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The Rashba spin-orbit (SO) coupling can flexibly be controlled via an external gate, while the Dresselhaus

term, which mainly depends on quantum confinement, is in general immune to electrical control. Here we

theoretically report optical manipulation of the SO coupling by resorting to intense high-frequency laser field,

which “dresses” the confining potential for electrons as a result of optical stark effect and enables a flexible and

simultaneous control of the Rashba and Dresselhaus couplings. Focusing on ordinary GaInAs/AlInAs quantum

wells with two occupied subbands subject to both laser and gate fields, we perform a self-consistent Poisson-

Schrödinger calculation in the Hartree approximation to determine electro-optical control of the intrasubband

(intersubband) Rashba αν (η) and Dresselhaus βν (Γ) SO terms with ν = 1, 2. Under the impact of laser field,

we find that the Rashba terms of the two subbands α1 and α2 may remain locked to equal strength in a broad

gate range, providing a means for unified manipulation of the two-subband Rashba couplings. Further, as the

laser field varies, we observe that α1 and α2 may have either the same or opposite signs, or even α2 vanishes

while α1 is finite, greatly fascinating for selective SO control of distinct subbands. For the Dresselhaus coupling,

we disclose two distinct scenarios depending on the interplay of the well width and the laser field strength, and

reveal that β2 may decrease rapidly when the laser field strengthens, even though β1 remains essentially constant.

Regarding the intersubband Rashba (η) and Dresselhaus (Γ) terms, which mainly depend on the overlap and

parity of the wave functions of the two subbands, they have relatively weak dependence on the laser field.

Moreover, the combined effect of intra- and intersubband SO terms may lead to crossings and avoided crossings

of the energy dispersion of multi-band spin branches and may even trigger the spin poarlization of an originally

spin degenerate (unpolarized) band, tunable by the laser field. Our results should stimulate experiments probing

the laser field mediated multi-band SO control and further enables its spintronic applications.

I. INTRODUCTION

The spin-orbit (SO) coupling, which arises from the rela-

tivistic Dirac equation, links the electron spin and spatial de-

grees of freedom, enabling coherent spin (magnetic moment)

manipulation by purely electrical means [1–3]. Further, the

SO effects underlie various novel physical phenomena such

as the spin-orbit torque [4, 5], spin galvanic effect [6], topo-

logical insulators [7], Majorana fermions [8–10], and Weyl

semimetals [11].

There are mainly two types of SO contributions in semi-

conductor heterostructures, i.e., the Rashba [12] and Dres-

selhaus [13] types, arising from the breaking of structural

and crystal inversion symmetries, respectively. While con-

veniently facilitating coherent spin manipulation [1, 3], the

SO interaction also inherently causes spin relaxation [14, 15].

A unique situation, i.e., persistent spin helix (PSH) [16–

20], arises when the Rashba and Dresselhaus SO fields are

matched, strongly protecting spins from relaxation. Koralek

et al. first observed a PSH via transient spin grating spec-

troscopy [18]; Walser et al. imaged PSH using time-resolved
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Kerr rotation [19]. Following these, the PSH has been ex-

ploited in many different forms including the drifting PSH

driven by an in-plane electric field [21–24], the spin relax-

ation anisotropy mediated by an external magnetic field [25–

27], and the phase diagram of interacting PSH states [28].

Also, Krammermeier et al. determined PSH symmetry of

general crystal orientation [29] and even addressed persistent

spin textures and currents in nanowire-based quantum sys-

tems with wurtzite structure [30]. Yoshizumi demonstrated

gate controlled switching between PSH state and inverse PSH

state [31]. Alidoust reported a beautiful proposal for probing

a PSH state via the critical supercurrent and ψ0 state in two-

dimensional Josephson junctions [32] and further with col-

laborators revealed dominant cubic spin-orbit coupling and

anomalous Josephson effect [33]. By combining theoretical

simulation and experimental (magnetoconductance) measure-

ments, we achieved continuous locking of the Rashba and

Dresselhaus couplings to equal strengths, bringing about the

concept of the stretchable PSH [34, 35]. Our recent proposal

on the persistent skyrmion lattice hosted in quantum wells

with two subbands [36], which can be realized by fine tuning

the SO strengths, also manifest the importance of SO effects

in semiconductor nanostructures. For comprehensive reviews

of the PSH, see Refs. [37, 38].

For controlling PSH symmetry and various other spintronic

applications (e.g., spin-field and spin-Hall effect transistors),
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it is essential to achieve flexible SO control. The Rashba

coefficient is essentially proportional to the external elec-

tric field, and thus can be tuned with the doping profile or

by using a gate voltage [39, 40]. Flexible control of the

Rashba coupling in quantum heterostructures of either sin-

gle [18, 19, 25, 41, 42] or double [43–49] occupancy for elec-

trons has been well established. Moreover, we recently con-

sidered a triple-well structure, which favors the triple electron

occupancy, and unveiled intriguing SO control triggered by

the band crossing and anticrossing as well as the charge trans-

fer among distinct sub-wells [50]. In contrast to the Rashba

coupling, the Dresselhaus term mainly depends on quantum

confinement (e.g., well width) [18, 51], and hence is in general

immune to electrical manipulation [52]. Considering practi-

cal applications of SO effects in various spintronic devices,

for which the Rashba and Dresselhaus terms usually coex-

ist [24, 53–55], it is highly desirable to accomplish indepen-

dent and simultaneous tuning of the two types of SO couplings

both in a broad range.

Here, we aim to achieve a flexible and full manipulation

of both Rashba and Dresselhaus terms in semiconductor het-

erostructures. To this end, we theoretically determine the laser

field mediated electro-optical control of SO terms by combin-

ing the electrical and optical means [Fig. 1(a)]. Specifically,

we resort to intense high-frequency laser (IHFL) fields [56–

60], which by virtue of the so-called “dressing” effect greatly

alters the confining potential [61] and further the quantized

energy levels (i.e., optical stark effect [62–64]) for electrons

confined in quantum wells, facilitating flexible control of the

Dresselhaus coupling. This is far beyond the means of ma-

nipulating the Dresselhaus term by varying the well width,

which involves distinct quantum systems. Focusing on ordi-

nary GaInAs/AlInAs quantum wells having two occupied sub-

bands for electrons, subjected to both laser and gate fields, we

solve the coupled Schrödinger and Poisson equations to cal-

culate the self-consistent outcome about laser “dressed” po-

tential in the Hartree approximation, and further determine

electro-optical control of all the relevant two-subband SO cou-

plings, including the intrasubband (intersubband) Rashba αν
(η) and Dresselhaus βν (Γ) terms, with ν = 1, 2.

With the mediation of laser field, we demonstrate the con-

tinuous locking of α1 and α2 to equal strength as the gate volt-

age varies. This enables unified electro-optical manipulation

of the two-subband Rashba couplings. Further, by adjusting

the laser fields, we observe that α1 and α2 may have either

the same or opposite signs, or even α2 vanishes while α1 is

finite, greatly fascinating for selective SO control of distinct

subbands. In addition, for the Dresselhaus coupling, we dis-

close two distinct scenarios of SO control depending on the

interplay of the well width and the laser field strength. We

find that β2 may decrease rapidly as the laser field strength-

ens, even though β1 essentially remains constant. Regarding

the intersubband Rashba (η) and Dresselhaus (Γ) SO terms,

which mainly depend on the overlap and parity of the wave

functions of the two subbands, we find that they have rela-

tively weak dependence on laser field. Moreover, the com-

bined effect of the intra- and intersubband SO terms may lead

to crossings and avoided crossings of the energy dispersion of
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Figure 1. (Color online) (a) Schematic diagram of a

Ga0.47In0.53As/Al0.48In0.52As quantum well subject to the gate

(Vg) and intense high-frequency laser (IHFL) fields, with Lw de-

noting the well width. The dashed (red) regions inside the barriers

(Al0.48In0.52As) represents the doping layers with a symmetric

doping condition. The polarization of laser field is in line with the

well growth direction. (b), (c) Laser “dressed” structural potential

(Vw) of the 13-nm well, manifesting two distinct scenarios for the

change of effective well width seen by the two-subband electrons,

with the energy levels E1 and E2 being both below Ec (b) and

Ec sandwiched between E1 and E2 (c). The dotted (black) curve

representing the structural potential in the absence of laser field (i.e.,

αL = 0) is shown alongside, for highlighting the laser “dressing”

effect. The horizontal blue (green) line inside the well indicates

the energy level E1 (E2) of the first (second) subband. (d) E1 and

E2 versus the laser parameter αL. In (b)–(d), the horizontal pink

(dashed) line across the well refers to the critical energy Ec, below

(above) which the well width is effectively quenched (enlarged).

