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Characterizing and understanding the environment affecting quantum systems is critical to elu-
cidate its physical properties and engineer better quantum devices. We develop an approach to
reduce the quantum environment causing single-qubit dephasing to a simple yet predictive noise
model. Our approach, inspired by quantum noise spectroscopy, is to define a ‘self-consistent’ classi-
cal noise spectrum, that is, compatible with all observed decoherence under various qubit dynamics.
We demonstrate the power and limits of our approach by characterizing, with nanoscale spatial
resolution, the noise experienced by two electronic spins in diamond that, despite their proximity,
surprisingly reveal the presence of a complex quantum spin environment, both classically-reducible
and not. Our results overcome the limitations of existing noise spectroscopy methods, and highlight
the importance of finding predictive models to accurately characterize the underlying environment.
Extending our work to multi-qubit systems would enable spatially-resolved quantum sensing of
complex environments and quantum device characterization, notably to identify correlated noise
between qubits, which is crucial for practical realization of quantum error correction.

I. INTRODUCTION

The performance of quantum devices is often limited
by the effects of their environment, even if the environ-
ment could be tamed or even turned into a resource if
it could be properly characterized [1–8]. Unfortunately,
a full characterization of the environment is usually not
possible and one has to rely on a simplified model of
the noise sources. For simpler quantum systems such
as qubits and qutrits, it is in principle always possible
to reduce a complex quantum environment to a classi-
cal noise (spectrum) model, at least for a fixed dynamics
of the total system [9–11]. However, this noise model
is not guaranteed to be predictive when the system (or
bath) dynamics is changed by control, as it is the case for
quantum devices. Obtaining a classical noise spectrum
that can describe the system dynamics under a broad set
of control and predict its performance would be highly
desirable, not only to enable practical characterization
of unknown complex many-body environments (e.g., for
applications in quantum sensing or quantum device char-
acterization), but also to engineer more robust quantum
devices and control sequences tailored to the noise.

In this work, we demonstrate an approach to build
a practical yet predictive noise model of qubit decoher-
ence. Our approach is to form a ‘self-consistent’ classical
noise model — that is, consistent with all observed deco-
herence under various qubit dynamics — by reconciling
complementary approaches to noise spectroscopy. Cru-
cially, by reconciling limitations of existing methods, we
demonstrate it succeeds even when the existing methods
fail to yield the correct noise model, and is further able
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FIG. 1. Reducing a quantum environment to a self-
consistent classical noise model. To model a quantum
environment, we attempt to develop a classical noise model
S(ω) that is consistent with the set of all observed decoher-
ence under various controlled dynamics. When such a ‘self-
consistent’ noise model is possible, as demonstrated in this
work experimentally for an NV electronic spin in diamond
but not a nearby interacting electronic spin X several nm
away, we further verify the self-consistent model has predic-
tive power even under new dynamics, confirming it accurately
models the underlying quantum bath.

to predict the system dynamics under additional control
sequences. If such a self-consistent noise model is pos-
sible, this indicates the underlying (quantum) bath can
be effectively reduced to a classical Gaussian noise pro-
cess, enabling practical characterization of the bath with
predictive power. We demonstrate this experimentally,
by building a self-consistent noise model of the electronic
spin of a Nitrogen-vacancy (NV) center in diamond, and
subsequently verify it is predictive even under new qubit
dynamics. On the other hand, if a self-consistent model
is not possible, this indicates the underlying bath is suf-
ficiently complex, either of quantum or non-gaussian na-
ture. We verify this experimentally with another elec-
tronic spin nearby the NV — and indeed with further
investigation verify the quantum nature of its local envi-
ronment. Finally, having characterized the bath of two
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nearby electronic spins in diamond, we are able to probe,
with nanoscale spatial resolution, the dominant source
of noise common to both qubits arising from the quasi-
static many-body electronic spin bath. The noise model
reveals the local spin density and timescale of spin bath
dynamics with nanoscale variations, information which
is inaccessible by conventional NMR or ensemble-sensor
techniques.

