J/2. We have found
that these deviations can be partially accounted for by
correcting the temperature with a rescaling factor that
can be easily and systematically calculated at every time
step. At lower temperatures, the wave function starts
converging to the best variational approximation to the
ground state becoming “stuck” in the variational man-
ifold. This sets a limit for the RBM wave functions in
terms of their ability to describe the thermodynamic be-
havior at low temperatures. It is to expect that, by im-
proving the expressivity of the wave function, it might be
possible to reach lower temperatures, and simultaneously
obtain better a ground state description. The limitations
of the wave function can be appreciated in quantities such
as the correlation functions and, in particular, magnetic
susceptibility, that include all-to-all contributions. The
method does not suffer from the sign problem and offers
an alternative to matrix product states for studying two
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dimensional models with frustration. In addition, with
a suitable choice of variational wave function[66], it can
readily be extended to fermionic systems.
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