(e) Total self-consistent potential Vsc and wave function profiles ψν
(ν = 1, 2) for the 13-nm well at zero gate bias. The horizontal pink

(dashed) line refers to the critical energy Esc
c with self-consistence,

an analogue to Ec in (b)–(d) without self-consistence.

muti-band spin branches and may even trigger the spin poar-

lization of an originally spin degenerate (unpolarized) band,

tunable by the laser field. Our results should stimulate experi-

ments probing the laser field mediated multi-band SO control

and further enables its spintronic applications.

This paper is organized as follows. In Sec. II, we first

present the laser “dressed” potential for quantum wells due to

the IHFL fields. Then, we derive an effective two-dimensional

(2D) Rashba and Dresselhaus SO Hamiltonian from a three-

dimensional (3D) form for quantum wells with two occupied

electron subbands. Further, we show the expressions of all the

relevant intra- and intersubband SO interactions (both Rashba

and Dresselhaus). The model system that we consider is in-

troduced in Sec. III. In Sec. IV, we present our self-consistent

results and discussion about the laser “dressing” effect me-
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diated electro-optical SO control. We summarize our main

findings in Sec. V.

II. THEORETICAL FRAMEWORK

Here we first outline the “dressing” effect of the intense

high-frequency laser field on the confining potential for elec-

trons residing in quantum wells. Then, we present the deriva-

tion process of transforming the electron Hamiltonian from a

3D form to an effective 2D form. The relevant expressions

of the Rashba and Dresselhaus SO terms of both intra- and

intersubband kinds are also presented.

A. Laser “dressed” potential energy

The ultrashort (femtosecond to attosecond) laser pulses

have enabled the generation of intense light field, whose

magnitude can even far exceed that of the atomic Coulomb

field [65, 66]. Thus, light, which had long been used only as

a probe for matter, has now achieved such huge intensity that

the electronic states bound in atoms, molecules, clusters and

solids could be strongly modified, namely the laser “dressed”

electronic states (or potentials) [65–70]. We adopt similar

approach that has been developed to describe atomic behavior

under the impact of IHFL fields. Specifically, in the dipole

approximation, we consider that the radiation field, which is

assumed linearly polarized, is represented by a monochro-

matic plane wave of angular frequency ω. With this con-

sideration, the electrodynamic potential of the wave reads

A(t) = A0 cos(ωt)eP, with A0 the potential amplitude and eP

the unit vector pointing along the polarization direction. By

applying the Kramers-Henneberger space translation transfor-

mation to the Schrödinger equation, one obtains [56, 57, 71–

74],

− ~
2

2m∗
∇2ψ(r, t) + V(r + α(t))ψ(r, t) = i~

∂ψ(r, t)

∂t
, (1)

where m∗ is the effective electron mass and α(t) = αLsin(ωt)eP

stands for the quiver motion of electrons subjected to the laser

field. Here αL = eA0/m
∗cω denotes the laser parameter and

V(r+α(t)) represents the laser “dressed” potential energy, with

e the electric charge and c the light speed. In terms of the

time-averaged intensity I of the laser field, we rewrite the laser

parameter αL,

αL = (I1/2/ω2)(e/m∗)(8π/c)1/2. (2)

Following the Floquet approach [65], the space translated

version of the Schrödinger equation [Eq. (1)] can be trans-

formed into coupled time-independent differential equations

in terms of Floquet component of the wave function ψ, for

which a Floquet state is the analogue to a Bloch state when

replacing a spatially periodic potential to a time periodic one.

To solve the resulting coupled differential equations, an iter-

ation scheme, which essentially proceeds in inverse powers

of ω, can be utilized. To the lowest order in ω, i.e., in the

high-frequency limit, the set of coupled equations reduces to

a single one [65, 74, 75],

(− ~
2

2m∗
∇2 + V(r;αL))ψ0 = Eψ0, (3)

with ψ0 the zeroth Floquet component and V(r;αL) the

“dressed” confinement potential depending on ω and I

through αL.

Regarding ordinary quantum wells grown along the z||(001)

direction under the IHLF field, for which the polarization ori-

entation is set in line with the growth direction of the well

[Fig. 1(a)], the confining square potential seen by electrons,

i.e., V0
w(z) = δc[Θ(z− Lw/2)+Θ(−z− Lw/2)], arising from the

band offset at the interfaces, is corrected by the laser “dressed”

one (V0
w(z)→ Vw(z;αL)) [61, 76], with

Vw(z;αL) =
δc

π

[

Θ(αL − Lw/2 − z) arccos

(

Lw/2 + z

αL

)

+Θ(αL − Lw/2 + z) arccos

(

Lw/2 − z

αL

)

]

. (4)

Here we have defined δc the conduction band offset, Θ the

Heaviside function and Lw the well width. Clearly, in the limit

of the laser parameter αL approaching zero, Vw recovers the

original square well potential (i.e., V0
w).

So far, the laser “dressing” effect with IHFL field has ex-

hibited strong experimental evidence and has been widely

adopted in various experiments and applications, e.g., atomic

stabilization [67], molecular dissociation [68], higher-order

harmonic generation [77], and control of electronic and opti-

cal properties in semiconductor heterostructures [69, 78, 79],

justifying our proposed approach for SO control is experimen-

tally attainable.

B. SO Hamiltonians: from 3D to 2D

We consider GaInAs/AlInAs quantum wells grown along

the z‖(001) direction. Based on the 8 × 8 Kane model in-

volving conduction and valence bands, an effective 3D Hamil-

tonian only for conducting electrons is obtained through the

folding down procedure [80, 81],

H3D =
~

2k2

2m∗
− ~

2

2m∗
∂2

∂z2
+ Vsc(z) +H3D

R +H3D
D , (5)

where m∗ is the effective mass of the electron and k is the in-

plane electron momentum. The third term Vsc = Vw + Vg +

Vd + Ve refers to the total electron confining potential, which

is determined self-consistently by solving the Schrödinger and

Poisson equations in the Hartree approximation. Here Vw is

the structural potential arising from the band offset but with

the laser “dressing” effect being accounted for [Eq. (4)], Vg

refers to the contribution from the external gate potential, Vd

denotes the modulation doping potential, and Ve stands for

the purely electronic Hartree potential [34, 36, 49, 81]. The

last two termsH3D
R

andH3D
D

correspond to Rashba and Dres-

selhaus SO interactions, respectively. The Rashba term reads
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H3D
R
= η(z)(kxσy − kyσx), where η(z) = ηw∂zVw + ηH∂z(Vg +

Vd + Ve) determines the Rashba coupling strength, and σx,y,z

are the spin Pauli matrices. The parameters ηw and ηH are

related to the bulk quantities of materials [49, 81, 82]. The

Dresselhaus term has the formH3D
D
= γ[σxkx(k2

y − k2
z )+ c.p.)]

with γ the bulk Dresselhaus parameter and kz = −i∂z [13, 80].