II. QUANTUM NOISE SPECTROSCOPY

Several protocols for noise spectroscopy have been de-
veloped thus far, ranging from simple sequences [12–
14], to more complex continuous [15–17] and pulsed [18–
21] control. They have successfully elucidated noise
sources (from local fluctuators [18, 22–25] to spin environ-
ments [12–14, 19, 20, 26]), and their accuracy to repro-
duce a given classical noise has been evaluated [27]. How-
ever, much less attention has been paid to analyze their
predictive power especially when the reconstructed noise
spectrum is only an approximation to the real noise, i.e.,
whether because it arises from a quantum system [28] or
a complex classical source [29–31] — or more simply due
to experimental limitations. Here, to achieve a predictive
noise model, we propose to build a self-consistent noise
spectrum by combining complementary approaches.

The simplest approach, which we call R/E-noise spec-
troscopy, utilizes only decoherence under the free evolu-
tion (Ramsey, R) and spin echo (E) experiments. The
knowledge of their decay functionals and decay times
T ∗2 (R) and T2 (E) may be sufficient to fully character-
ize a noise model S(ω|~p) with unknown model param-
eters ~p [32]. While minimal in experimental cost, this
method requires a noise model that is already known
and sufficiently simple to uniquely identify ~p [12–14].
Furthermore, it can only investigate low-frequency noise
(ω < T−1

2 ).
A more general approach based on dynamical-

decoupling sequences with equidistant π-pulses (CPMG)
can in principle reconstruct the full noise spectrum. Un-
der the filter-function formalism, each CPMG experi-
ment of inter-pulse length (2τm) forms a filter |f̃T (ω)|2
that approximates a delta function δ(ω−ωm), ωm =
(2π)(4τm)−1. This allows direct measurement of S(ωm)
from the simple-exponential decay χm(T ) under CPMG,
where

χm(T ) =
1

2

∫
S(ω)|f̃T (ω)|2 dω

2π
≈ 4

π2
S(ωm)T. (1)

While this method can characterize arbitrary, unknown
noise spectra with high-resolution, it comes at increased
experimental cost, as one CPMG experiment is needed
per frequency. Furthermore, the bandwidth, while much
broader, is still bounded by the coherence time T2 and
Rabi-frequency Ω0, T−1

2 < ωm � Ω0 [20]. In particular,
low-frequencies are harder to reach in the presence of
strong noise.

III. SELF-CONSISTENT NOISE
CHARACTERIZATION

Combining these techniques, we demonstrate how to
obtain a self-consistent classical model. We start with a
minimal noise model, consistent with initial experimental
data, and incrementally refine it as necessary to be con-
sistent with additional experiments. While other strate-
gies are possible, this minimizes the experimental cost.
We first demonstrate the protocol in the concrete case of
an NV center in diamond (Fig. 1).

A. NV electronic spin qubit

The first step is to measure the NV Ramsey. We used
the ms = {0,−1} states of the NV electronic spin (elec-
tronic spin S = 1) in an external static magnetic field
of strength B0 ≈ 350 G aligned approximately along the
N-V axis. The control was achieved with a single-tone,
resonant microwave of ΩNV

0 ≈ 6.9 MHz amplitude to drive
both 15NV hyperfine transitions (Azz ≈ 3.2 MHz).

Observing a gaussian decay under Ramsey control
(Fig. 2b), we assume as our minimal model an Ornstein-
Uhlenbeck (OU) process

S(ω|b, τc) =
b2(2τc)

1 + (ωτc)2
, (2)

characterized by two parameters (b, τc). Indeed, a quasi-
static or ‘slow’ OU noise, (bsτs)�1, predicts a gaussian
decay, χR(T ) = (bsT )2/2 ≡ (T/T ∗2 )2. More generally,
the slow-OU noise has successfully modeled noise from
a slowly-fluctuating spin bath [13, 14, 26], and is ex-
pected [6] to be the dominant noise in our system [33].
Then, fitting for T ∗2 we identify one of two unknown pa-
rameters, bs = 0.56(2) MHz.

Given a working model S0 =Ss consistent with Ram-
sey, we can ask whether it is already predictive of Echo.
Unfortunately, we find that it is not, as while S0 pre-
dicts a stretched-exponential χE(T ) ≈ (b2sT

3)/(12τs) ≡
(T/T2)3, the NV echo is dominantly simple-exponential
(Fig. 2c). Note that similarly we could have started with
the knowledge of NV Echo to first search for a minimal
(single-termed) noise model consistent with Echo and
test whether it is predictive of Ramsey. In such a case,
we would arrive at either a fast-OU noise Sf (τf�T ) or
white-noise Sw, which both yield an exponential decay.
However, neither are consistent with NV Ramsey.