Now we are ready to derive an effective 2D model starting

from the 3D Hamiltonian [Eq. (5)]. For this purpose, we first

determine (self-consistently) the spin-degenerate eigenstates

of the quantum well in the absence of SO interaction |kνσ〉 =
|kν〉 ⊗ |σ〉, 〈r|kν〉 = exp(ik · r)ψν(z) and the spin-degenerate

eigenvalues εkν = Eν + ~2k2/2m∗, with ν = 1, 2. Here, Eν
(ψν) is defined as the νth quantized energy level (wave func-

tion), k the in-plane wave vector, and σ = (↑, ↓) the electron

spin component along the z direction. Then, by projecting

Eq. (5) with SO onto the spin-degenerate basis set {|kνσ〉}, we

can obtain the effective 2D form of the Rashba and Dressel-

haus SO Hamiltonian with both intra- and intersuband terms,

for quantum wells of double electron occupancy. Specifically,

under the coordinate system [x‖(100), y‖(010)] with the basis

set ordered by {|k1 ↑〉, |k1 ↓〉, |k2 ↑〉, |k2 ↓〉}, our effective 2D

model with two subbands reads,

H2D =

(

ρ11 ρ12

ρ21 ρ22

)

, (6)

where ρνν = εkν1+αν(σykx−σxky)+βν(σyky−σxkx), ν = 1, 2,

ρ12 = η(σykx−σxky)+Γ(σyky−σxkx) and ρ21 = ρ
†
12

, with 1 the

2 × 2 matrix in both spin and orbital (subband) subspaces, σx,y

the spin Pauli matrices, kx,y the wave vector components along

the x‖(100) and y‖(010) directions. And, the parameters αν (η)

and βν (Γ) represent intrasubband (intersubband) Rahsba and

Dresselhaus SO coefficients, as we specify below.

Note that the effective 2D SO Hamiltonian [Eq. (6)] is writ-

ten in the basis set of the two subbands (with spin), with

ν = 1, 2 the subband indices. Thus, the diagonal elements

(ρ11 and ρ22) are the intrasubband terms belonging to the sub-

bands 1 and 2, and the off-diagonal terms (ρ12 and ρ21 ) refer to

the intersuband SO terms connecting (coupling) the two sub-

bands. Also, for either the intra- or intersubband SO terms,

both Rashba and Dresselhaus couplings are included. Further,

all the SO terms belong to the overall well, rather than to a

local region of the system, as they are determined by the self-

consistent potential and wave functions of the whole system,

below see Eqs. (7) and (8). For more details on how to derive

Eq. (6) from Eq. (5), see the supplementary material (SM).

Further, we should emphasize that the quantum tunnelling

effect has been intrinsically (implicitly) taken into account in

our self-consistent calculation, since we solve the Schrödinger

equation of the whole system comprising both the well and

barrier layers. Thus, our approach is valid for various kinds

of quantum wells, see also our recent works about single

well [81], double well [36] and even multiple wells [50]. The

key is that we solve the Schrödinger equation in a rigorous

way, i.e., for the overall system, instead of just considering

the scattering problem from a local barrier. And, for realistic

considerations, the confining potential for electrons includes

not only the structural potential Vw, but also the doping poten-

tial Vd, the electron Hartree potential Ve, and the external gate

potential Vg.

C. Rashba and Dresselhaus SO coefficients

The Rashba SO coefficients appearing in Eq. (6) can be ex-

pressed as the matrix elements 〈· · · 〉 of the weighted deriva-

tives of the potential contributions,

ηνν′ = 〈ψν |ηw∂zVw + ηH∂z(Vg + Vd + Ve)|ψν′〉, (7)

and the Dresselhaus SO coefficients read

Γνν′ = γ〈ψν |k2
z |ψν′〉, (8)

with the intrasubband (intersubband) Rashba coefficients αν ≡
ηνν (η ≡ η12) and the Dresselhaus coefficients βν ≡ Γνν
(Γ ≡ Γ12). Here we have defined the intrasubband Rashba

term αν as the sum of several constituent contributions, i.e.,

αν = α
g
ν + α

d
ν + α

e
ν + α

w
ν , with α

g
ν = ηH〈ψν|∂zVg|ψν〉 being the

gate contribution, αd
ν = ηH〈ψν |∂zVd|ψν〉 the doping contribu-

tion, αe
ν = ηH〈ψν |∂zVe|ψν〉 the electron Hartree contribution,

and αw
ν = ηw〈ψν|∂zVw|ψν〉 the structural (plus laser-field) con-

tribution. Note that here αw
ν is beyond the usual structural

term, as it contains the contributions not only from the struc-

tural profile of a square well (interface effect) but also from the

laser field (“dressing” effect) following from Vw representing

the laser “dressed” potential [Eq. (4)]. Similarly, the intersub-

band Rashba term is written as η = ηg + ηd + ηe + ηw, while

with ηj (j = g, d, e,w) being the matrix elements between dif-

ferent subbands (cf. ηj and α
j
ν). For convenience, we also use

α
g+d
ν = α

g
ν + α

d
ν and ηg+d = ηg + ηd.

For realistic wells, both the Rashba (αν) and Dresselhaus

(βν) couplings only implicitely depend on the gate potential

Vg (and the laser parameter αL). In other words, these SO

terms not only depend on Vg (and αL), but also on the doping

potential Vd, the electron Hartree potential Ve, and the laser

“dressed” structural potential Vw. Therefore, for each value

of Vg (and αL), one has to self-consistently (numerically) de-

termine the total confining potential Vsc = Vw + Vg + Vd + Ve

and the eigenenergy (and wave functions) of the system, and

further the relevant SO coefficients [Eqs. (7) and (8)].

Despite the numerical restraint, one can still rewrite the

Rashba coefficients in a more physical way for functional

form by introducing an effective force field, Fν
eff
= Fν

gate+Fν
e +

Fν
d
+ Fν

laser
, in which Fν

gate = −〈∂zVg〉ν, Fν
d
= −〈∂zVd〉ν, Fν

e =

−〈∂zVe〉ν, and Fν
laser
= −〈∂z(Vw −V0

w)〉ν, with V0
w the structural

potential in the absence of laser field [see Eq. (4)]. Specifi-

cally, since the total force on bound states is zero (Ehrenfests

theorem) [80], i.e., 〈∂zVsc〉ν = 〈∂z(Vw+Vg+Vd+Ve)〉ν = 0, the

Rashba coefficients in terms of the bulk Rashba parameters ηH

and ηw [81, 83] and the effective force field can be rewritten

as,

αν = (ηw − ηH)Fν
eff . (9)

In particular, we turn to the change of αν due to a variation

of Fν
eff

, i.e., a variation of Vg (and αL), giving rise to δαν =
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(ηw − ηH)(δFν
gate+ δFν

e + δFν
d
+ δFν

laser
). In our model, the vari-

ation of δFν
d
≃ 0 since the doping potential does not vary with

both the gate and laser field. Also, in a special case of constant

electron density [84], δFν
e is expected to be small [85] since

the rearrangement of the quantum mechanical distributions of

electrons may be negligible. With these particular considera-

tions, we have δαν ≃ (ηH − ηw)(δFν
gate + δFν

laser
), depending on

external gate and laser force fields. Regarding the Dresselhaus

coefficents βν [Eq. (8)], with the help of Schrödinger equation,

it is straightforward to rewrite βν = γ(2m∗/~2)[Eν − 〈Vsc(z)〉ν],
with Eν the ν-th subband energy level.

In addition, for better understanding the effective 2D SO

model that we construct, in the SM we show a schematic with

both spin and subband degrees of freedom (Fig. S4), pictori-

ally illustrating all the relevant SO terms, of the intrasubband

(αν and βν, within each subband) and intersuband (η and Γ,

connecting the two subands) SO terms with both Rashba and

Dresslehaus couplings.

III. SYSTEM AND PARAMETERS

We focus on ordinary (001)-grown Ga0.47In0.53As quan-

tum wells of width Lw sandwiched between Al0.48In0.52As

barriers [Fig. 1(a)], similar to the experimental sample of

Refs. [81, 86, 87]. The structure is subjected to both the ex-

ternal gate bias (Vg) and the IHFL field, allowing for com-

bined (electro-optical) control of the SO coupling by electri-

cal and optical means. The ionized dopants of width 6 nm in

Al0.48In0.52As barrier layers sit 10 nm away from either side

of the well with the same doping density ρ = 8 × 1018 cm−3,

ensuring symmetric doping condition. The band offset at the

Ga0.47In0.53As/Al0.48In0.52As interfaces is set as δc = 0.52

eV [49, 88]. The temperature is 0.3 K. Note that the effect

of temperature in the self-consistent procedure mainly enters

the Fermi-Dirac distribution [34, 49, 81], which favors the oc-

cupation of higher-energy subbands at elevated temperatures.

Thus, our results are essentially also valid for temperatures

above 0.3 K within a regime that the higher third subband re-

mains unoccupied.

We consider both a relatively narrow well and a relatively

wide well, of the width of Lw = 13 and 20 nm (unless stated

otherwise in Sec. IV E), respectively, for covering a more

complete picture of the laser “dressing” effect mediated SO

control. The Fermi level EF, with which one can adjust the

subband occupations, is pinned at a constant for a given quan-

tum well to determine our self-consistent outcome [34, 89].

And, the gate bias Vg is utilized for a simultaneous tuning of

the electron occupancy and the structural inversion asymme-

try (SIA) of the system. Further, by means of the laser field,

which “dresses” the confining potential for electrons hosted in

quantum wells, one can alter the extent of quantum confine-

ment. For the two widths of wells, all the relevant parameters

are the same, except for the Fermi level, which determines

the areal electron density. In order to make our system sus-

tain the condition of double electron occupancy in the whole

range of gate and laser fields considered, we set the Fermi

level EF = −0.45 and −0.40 eV for the well of width Lw = 13

and 20 nm, respectively. Note that the Fermi level is readily

tunable in experiments, e.g., via electrical means [90, 91].

Referring to the IHFL field, the effect of which depends

on both the laser intensity I and its frequency ω of oscil-

lation. For quantum wells exposed to laser field, the high-

frequency regime in general means that the condition of

ωτ >> 1 satisfies [92], where τ ∼ ps denotes the transit

time of electrons, so that the electron could see an evident

effect of the laser “dressed” potential. The frequency in such

regime could range from several to even thousands of THz,

depending on specific applications [93, 94]. In contrast, in

the low-frequency regime of ωτ << 1 (not the focus of this

work), the electron is too fast for the transit process to see

the laser “dressing” effect [95]. And, we restrict ourselves

to SO properties without optical transitions, and only con-

sider a scenario that the laser is tuned to be off-resonance

with both intersubband (condution-conduction bands) and in-

terband (conduction-valence bands) transitions [96].

Besides the laser frequency, for ensuring a pronounced laser

effect, we also consider the intense-laser regime, in which

the amplitude of the electron oscillation (i.e., laser parameter

αL) is of the same order of (or greater than) the characteris-

tic size of the bound system, namely the effective Bohr radius

α∗
B
= ~2ǫr/m

∗ke2 [97, 98], with e the free electron charge, ǫr

the relative dielectric constant, and m∗ the effective electron

mass. This directly yields I ∼ Ic = m∗2α∗
B

2ω4cǫ0ǫ
1/2
r /2e2.

For our GaInAs wells, α∗
B
= 14.5 nm and Ic = 9 × 1011

W/cm2 at ω/2π = 100 THz, for which the high-frequency

dielectric constant of ǫr = 11.7 and effective electron mass

m∗ = 0.043m0 are considered [88, 99, 100]. Here the laser

parameter range that we consider is αL = 0 − 7 nm, corre-

sponding to the maximum light intensity of about 2 × 1011

W/cm2 [101], comparable to Ic.

Note that both the high frequency of hundreds of THz and

the intense field of about 1012 W/cm2 are widely adopted in

experiments [58, 102–105]. Further, even a laser field with a

huge light intensity of about 1022 W/cm2 and high frequency

of about one thousand THz has also been attainable in exper-

iments [106, 107]. All these justify the laser field range that

we consider as well as our theoretical prediction being feasi-

ble for future experimental verifications.

With all these considerations, we are ready to discuss our

self-consistent outcome and combined (electro-optical) con-

trol of SO couplings by gate and laser fields.

IV. RESULTS AND DISCUSSION

Below we discuss the laser field mediated electro-optical

control of the SO couplings. To proceed in a systematic way,

we first present our self-consistent outcome for quantum wells

in the presence of IHFL field. Then, we discuss the cases

of SO manipulation by purely electrical and optical means.

Further, we dig into the combined impact of gate and laser

fields on the Rashba and Dresselhaus SO terms.
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A. Self-consistent outcome about laser “dressed” potential:

Effective well width and band offset

Before performing the self-consistent calculation, we first

look into how the laser field alters the pure structural potential

Vw for electrons [Eq. (4)]. In Fig. 1(b), we show the structural

potential for the 13-nm well in both cases of the laser parame-

ter αL = 2 nm (solid curve) and 0 (dotted curve), for highlight-

ing the impact of laser field. As expected, the IHFL field by

virtue of the laser “dressing” effect, which varies the effective

width of the well, greatly alters the potential profile. Specif-

ically, there emerges two distinct scenarios characterized by

a critical energy Ec = δc/2 (i.e., half of the band offset), as

indicated by the horizontal pink (dashed) line across the well.

In the first scenario, which refers to the electron energy being

below Ec (i.e., Vw < Ec), the laser field tends to shrink the

width of the well. On the other hand, in the second scenario

of Vw > Ec, the effective well width appears to be enlarged, cf.

dotted and solid curves in Fig. 1(b). The “dressing” effect in-

duced two scenarios of the variation of the effective well width

directly alters the quantum confinement, facilitating flexible

control of the Dresselhaus coupling via laser field.

Now we examine the ordering of the critical energy Ec and

the energy levels E1 and E2 for the 13-nm well, to determine

which scenario the two-subband electrons are subject to. For

a lower value of the laser parameter with αL = 2 nm, we

find that the energy levels of the two subbands are both be-

low Ec, cf. E1, E2 and Ec [Fig. 1(b)]. Thus, both subbands

comply with the aforementioned first scenario, in which the

quantum confinement for electrons intensifies with increasing

laser parameter, due to shrinking of the effective well width.

Consequently, as αL grows the energy levels of both subbands

E1 and E2 tend to increase. Thereby, it is rational to conjec-

ture that E2 will eventually match with Ec [108], the value of

which is pinned at δc/2, and further rise above it, resulting in

Ec being sandwiched betweenE1 andE2, as shown in Fig. 1(c)

with αL = 5 nm. In other words, for a relatively larger value

of laser parameter, the two subbands may pertain to different

scenarios, with the first- and second-subband electrons seeing

the effective well width being quenched (first scenario) and

widened (second scenario), respectively. The evolution of E1

and E2 against αL reflecting the optical stark effect [62–64],

is shown in Fig. 1(d), from which one can find that E2 and Ec

match at about αL = αL,c = 4.8 nm.

To unveil the laser “dressing” effect on our self-consistent

outcome, we perform a detailed calculation by solving the

Schrödinger and Poisson coupled equations for 2D electrons

residing in quantum wells within the Hartree approximation.

In Fig. 1(e), we show the self-consistent laser “dressed” po-

tential Vsc and wave functions ψν of the two subbands for the

13-nm well with the laser field αL = 5 nm (solid curves).