This suggests the environment around NV is suffi-
ciently complex so as not to be reduced to a single in-
dependent noise process. We thus introduce minimal
complexity to the working model by considering two
terms, and immediately find two valid models: a single-
OU plus white-noise S1 = Ss +Sw, and a double-OU
model S2 = Ss+Sf . Both S1,2 predict the same compet-
ing decay under Echo with two characteristic timescales:
χE(T ) = (T/T2)3 + T/T0, where T2 = (12τs/b

2
s)

1/3, and
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FIG. 2. Self-consistent noise model of an NV electronic spin in diamond. The (minimal) self-consistent noise model
SNV
(min)(ω) is presented, along with noise model candidates S1,2 (consistent with R/E but not CPMG) and SCP (vice-versa).

While as shown both R/E- and CPMG-based methods fail to yield the correct noise model due to their limitations, by reconciling
them our method succeeds. (a) The noise models are shown against the measured decoherence (markers) under multiple CPMG
dynamics, S(ωm). Note that S1,2 fail to be predictive under higher-frequency noise. (b,c) Decay under Ramsey (b) and spin
echo (c) dynamics are measured (markers) and fitted (red-line) to perform R/E-noise spectroscopy. Note that SCP fails to
be predictive under Ramsey or Echo (zero/low-frequency noise). The controlled qubit dynamics (pulse sequence) is shown
below; green boxes indicate the minimal experimental measurements used to inform SNV

min(ω), which is further predictive of new
dynamics (see next figure). The left green box contains SCP(ωm) = {17.5, 12, 10.5} ms−1 at ωm = (2π){0.05, 0.083̄, 0.10}MHz
respectively.

T0 = 2/Sw (for S1) or T0 = (b2fτf )−1 (for S2). In fact,
fitting the NV echo to this more complex S1,2 yields the
best fit versus the simpler models with a single char-
acteristic decay, confirming their validity. Notably, a
similar multi-component bath model has successfully de-
scribed the noise of shallow NVs [34, 35], with a slow
bath typical of bulk NVs accompanied by a faster bath
due to paramagnetic centers on the surface. We can
further identify some of the remaining unknowns, with
T2 = 69(6)µs (hence τs = 8(2)ms) and T0 = 55(8)µs
(hence Sw = 36(5) kHz).

Having completed R/E-noise spectroscopy, its three
main limitations are observed [32]. Namely, (i) it is in
general insufficient to characterize arbitrary noise models
(e.g., here S1 with 3 unknown model parameters could
be fully characterized while S2 with 4 unknowns could
not), and as well (ii) it cannot help identify which is
the true (or at least more accurate) noise model as it
cannot discriminate between models predicting the same
time-domain decay functionals (e.g., while S1,2 are spec-
trally distinct, they predict the same decay under R and
E dynamics). Furthermore, (iii) it is oblivious to noise
at higher-frequencies ω > T−1

2 . To address these limita-
tions, we turn to CPMG-based noise spectroscopy.

To achieve with minimal experimental cost a self-
consistent noise model Smin predictive of Ramsey, Echo,
and CPMG, the first step is to simply check whether any
working model SR/E is already predictive of CPMG. This
can be done by solving and checking

SCP(ωm)
(?)
= SR/E(ω=ωm), (3)

where the left-hand side is given by experimental CPMG
measurements at ωm = (2π)(4τm)−1, and right-hand side

by the candidate model evaluated at ω=ωm. Therefore,
given a model with q remaining unknown parameters, we
need (q+1) measurements (equations) to verify whether
the model is self-consistent: the first q equations to solve
for the q unknowns — thereby identifying all model pa-
rameters ~p of SR/E(ω|~p) — and the last measurement to
check whether the model is predictive of a new CPMG
experiment at ωq+1.