The self-consistent potential in the absence of laser field (i.e.,

αL = 0) is also shown alongside (dotted curve) for highlight-

ing the laser “dressing” effect. In addition to the quenching

and widening of the effective well width inherited from the

structural potential Vw, we observe that the laser field also ef-

fectively lowers the barrier height (i.e., an effective or “self-

consistent” band offset) of the total self-consistent potential
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Figure 2. (Color online) (a), (b) Rashba αν and Dresselhaus βν
(ν = 1, 2) coefficients as functions of the gate potential Vg at zero

laser field (a) and of the laser parameter αL at zero gate bias (b), for

the Ga0.47In0.53As/Al0.48In0.52As well of width Lw = 13 nm. (a) and

(b) refer to the cases of SO manipulation by purely electrical and

optical means, respectively. (c), (d) Dependence of the correspond-

ing SO coefficients on Vg for the well at the laser parameter αL = 3

nm (c) and on αL at the gate potential Vg = −0.16 eV (d). In (d), the

shadowed region indicates that the Rashba α1 and Dresselhaus β1 co-

efficients for the first subband essentially match in their magnitudes

when αL ranges from 0 to 2.5 nm.

Vsc seen by electrons, cf. dotted and solid (red) curves in

Fig. 1(e). The overall reduction of the “self-consistent” barrier

height, which leads to the weakening of quantum confinement

for electrons, is attributed to the laser field modulated electron

density and further the resulting electron Hartree potential Ve,

see the SM.

The horizontal pink (dashed) line in Fig. 1(e) represents

where the critical energy with self-consistence lies, i.e., Esc
c

as indicated by the superscript “sc”, an analogue to Ec in

Figs. 1(b)–1(d) without self-consistence. Even though both

the energy levels and the critical energy in their magnitudes

are different between the cases of with (e.g., Esc
c ) and with-

out (e.g., Ec) self-consistence, the underlying physics about

the two scenarios for the change of the effective well width is

clearly the same. We should emphasize that the self-consistent

Esc
c varies with the laser field parameter αL, in contrast to the

Ec, which is only related to the structural potential Vw (no

self-consistence) and thus maintains a constant of δc/2 for all

values of αL.

The above features of our self-consistent “dressed” poten-

tial are helpful in understanding the electro-optical control of

SO couplings by gate and laser fields. To unveil the underly-

ing physics systematically, we first examine the SO manipula-

tion by purely electrical and optical means below in Secs. IV B
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and IV C, respectively.

B. Usual elecrical SO control

In Fig. 2(a), we show the gate Vg dependence of the Rashba

αν and Dresselhaus βν coefficients of the two subbands (ν =

1, 2) for the 13-nm well with αL = 0. At zero gate bias,

since the well is lack of the SIA, the Rashba coefficients α1

and α2 for both subbands identically vanish. When Vg is

switched on, the gate bias induced SIA arises, giving rise to

nonzero Rashba couplings. As expected, it is found that α1

and α2 exhibit similar gate dependence, for which they have

the same sign and both increase in magnitude with increas-

ing Vg. Also, the sign of α1 and α2 simultaneously reverses

when Vg is across zero, as a result of flipping of the gate in-

duced SIA. Physically, the sign change of αν reflects the rever-

sal of the direction of force field [i.e., derivative of potential

energy, Eq. (7)] seen by electrons, corresponding to flip of

SIA [50, 81, 89]. In general, the Rashba terms of the two sub-

bands have different strengths, which we mainly attribute to

the contribution of the electron Hartree potential Ve [Eq. (7)].

Since the electron Hartree force field (i.e., Fe = −∂zVe) in gen-

eral has opposite signs on the left and right sides of the well

(see the SM), it leads to compensating effect on contributing

to Rashba couplings of the two subbands.

In contrast to the Rashba coupling, the Dresselhaus terms β1

and β2, which mainly depend on quantum confinement [e.g.,

well width], instead of the SIA, are in general barely con-

trolled through electrical means [52], as shown in Fig. 2(a).

Below, we resort to the laser field for manipulating the Dres-

selhaus SO coupling in an optical manner.

As a remark, contrasting values of α1 and α2 arise from

distinct local symmetries seen by electrons of the two sub-

bands. Further, α1 and α2 may even possibly have oppo-

site signs [36]. Similarly, the two-subband electrons may

also see distinct quantum confinements, giving rise to β1 and

β2 of the two subbands being different. Note that there are

also experimental evidence of the distinction of the Rashba

(and Dresselhaus) coefficients between the two subbands, see

Refs. [46, 109, 110].

C. Pure laser-field control of Dresselhaus SO coupling

Figure 2(b) shows the Rashba and Dresselhaus strengths

for the 13-nm well with Vg = 0, as functions of the laser pa-

rameter αL. Since the laser field maintains the inversion sym-

metry of the well at zero gate bias [Figs. 1(b) and 1(c)], the

Rashba coefficients of the two subbands are zero for all val-

ues of αL. In contrast, for the Dresselhaus coupling, we find

that even though β1 remains essentially constant as the laser

field strengthens, β2 starts to exhibit a considerable reduction

when αL is greater than about 3 nm. The contrasting laser-

field dependence of the Dresselhaus terms of the two subbands

directly follows from our self-consistent solutions about the

two distinct scenarios, which are associated with the ordering

of three typical energies of E1, E2 and Esc
c (analogue to Ec))

[Sec. IV A], as we analyze next.

For electrons occupying the first subband, since the cor-

responding energy level E1 constantly lies below the critical

energy Esc
c in the whole range of laser field strengths consid-

ered [108], they will see the quantum well with a shrinking

width. Meanwhile, the laser “dressing” effect leads to an over-

all weakening of quantum confinement of the well because the

effective (“self-consistent”) barrier height is reduced. These

two compensating contributions to quantum confinement are

the resource that leads to β1 remaining essentially constant as

the laser parameter varies.

For the second-subband electrons, the circumstance is in

stark contrast. On the one hand, for a lower value of the laser

parameter αL, the relation E2 < Esc
c holds [Sec. IV A]. This

situation is similar to that for the first subband, resulting in

β2 also being weakly dependent of the laser parameter for αL

less than 3 nm, a value at which E2 and Esc
c essentially match.

Note that due to the self-consistent correction, here the laser

field needed (i.e., αL = 3 nm) to matched E2 and Esc
c deviates

from the one of αL = 4.8 nm, which is based on an illumi-

nating (though lack of self-consistence) estimate for the struc-

tural potential Vw only. On the other hand, when αL is greater

than 3 nm, i.e., E2 > Esc
c , the electrons occupying the second

subband will see the well having not only a widened width

but also a lowered offset, both of which weaken the quantum

confinement, giving rise to considerable reduction of β2 with

increasing αL.

D. Unified electrical Rashba SO control of distinct subbands

mediated by the laser field

Having the knowledge of SO control by purely electrical

[Sec. IV B] and optical [Sec. IV C] means, we are ready to

turn to the manipulation of SO coupling by both gate and laser

fields. We first look into the laser-field mediated electrical

control of the Rashba coupling. Figure 2(c) shows the Rashba

coefficients of the two subbands as functions of Vg for the 13-

nm well with the laser parameter αL = 3 nm. We observe that,

in certain range of laser field strengths, the “dressing” effect

may balance the SIA seen by electrons of the two subbands,

resulting in α1 and α2 of essentially equal strength at αL = 3

nm. Remarkably, the equality condition of α1 = α2 remains in

the whole range of gate voltages considered here. This con-

tinuous locking of α1 and α2 to equal strength with varying

gate fields provides a means for unified manipulation of the

two-subband Rashba SO couplings.

For unveiling how the laser field triggers the locking of the

Rashba terms of the two subbands, in Fig. 2(d) we show the

dependence of SO terms on the laser field for the 13-nm well

at Vg = −0.16 eV. Note that at zero gate bias both α1 and α2

identically vanish due to lack of SIA of the well (symmetric

doping condiction), independent of the laser field [Fig. 2(b)].