We apply this protocol to candidate models S1,2, utiliz-
ing (up to) three CPMG experiments (Fig. 2a). S1, with
q = 0 unknowns, can be immediately checked. As seen
in Fig. 2a, the significant relative error ε = [SCP(ωq+1)−
S1(ωq+1)]/SCP(ωq+1) > 1 rules out S1. S2, with q = 1,
must first be characterized by solving 1 equation. This
yields a unique solution (bf , τf ) ≈ (74kHz, 3.3µs), sug-
gesting validity of S2. However, it predicts with a small
yet statistically-significant error ε=0.24−0.38 at higher-
frequencies (Fig. 2a). Therefore, to improve upon the
working model we again introduce minimal complexity,
to include a small white-noise term Sw which is consis-
tent with all observed dynamics thus far, yielding SNV

min =
Ss + Sf + Sw. As this model has q=2 unknowns, we re-
quire 3 measurements to check for self-consistency. This
yields a unique (bf , τf , Sw) ≈ (58kHz, 4.3µs, 7 ms−1) —
and predicts the last CPMG experiment with an order-
of-magnitude smaller error, ε = 0.02. We thus arrive at
a minimally self-consistent model SNV

min, consistent with
all observed qubit dynamics [36].

Additional SCP(ωm) measurements can be used to fur-
ther improve the model accuracy, either by revealing
sharp resonances in the spectrum or probing higher-
frequency noise. For our NV, SCP(ωm) at higher-ω re-
veals multiple resolved peaks (Fig. 2a). We thus obtain
a final noise model SNV by adding a series of spectral
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FIG. 3. Predictive power of self-consistent noise model. As a crucial check the developed self-consistent noise model
SNV
(min)(ω) is an accurate model of the underlying bath, we demonstrate it is predictive even under new qubit dynamics, namely

in (a) higher-frequency CPMG dynamics at ωm = 0.183 MHz (not used to inform SNV
min), as well as (b) Walsh dynamics of

sequency 5, while the R/E noise spectroscopy fails (S1,2). (c) Walsh Filter Function. The Walsh filter |f̃W (k,λ)(ω)|2 at
time point T = Nλ = 120µs (gold) for sequency k = 5 (cycle length λ = 8τ), is plotted against the noise spectrum directly
measured from the data SNVCP (ωm) and its fit (blue). The filter function is scaled to more easily visualize which parts of the
noise spectrum it is sampling. Here the filter was numerically generated by taking its finite-time Fourier transform of the Walsh
time-domain function[37].

contributions Spk at ωl,

SNV(ω) =
∑
k=s,f

Sk(ω|bk, τk) +Sw +
∑
l

Spk(ω−ωl). (4)

We remark the same SNV can be reached starting from
CPMG and achieving consistency with R/E. Specifically,
fitting the measured SCP(ωm) yields Eq. 4 minus the
slow-OU component Ss — since Ss is narrow around
ω = 0, it is only observed under R/E, while canceled
out by CPMG.

To summarize, having measured the qubit decoher-
ence under various dynamics, Until now, from measure-
ments of the qubit decoherence under various dynam-
ics we were able to define a self-consistent classical noise
spectrum SNV

(min)(ω), which can self-consistently predict

all of the already observed decoherence, as verified nu-
merically (Fig. 2). Now, as a crucial check that this noise
spectrum is an accurate model of the underlying quan-
tum environment, we also verify that it is predictive of
new qubit dynamics. We first verify SNV

min(ω) can predict
new CPMG dynamics probing order-of-magnitude higher
frequencies (Fig. 3a). Then, to probe a unique qubit dy-
namics, we perform a Walsh dynamical decoupling se-
quence of sequency 5 with asymmetric qubit-bath evolu-
tion times [38, 39], distinct from Ramsey, echo or CPMG.
Despite the more complicated dynamics (Fig. 3c), we ver-
ify SNV

(min)(ω) is predictive (Fig. 3b).

B. X electronic spin qubit

Having successfully characterized the noise experi-
enced by the NV electronic spin, we turn to examine
the noise of a nearby electronic spin X. Characterized
in earlier works [6, 40, 41], the X spin is an electron-
nuclear spin defect (each of spin-1/2) that is optically-
dark (at least with respect to 532 nm NV illumination).
It is located several nm away from the NV with coupling
strength d ≈ 60kHz [6]. To achieve unitary control of the
dark electronic spin X (S, I = 1/2), we apply a two-tone
microwave drive resonant with each of its hyperfine tran-
sitions (AXzz ≈ 26.4 MHz at the given field orientation[6]).
The Hartmann-Hahn protocol is exploited to achieve ini-
tialization and readout via the NV center[6].