When the gate potential deviates from zero, we find that α1

tends to decrease (though very slightly) while α2 increases

as the laser field strengthens. Since α1 at zero laser field is

greater than α2 because of the distinction of local symmetry
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Figure 3. (Color online) (a) Zero-bias self-consistent potential Vsc

and wave functions ψν for the 20-nm well at αL = 5 nm, with the

dotted (red) curve referring to Vsc at αL = 0. The horizontal blue

(green) line inside the well indicates the energy level E1 (E2) of the

first (second) subband, and the horizontal pink (dashed) line across

the well refers to the critical energy Esc
c with self-consistence. (b)

Rashba αν and Dresselhaus βν SO coefficients versus αL for the well

at Vg = −0.28 eV. The left (right) black circle indicates α2 = 0

(α1 = α2) occurring at αL = 1.19 nm (5.42 nm). (c), (d) Distinct

contributions to the Rashba strength of the first (c) and second (d)

subbands as functions of αL, including the gate plus doping contri-

bution α
g+d
ν , the electron Hartree contribution αe

ν, and the structural

contribution (with the laser “dressing” effect) αw
ν .

seen by electrons of the two subbands, the latter will even-

tually be equal to the former as αL increases and further ex-

ceeds it. This indicates that even though the laser field does

not break the inversion symmetry of a symmetric well at zero

bias, it indeed alters the degree of SIA of the well when the

gate field is present. The underlying reason is that the “dress-

ing” effect results in a change of quantum confinement, which

alters the energy levels E1 and E2 and further the environ-

ment (symmetry) felt by the first- and second-subband elec-

trons. Here the matching of α1 and α2 at αL = 3 nm indi-

cates that when the laser field parameter ranges from 0 to 3

nm, it tends to balance the SIA of the well seen by electrons

of the two subbands. We should emphasize that the opposite

laser-field control of the two-subband Rashba couplings with

more intriguing SO features (e.g., sign change) becomes even

more distinct in wider quantum wells, as we will analyze more

deeply later on in Sec. IV F.

E. Matching Rashba and Dresselhaus SO strengths

The Rashba and Dresselhaus SO couplings for electrons act

as effective magnetic fields with momentum-dependent direc-

tions. This causes spin decay as the spins undergo arbitrary

precessions about these randomly oriented SO fields due to

momentum scattering [3, 80], which usually occurs in 2D dif-

fusive systems. However, when the strengths of Rashba and

Dresselhaus terms match, the competing effects of the two

types of SO interactions can (partially) cancel each other out

so that the total SO field becomes unidirectional, thus render-

ing the electron spin immune to decay. In this case, a he-

lical spin-density wave excitation, i.e., persistent spin helix

(PSH) [17–19, 55], emerges for 2D electron gases. Also, for

quantum heterostructures with two occupied subbands, we re-

cently revealed that the system can sustain an intriguing spin

texture of persistent skyrmion lattice with topological proper-

ties [36], when the relevant SO strengths satisfy the condition

of α1 = β1 and α2 = −β2 [36], under which the SO fields of

the two subbands are “crossed”.

The matching condition of the Rashba and Dresselhaus

SO strengths is usually achieved by resorting to electrical

means [34, 36, 55], as also shown in Fig. 2(d) with α1 = β1

at Vg = −0.16 eV. Alternatively, from Fig. 2(d), here we re-

veal that the state of PSH can also be realized in an optical

manner, i.e., via laser field. Remarkably, for the first subband,

as both the Rashba and Dresselhaus strengths exhibit weak

dependence on αL, the condition of α1 = β1 essentially re-

mains for a broad range of laser field strengths, see the encir-

cled (shallowed) region in Fig. 2(d). This greatly mitigates the

stringency of the matching condition of the Rashba and Dres-

selhaus SO strengths at a unique value of laser field, highly

desirable for practical applications. Further, the essential in-

dependence of “α1 = β1” condition (referring to the first sub-

band) on αL also facilitates the formation of the PSH states for

both subbands, as one can just match the Rashba and Dressel-

haus strengths of second subband by fine tuning the laser field.

Note that the locking of matching condition between α1 and

β1 becomes more distinct for even narrower wells. In the SM,

Fig. S2(e) shows the laser field control of Rashba and Dres-

selhaus SO terms in a 10-nm well, for which the “α1 = β1”

condition essentially satisfies in an even broader laser field

range. Notably, the matching between α1 and β1 and between

α2 and β2 are both achieved at about αL = 3.27 nm, allowing

for the simultaneous formation of persistent spin helices for

the two subbands. Also, here we mainly focus on the general

picture of the laser field controlled persistent spin helix, for

which the linear Dresselhaus term in general dominates over

the cubic one, with the latter breaking the SU(2) symmetry

of the PSH state and leading to spin decay. Strictly speaking,

one also needs to take into account the detrimental cubic term

to determine a more precise condition that the PSH forms, by

introducing a “renormalized” linear Dresselhaus term as we

did in recent works [34, 36, 81].

We should emphasize that the two ways, i.e., the electrical

(gate field) and optical (laser field) means, are complementary

to each other in facilitating control of various SO terms. For

purely electrical means, since the linear Dresselhaus terms βν
mainly depend on quantum confinement (rather than the sym-

metry of the system) is essentially immune to electrical con-

trol, this to certain extent restrains the flexibility of controlling

the PSH [34]. The advantage of laser field is that it is feasible
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to achieve flexible control of the linear Dresselhaus term in

particular for the second subband, in addition to the Rashba

and cubic Dresselhaus terms. On the other hand, when the

gate bias is zero, the system is in the symmetric configuration,

under which no matter what the light intensity and laser fre-

quency are, the Rashba term maintains zero. Remarkably, by

combing the two ways, it even eases the difficulty of simul-

taneously achieving the PSH states of the two subbands. The

key is that one can just tune α2 and β2 to equal strength since

α1 and β1 turn to essentially remain locked to equal strength

as the laser field varies [cf. Fig. 2(d) and Fig. S2(e)], pro-

viding an ideal platform for exploring two copies of PSHs in

quantum systems.

F. Electro-optical SO control for a relatively wide well

Now, we move to another regime of electro-optical control

of the SO terms in a relatively wide well of Lw = 20 nm.

In Fig. 3(a), we show the self-consistent potential and wave

functions of the two subbands for the 20-nm well at zero gate

bias. It is found that the general feature of the laser “dressing”

effect on the potential profile is similar to that for the 13-nm

well, cf. dotted and solid (red) curves for the potential pro-

file with the laser parameter αL = 0 and 5 nm, respectively.

However, due to weak quantum confinement in a wide well,

here the energy levels E1 and E2 of the two subbands are both

below the critical value of Esc
c , which characterizes two dis-

tinct scenarios for the change of effective well width due to

the laser “dressing” effect, even at a higher laser field strength

of αL = 5 nm, cf. the horizontal blue (green) lines inside the

well for E1 (E2) and the pink (dashed) line across the well for

Esc
c . This indicates that the two subbands both comply with

the first scenario (Sec. IV A) in the whole range of laser field

strengths considered, in contrast to that for the 13-nm well.

Figure 3(b) shows the Rashba and Dresselhaus SO coef-

ficients as functions of laser parameter for the 20-nm well at

Vg = −0.28 eV. We first look into the laser field dependence of

Dresselhaus terms. Since both subbands comply with the first

scenario, in which the energy levels E1 and E2 and the critical

energy Esc
c are in ascending order, the compensating effect of

the effective well width and the “self-consistent” band offset

on quantum confinement [Sec. IV A], results in β1 and β2 re-

maining weakly dependent of the laser field for all values of

αL considered. This is in contrast to that of the 13-nm well

for which E2 could be either below or above Esc
c depending

on the strength of laser field, cf. Figs. 3(b) and 2(d). On the

other hand, for the Rashba coupling, as the laser parameter

varies, we reveal that the Rashba coefficients α1 and α2 of the

two subbands could have either the same or opposige signs,

or even α2 vanishes while α1 is finite, greatly fascinating for

selective SO manipulation. Below we analyze these features

in more detail.