As the NV and X spins are in physical proximity of the
same quantum environment, one may naively expect to
find a self-consistent classical noise model for X, similar
to that of the NV. Instead, while we observe a mono-
tonic gaussian decay as expected under X Ramsey, small-
amplitude oscillations appear under echo (Fig. 4a) as well
as multiple CPMG experiments. The presence of oscilla-
tions is inconsistent with either single-qubit dynamics or
the exponential decay expected from an effectively clas-
sical bath, the prerequisite for a classical noise model.

To identify the cause of observed oscillations, we hy-
pothesize the presence of near-resonant and interacting
(NRI) spins around X (Fig. 1). This behavior is indeed
reminiscent of SEDOR/DEER experiments, where the
control (π-)pulses drive both spins to refocus their inter-
action, leading to signal oscillations at the frequency set
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FIG. 4. Quantum bath of dark electronic spin X. By investigating the spin echo (a) and CPMG (b) dynamics with
varying driving (Rabi) strengths Ω, we verify the quantum nature of the local environment of X spin, realized by the presence
of near-resonant and interacting (NRI) spins. (a) X echo reveals the presence of NRI spins: At sufficiently high Rabi Ωh, small-
amplitude oscillations are observed, akin to SEDOR/DEER experiments (line is guide to the eye). However, at sufficiently low
Ωl, the monotonic decay expected under single-qubit echo is recovered (line shows fit to decays under SX

0,1 which overlap). (b) X
CPMG further reveals the effect of NRI spins, where typically one expects to observe higher coherence time T2 with increasing
Rabi power Ω due to higher control π-pulse fidelity Fπ(Ω) (Appendix A). However, here we observe the opposite behavior,
where the higher Fπ leads to lower T2, because the larger Ωh recouples the X spin to a larger electronic spin environment. (c)
Finally, while the quantum bath precludes a classical noise model, by suppressing the X spin interaction with the quantum
NRI spins —- which is possible by suppressing Ω —- we successfully recover a classical model for the X qubit over a restricted
frequency range, following the same protocol as discussed with the NV.

by the interaction strength [6, 14, 42–48].

To experimentally verify the presence of this complex
spin environment, we study the echo dynamics of X at
varying driving strengths. Full-amplitude oscillations
are not expected, since NRI spins are not driven on-
resonance and do not experience a perfectly refocusing
π-pulse. Still, as the X Rabi-frequency Ω0 is increased
beyond the detuning of the kth NRI spin from resonance,
|Ω0| > |ωk−ω0|, we expect progressively effective driving
and thus SEDOR oscillations. Conversely, at sufficiently
weak Rabi |Ω0| � mink |ωk − ω0|, as only the X qubit
should be driven, we expect a monotonic decay. To test
this prediction, we measure the nominal X echo at two
Rabi-frequencies, high Ωh=2.5 MHz and low Ωl=Ωh/10.
At Ωl we observe monotonic decoherence, without oscil-
lations, as expected of single-qubit dynamics in the pres-
ence of noise, while oscillations are only visible at Ωh
(Fig. 4a).

Interestingly, the CPMG dynamics at varied driving
strengths also reveals the effect of the NRI spins. As sug-
gested by prior experimental works [14, 48, 49], the pres-
ence of multiple NRI spins with different couplings can
lead to faster decoherence when increasing Ω0 (since more
spins become affected by the driving), effectively increas-
ing the size of the spin environment by refocusing their
interactions. Performing X CPMG, we indeed observe
T2(Ωh) < T2(Ωl) (Fig. 4b) — despite Fπ(Ωh) > Fπ(Ωl)
(Appendix A). Crucially, in the absence of NRI spins we
expect the opposite behavior, as stronger driving yields
higher-fidelity π-pulses and can cancel the couplings to a

broader range of noise sources.

Thus our experimental evidence strongly indicates the
quantum nature of the environment of X. Still, given the
proximity of NV and X spins, we expect both spins to
interact with a largely similar environment, for which it
was possible for the NV to develop an effective classical
model (indeed, the NV π-pulses are detuned by hundreds
of MHz due to its zero-field splitting.) We thus attempt
to recover a classical noise model for X, by suppress-
ing the quantum character of the spin environment by
sufficiently reducing the Rabi power. Using Ωl to per-
form Ramsey and echo, we obtain two minimal models,
SX

0 (ω) = Ss(ω|bXs , τX
s ), and SX

1 (ω) = Ss(ω|bXs , τX
s ) + SX

w.
Following the same protocol as for the NV, we measure
CPMG decays to verify which model is predictive. De-
spite the severely restricted bandwidth, SCP(ωm � Ωl),
we are able to confirm the validity of SX

1 , while ruling out
SX

0 (Fig. 4c).

IV. DISCUSSION

Our results point to a protocol for quantum sensing of
complex many-body environments with nanoscale spa-
tial resolution, achieved by comparing the common noise
sources shared by nearby n ≥ 2 qubits. As a proof-
of-principle demonstration, here we compare the dom-
inant noise acting on both qubits, Ss(ω|b, τc), arising
from the quasi-static many-body electronic spin bath.
This reveals local bath properties with nanoscale spatial-
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resolution, not attainable by conventional NMR or en-
semble of single-qubit sensors. First, the characteristic
qubit-bath interaction strength b reveals an estimate of
the local spin density (Appendix C 1), from which we es-
timate fNV ≈ 0.69(2) ppm, fX ≈ 0.22(2) ppm from SNV

s

and SX
s , respectively. Not only is this within order-of-

magnitude of the expected defect density given sample
implantation (Appendix B), but importantly, the accu-
rate estimate of b reveals significant variation in the local
spin density, even across nanometer lengthscales. Simi-
larly, the characteristic timescale of the noise process τc
probes locally the (qubit-independent) bath correlation
time, determined by its internal evolution [14, 50, 51].
For two qubits interacting with the same bath, we ex-
pect τNV

c = τX
c . Interestingly, we observe instead a sig-

nificant discrepancy, τNV

τX = 6(4), revealing the spin bath
properties at the nanoscale can vary significantly. In-
terestingly, this also contradicts a naive assumption of a
bath of homogeneous spin species, for which we expect
(bτc)

NV≈(bτc)
X, even accounting for varying spatial den-

sity as naively both b, τc ∝f [26, 49, 52]. Going further,
we can attempt to explain the origin of the significant
variations in (b, τc) at different spatial positions by a sim-
ple model. The observed stronger qubit-bath coupling b
for the NV, but with slower bath-fluctuation τc than for
X, suggests the presence of a denser bath around NV,
but with considerable disorder (e.g., due to inhomoge-
neous spin species), which hinders energy-conserving spin
flip-flop. Conversely, despite the lower density around X,
there exists spins sufficiently nearer in resonance to re-
sult in faster flip-flops. This is in agreement with our
discovery of NRI spins around X. Thus, one can envision
that, given a spatial network of qubits at locations ~xj (or
a qubit on a AFM tip [34, 53]), by measuring (b, τc) as a
function of ~x it becomes possible to map out an unknown
complex many-body spin environment, which reveals not
only (quantitatively) the local spin density and effective
decoherence time of the local spin bath but also (qualita-
tively) whether locally it is composed of a homogeneous
spin species with either uniform or spatially varying den-
sity.

V. CONCLUSION AND OUTLOOK

In this work, we demonstrate a protocol to build a noise
model that is not only self-consistent but even predictive
of qubit dynamics under varying controls, by reconcil-
ing complementary approaches to quantum noise spec-
troscopy. Crucially, our method is strictly more accurate
and robust compared to existing techniques, as it suc-
ceeds even when other methods fail to yield the correct
noise model. Thanks to its simplicity and the potential to
develop a practical yet predictive noise model of quantum
devices, our method can find application in various qubit
platforms, further revealing interesting physical insights
peculiar to each platform.

Extensions to multi-qubit devices enables applications

not only in quantum sensing but also in quantum device
characterization. Indeed, of significant interest is to char-
acterize correlated noise between qubits, which has im-
plications for not only development of high-fidelity multi-
qubit (entangling) gates, but also practical realizability
of quantum error-correction protocols [54–57]. Our work
contributes to the characterization of correlated noise,
not only as common noise between qubits contributes
to correlated noise, but more importantly as accurate
knowledge of individual-qubit noise is a prerequisite to
reveal correlations [54]. As already demonstrated in this
work, the accurate characterization of noise at the single-
qubit level can reveal a markedly non-uniform noise pro-
file across a multi-qubit proceessor (surprisingly, even
across nanoscale distances), of which certain novel quan-
tum protocols such as quantum error-corrected sensing
schemes [58] can take advantage.