We reveal two contrasting regimes for the laser field control

of the Rashba coupling, marked off by the laser parameter at

αL = αL,R ∼ 1.19 nm, as indicated by the left (black) circle

in Fig. 3(b). Specifically, for αL being greater and lower than

αL,R, we find that the Rashba coefficients α1 and α2 have the

same and opposite signs, respectively. This makes it feasible

for tuning the persistent spin helices of the two subbands [17–

19] being collinear or “crossed” through the laser field, with

the latter “crossed” case even resembling the topologically

nontrivial skyrmion-lattice spin density excitation, i.e., per-

sistent skyrmion lattice [36]. Further, in the first regime of

αL < αL,R, the amplitudes of α1 and α2, which have opposite

signs, reduce as the laser field strengthens, while in the sec-

ond regime for αL > αL,R, they have the same sign and exhibit

opposite dependence on αL, greatly fascinating for selective

control of the SO couplings of distinct subbands.
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Figure 4. (Color online) Self-consistent potential Vsc and wave func-

tions ψν (ν = 1, 2) for the 20-nm well at αL = 1.19 (a) and 5.42 nm

(b). The horizontal blue (green) line inside the well indicates the en-

ergy level E1 (E2) of the first (second) subband. (c), (d) Dependence

of the intersubband Rashba η and Dresselhaus Γ coefficients on αL

for the well at Vg = 0 (c) and −0.28 eV (d). In (a) and (b), the gate

potential is chosen as Vg = −0.28 eV; in (c) and (d), several con-

tributions to η are also shown, including the gate plus doping ηg+d,

the electron Hartree ηe and the laser “dressed” structural ηw contri-

butions.

Right at the point of αL = αL,R bridging the two regimes, it

is clear that α2 identically vanishes while α1 is finite, see the

left (black) circle in Fig. 3(b). We first proposed in Ref. [81]

that the condition of α1 , 0 and α2 = 0 could simultane-

ously hold. Here we achieve this condition by fine tuning the

laser field. To better understand this, in Fig. 4(a) we show the

self-consistent outcome for the well at αL = αL,R. It is found

that ψ1 and ψ2 of the two subbands tend to localize on oppo-

site sides of the well. Specifically, the electrons of the first-

subband are apt to be localized on the right side of the well,

while the second-subband electrons tend to be concentrated on

the left side, cf. ψ1 and ψ2 in Fig. 4(a). This enables the feasi-

bility of vanishing α2 even for an asymmetric quantum well,

due to the delicate cancellation of contributions from the elec-
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tron Hartree potential and the gate plus doping potential to the

Rashba coupling [Eq. (7)]. And, within the second regime of

αL > αL,R, as a result of contrasting dependence of α1 and α2

on the laser field, we reveal that they match with not only the

same sign but also the same magnitude at about αL = 5.42

nm. Further, it is remarkable that when αL is around 5.42 nm,

due to a delicate interplay of the laser and gate fields, we find

that even though the quantum well at Vg = −0.28 eV is struc-

turally asymmetric, it attains a seemingly symmetric configu-

ration, as shown in Fig. 4(b) for the self-consistent solutions.

From Fig. 4(b), we can see that the electrons occupying the

two subbands are almost equally distributed on the left and

right sides of the well, despite the potential in its profile em-

bracing an overall inversion asymmetry. This indicates that,

as the laser field increases, it may to certain extent balance the

electron distributions between the left and right sides of the

well, cf. Figs. 4(a) and 4(b).

To further explore the underlying physics beneath the

electro-optical control of the Rashba coupling, in Figs. 3(c)

and 3(d), we show the Rashba coefficients of the two subbands

and the corresponding constituent contributions as functions

of αL for the 20-nm well at Vg = −0.28 eV. For the gate plus

doping contribution α
g+d
ν , since the corresponding potential

Vg+d is linear across the well region (see the SM), which refers

to a constant force field of Fg+d = −dVg+d/dz, it is straight-

forward that the equality α
g+d

1
= α

g+d

2
follows. In contrast to

α
g+d
ν , the electron Hartree contributions αe

1
and αe

2
essentially

have opposite signs, cf. αe
1

[Fig. 3(c)] and αe
2

[Fig. 3(d)]. This

is because the electrons occupying the first and second sub-

bands tend to reside in different sides of the well. As a result,

the electron Hartree force field Fe = −dVe/dz felt by the two-

subband electrons are mostly opposite in the sign aross the

well region. Clearly, it is the electron Hartree contribution αe
ν

dominating why the total Rashba coefficients α1 and α2 may

have opposite signs. Further, both αe
1

and αe
2

basically van-

ish around αL equal to 5.42 nm, following from that the sys-

tem features a seemingly symmetric configuration [Fig. 4(b)],

as expected. Regarding the constituent contribution from the

laser “dressed” structural potential, i.e., αw
1

and αw
2

, we find

that the former decreases while the latter increases as the laser

field strengthens, arising from the laser field modulated elec-

tron redistributions between the left and right sides of the well.

Now we further analyze how α2 can be zero for a well with

the SIA, in terms of its constituent contributions. According to

Ehrenfests theorem, there’s always 〈∂zV〉ν = 〈ψν |∂z(Vw +Vg +

Vd + Ve)|ψν〉 = 0, namely, 〈ψν|∂zVw|ψν〉 = −〈ψν|∂z(Vg + Vd +

Ve)|ψν〉, from which the Rashba term given in Eq. (7) rereads

αν = (1−ηH/ηw)αw
ν . That means that αν is equal to αw

ν up to a

constant prefactor, implying that when the structural contribu-

tion is zero the total Rashba coefficient is bound to vanish, cf.

αw
2

and α2 in Fig. 3(d). The vanishing Rashba coupling for a

given subband can in principle be used to selectively suppress

the SO-induced spin relaxation mechanisms among distinct

subbands.

G. Intersubband Rashba and Dresselhaus couplings

Figure 4(c) (4(d)) shows the intersubband Rashba coupling

η including its constituent contributions ηg+d,e,w and the Dres-

selhaus coupling Γ for the 20-nm well at Vg = 0 (−0.28 eV).

At zero gate bias, the well is structurally symmetric. Thus,

due to distinct parities of the wave functions ψ1 and ψ2 of the

two subbands, the Dresselhaus strength Γ, independent of the

strength of laser field, maintains zero [Fig. 4(c)]. On the other

hand, when the gate bias is switched on with Vg = −0.28 eV,

even though Γ is mostly finite as the laser parameter varies,

we observe that it vanishes again at about αL = 5.42 nm

[Fig. 4(d)], for which the well embraces a seemingly sym-

metric configuration [Fig. 4(b)]. And, as the laser parameter

further increases, the sign of Γ is even reversed, similar to the

gate dependence of intrasubband Rashba terms [Fig. 2(a)].
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Figure 5. (Color online) Rashba band dispersion (scaled by a factor

of 100 for visibility) with both intra- and intersubband SO terms ver-

sus kx [|| (100)] of the AlInAs/GaInAs well, for {α1 > 0, α2 < 0} (a),

{α1 > 0, α2 = 0} (b), and {α1 > 0, α2 > 0} (c). The dotted curves

correspond to the uncoupled (η = 0) bands, and for η , 0 the bands

exhibit avoided crossing (a), (b), or maintain crossing (c), depending

on the combined effect of intra- and intersubband terms. (a)–(c) refer

to three distinct scenarios, which can be tunable via varying the laser

field. The magnitudes of Rashba coefficients are chosen for the 20-

nm well at Vg = −0.28 eV and αL = 5.42 nm [Figs. 3(b) and 4(d)],

i.e., α1 = −α2 = 1.3 meV nm for (a), α1 = 1.3 meV nm, α2 = 0 for

(b), and α1 = α2 = 1.3 meV nm for (c), and η = −4.15 meV nm. In

(b), the combined effect of intra- and intersubband SO terms triggers

the spin polarization for the second subband from an initially spin

degenerate (unpolarized) one.