As a final remark, the absence of a self-consistent clas-
sical model heralds the underlying bath is sufficiently
complex, either of quantum or non-gaussian nature. In
our system, we discover a quantum (possibly coherent)
group of near-resonant electronic spins interacting with
the X spin. Motivated by recent pioneering work in engi-
neering larger quantum registers of electronic spins [48],
we note the system as observed here opens the door to
building and controlling even larger electronic-spin reg-
isters — beyond the coherence of the central qubit.
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Appendix A: Characterization of π-pulse Fidelity Fπ

In the main text we showed that the decay rate of the X
spin under dynamical decoupling increased with the driv-
ing strength. As we expect that the decay rate should
have contributions from the qubit-bath interactions dur-
ing the free evolution and from the pulse imperfections,

T−1
2 = T−1

2,b + γc(Fπ),

we need to evaluate the driving fidelity (here the π-pulse
fidelity Fπ) in order to find T2,b, which characterizes the
noise due to the bath alone. In general, for imperfect con-
trol, Fπ < 1, there is an additional decay due to imperfect
pulses, which is detrimental when performing noise spec-
troscopy, since it might mask the correct shape of the
noise spectrum.

Here, we use a simple method to experimentally char-
acterize the π-pulse fidelity Fπ = |Tr[U†πR]|/2, which
is particularly useful in the presence of strong noise
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FIG. 5. Characterization of π-pulse fidelities Fπ. The
measured NV (red square) and X (circles) π-pulse fidelities
Fπ are shown. The NV is controlled by a single-tone π-pulse
resonant with the ms = {0,−1} transition and strength Ω0 =
6.76 MHz. By fitting the signal to 〈σz(N)〉 = β0(−nz)N+c0,

we extract Fπ= |Tr[U†πR]|/2=
√

(1− nz)/2= 0.987(0) for the
NV. On the other hand, the X spin is modulated by a two-tone
driving on resonance with the nuclear hyperfine splitting, to
effectively remove the nuclear spin degree of freedom [41]. As
expected, the control fidelity of X spin is higher at higher Rabi
frequency Ωh = 10Ωl = 2.5 MHz, Fπ(Ωh) = 0.992(2) (purple)
> Fπ(Ωl)=0.955(7) (blue).

(1/T ∗2 � 1). Here Uπ is the ideal π-pulse unitary and
R the experimental one. For a single qubit, an imperfect
π-pulse rotation of duration L might be due to a mis-
calibrated or fluctuating driving amplitude Ω0 or to an
offset from resonance, δ. The actual evolution is then
R = e−i(Ω0σx+δσz)L/2, yielding Fπ = 〈

∣∣(Ω0

Ω

)
sin
(

ΩL
2

)∣∣〉,
where Ω =

√
(Ω0 + δ). If the main pulse error arises from

an off-resonance Hamiltonian, a larger driving strength
will lead to better fidelity. However, if there are imperfec-
tions in the Rabi driving, typically larger driving results
in larger deviations, and thus lower fidelities.

The experimental sequence we use to estimate Fπ is
simply a series of N spin flips, realized by (imperfect)
π-pulses, applied to an initial population state ρ0 =
1
2 (1 + β0σz). Importantly, each pulse is separated by in-
terpulse delay τ � T ∗2 , in order to ensure that any qubit
coherence has decayed before the next π-pulse is applied,
i.e., 〈σx(y)〉 = Tr

{
ρσx(y)

}
→ 0, while the polarization

〈σz〉 should be ideally maintained. In other words, at
each cycle of unitary π-rotation R and coherence decay,
the state evolves as:

ρ = Rρ0R
† =

1

2
(11 + β0RσzR

†)

=
1

2
(11 + β0~n.~σ), ||~n|| = 1

τ>T∗
2−−−−→ 1

2
(11 + β0nzσz).