Regarding the Rashba strength |η| = |ηg+d + ηe + ηw|, it

mainly depends on the overlap of the wave functions of the

two subbands. As a result, η is even approaching its maximal

value at about αL = 5.42 nm, for which the distributions of the

two-subband wave functions are essentially symmetric. This

is in stark contrast to the intersubband term Γ, which identi-

cally vanishes in symmetric configuration due to distinct pari-

ties of ψ1 and ψ2. And, because of the orthogonality condition

of ψ1 and ψ2, the gate plus doping contribution ηg+d remains

zero in either case of the gate bias being switched on or off

[Fig. 4(c) and 4(d)], following from the gate plus doping po-

tential Vg+d is linear (i.e., ∂zVg+d is constant) across the well

region (see the SM). Therefore, the intersubband Rashba term

essentially only depends on the electron Hartree ηe and the

structural ηw contributions. Despite detailed SO features, we

should emphasize that the intersubband terms are in general
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weakly dependent of the gate or laser fields.

For a complete picture of the gate dependence of intersub-

band SO couplings, in the SM we show the full electric swing

(αL = 0) of Γ and η within both positive and negative Vg

ranges [Fig. S3]. When Vg varies from positive to negative

values, we reveal that the sign of Γ will be switched, simi-

lar to intrasubband Rashba coefficients αν [see Figs. 2(a) and

2(c)]. This is in contrast to intrasubband Dresselhaus coeffi-

cients βν, which mainly depend on quantum confinement and

are essentially immune to electrical control [see Figs. 2(b) and

2(d)]. Referring to η, which mainly depends on the overlap of

wave functions of the two subbands, it together with its con-

stituent contributions (i.e., ηj, j = g+d,w, e) remains the same

sign in the whole range of gate fields considered.

H. Combined effect of intra- and intersubband SO terms

By adjusting the laser field, as we have already revealed, the

Rashba coefficients α1 and α2 of the two subbands may have

the same or opposite signs, or even α2 vanishes while α1 is fi-

nite [Figs. 3(b)–3(d)]. This together with the intersubband SO

term, may lead to intriguing SO effects. For simplicity, here

we mainly focus the Rashba band dispersion. A neat form of

the 4 × 4 matrix form of the two-subband Rashba model with

analytical solutions is given in the SM. In Figs. 5(a)–5(c), we

show the Rashba dispersions with both intra- and intersub-

band SO terms, in the cases of {α1 > 0, α2 < 0}, {α1 > 0,

α2 = 0} and {α1 > 0, α2 > 0}, respectively. It is found that the

combined effect of intra- and intersubband SO couplings may

lead to avoided crossings among distinct spin branches of the

two subbands, when α1 and α2 have opposite signs [Fig. 5(a)]

or even when α2 vanishes while α1 is finite [Fig. 5(b)]. In

contrast, when α1 and α2 have same sign, the crossing fea-

ture remains as compared to the uncoupled (i.e., η = 0) bands

[Fig. 5(c)]. Notably, in the case of α2 = 0 [Fig. 5(b)], the sec-

ond subband which is initially spin unpolarized [dotted (blue)

curves for spin-degenerate branches], may become spin polar-

ized [solid (yellow and blue) curves for spin-split branches],

entirely because of the interplay of intra- and intersubband SO

interactions. Specifically, the intersubband term behaves as a

media between the two subbands and transfers the spin polar-

ization of the first subband to the second one.

The intersubband SO interaction induced avoided crossings

have been experimentally verified in Rashba surface states of

Bi/Ag(111) and Bi/Cu(111) [46, 111] even with hybridized

spin textures. Very recently, Song et al. put forward an un-

conventional two-band Rashba model with distinct symme-

tries between intra- and intersubband terms, giving rise to gi-

ant inverse Rashba-Edelstein Effect [112]. In addition, the in-

tersubband term also underpins several other spin related phe-

nomena including the intrinsic spin Hall effect [47, 113], spin

filtering [114], and unusual zitterbewegung [115, 116]. Also,

when the Rashba and Dresselhaus SO terms (both intra- and

intersubband terms) coexist, the underlying physics about hy-

bridized spin textures and the resulting novel SO features may

even be enriched. As future works, it is interesting to explore

these various intriguing possibilities.

V. CONCLUDING REMARKS

The Dresselhaus SO coupling mainly depends on quantum

confinement (e.g., well width), thus it is in general hardly con-

trolled by electrical means, in contrast to the Rashba term,

which is associated with the SIA of the system. Here we

have theoretically reported the optical manipulation of SO

couplings by resorting to intense high-frequency laser field,

which features the so-called “dressing” effect and greatly al-

ters the confining potential for electrons. This enables a flex-

ible and simultaneous control of the Rashba and Dresselhaus

couplings, highly desirable for practical considerations. Fo-

cusing on ordinary GaInAs/AlInAs quantum wells with two

occupied subbands subject to both laser and gate fields, we

have performed a self-consistent Poisson-Schrödinger calcu-

lation within the Hartree approximation to determine electro-

optical control of the intrasubband (intersubband) Rashba αν
(η) and Dresselhaus βν (Γ) SO terms with ν = 1, 2.

With the mediation of laser field, we have achieved con-

tinuous locking of the Rashba terms α1 and α2 of the two

subbands to equal strength in a broad gate range, providing

a means for unified manipulation of the two-subband Rashba

couplings. Further, as the laser field varies, we observe that α1

and α2 may have either the same or opposite signs, or even α2

vanishes while α1 is finite, greatly fascinating for selective SO

control of distinct subbands. For the Dresselhaus coupling, we

disclose two distinct scenarios depending on the interplay of

the well width and the laser field strength, and reveal that β2

may decrease rapidly when the laser field strengthens, even

though β1 remains essentially constant. Regarding the inter-

subband Rashba (η) and Dresselhaus (Γ) terms, which mainly

depend on the overlap and parity of the wave functions of the

two subbands, they have relatively weak dependence on the

laser field. Moreover, the interplay of intra- and intersubband

SO terms may lead to crossings and avoided crossings of the

energy dispersion of multi-band spin branches and may even

trigger the spin poarlization of an originally spin degenerate

(unpolarized) band, tunable by the laser field. Our results

should stimulate experiments probing the laser field mediated

multi-band SO control and further enables its spintronic ap-

plications.

Further, we are restricted to either the high-frequency

regime of ωτ >> 1 or the high-intensity regime of I ∼
Ic = m∗2α∗

B
2ω4cǫ0ǫ

1/2
r /2e2 (see Sec. III). On the one hand, the

laser-field range with frequency of hundreds of THz and inten-

sity of about 1012 W/cm2 that we consider are widely adopted

in experiments [58, 102–105], ensuring our results being fea-

sible for future experimental realizations. On the other hand,

while here we focus on non-resonant laser field, i.e., with-

out both intersubband (conduction-conduction bands) and in-

terband (conduction-valence bands) transitions [96], the SO

mediated linear (and nonlinear) spin-dependent optical prop-

erties as well as the spin dynamics and transport in the near-

resonance scenario with phonon relaxation (depending on the

detuning of laser field frequency with intersubband energy

separation) and even impurity scattering may be interesting.

More work is needed to explore these possibilities.

As a final remark, we recently explored in detail the Rashba
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and Dresselhaus SO interactions for wide-gap semiconduc-

tor heterostructures in the wurtzite phase (e.g., GaN/AlNGa)

in Ref. [117]. Due to strong built-in fields (spontaneous and

piezoelectric) in such quantum systems, it is even unreason-

able to achieve through electrical means a flexible control of

the Rashba term, let alone the Dresselhaus coupling. By re-

sorting to the intense high-frequency laser field that we pro-

posed here, it may even enable a full control of the two types

of SO couplings in heterostructures with strong built-in elec-

trical fields .
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