Then, the expectation value 〈σz〉 = β0nz yields the fi-
delity, nz = Tr

{
σzRσzR

†} = 1−2F 2
π . For a more precise

estimate, we vary the number of π pulses, so that after N
cycles the z-measurement yields 〈σz(N)〉 ≈ β0n

N
z . Then,

fitting the experimental data 〈σz(N)〉 to β0(−nz)N , one

can directly estimate Fπ =
√

(1− nz)/2. Empirically,
because τ ≈ 2T ∗2 suffices to ensure full decay of coher-
ences, the method is useful for qubits under strong noise
environments.

Fig. 5.b shows that the control fidelity is better for
higher driving strengths, as expected when off-resonant
effects (including from noisy fields) are the main source
of error. Then, we would also expect that higher fidelity
pulses would also lead to slower decay. Surprisingly,
we find however that the overall measured decay time
T−1

2 (Ωh) > T−1
2 (Ωl) is shorter for higher-power driving,

even if FX
π (Ωh) > FX

π (Ωl) (Fig. 5.b). This again indicates
that the noise from the bath T−1

2,b depends on the choice
of driving power ΩX

0 , and in fact increases with ΩX
0 , while

we can exclude the scenario where the higher driving
power results in a reduced fidelity of the control pulses.
This observation is in agreement with our discovery of
the NRI spins from the spin echo dynamics in the main
text, consistent with the known SEDOR effect, whereby
either increasing the qubit driving power or selectively
re-coupling additional resonant spin groups resulted in
stronger decoherence of the central qubit [14, 48, 49].

Appendix B: Physical origin of dominant noise for
electronic spins

The characteristics of the experimental system used
in this work (already introduced [6, 40, 41]) provide in-
sights into the physical origin of the observed noise. The
NV center was created via implantation of 14keV 15N
ions with a dose of 1013/cm

2
through a PMMA mask

with 30nm diameter apertures deposited on top of a SiO2

mask (to mitigate channeling effects) on an isotopically
purified 12C diamond layer[6]. The relative high implan-
tation dose is expected to yield a high nitrogen concen-
tration [N] and, due to limited N-to-NV conversion ef-
ficiency (∼ 5% under annealing at 800K), only a few
NV per implantation spot. We note that of the > 150
spots surveyed, only 3 (including the one investigated)
had only one single NV, indicating potentially a smaller
[N] or conversion efficiency. The implantation energy is
expected to give an average depth of ∼ 20 ± 7 nm [6]
(based on SRIM calculations), thus reducing, but po-
tentially not eliminating, surface effects. Therefore, NV
decoherence is expected to be limited by the electronic
spin bath [26] formed predominantly by N-related spin
defects, with possible additional defects introduced from
the mask or from the surface. This is consistent with our
observation that the dominant noise experienced by the
NV is given by a slow-OU noise Ss, characteristic of a
quasi-static many-body electronic spin bath observed in
Refs. [12, 13, 26]. The spin bath observed in our sample
is however more complex than in these previous works,
and our ability to probe it with two distinct spin probes a
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few nanometers apart provides novel insight on the bath
properties and dynamics.

First, the double-OU noise Ss+Sf observed for the NV
suggests there exist two distinct groups of electronic spin
baths, distinguished by the timescale of their intra-bath
dynamics τc. A similar double-OU model has been used
in an earlier work [34] to successfully describe the noise
experienced by shallow NV centers in diamond, with Sf
attributed to the faster fluctuating spins on the surface.
A similar scenario could describe our diamond, with the
deeper NV resulting in the smaller bf � bs, while the
observed (bf , τfc ) agree within an order of magnitude of
those reported in [34]. In our sample, the NV still in-
teracts more strongly with the bulk spin bath that we
can probe now with nanoscale spatial resolution — using
another controllable electronic spin (X) several nm away
from the NV.

Naively, due to the spatial proximity of NV and X
spins, one may expect a largely similar noise experienced
by both electronic spins. Surprisingly, we discover a lo-
cal quantum environment around X, which precludes a
classical description, realized by a group of near-resonant
and interacting (NRI) electronic spins. Still, by suffi-
ciently suppressing the interaction between X and NRI
spins, we uncover the underlying dominant slow spin bath
SX
s , as reported by the NV. The results highlight strong

variations of the spin environment at the nanoscale (see
Section IV and Appendix C), further confirming the need
for multi-qubit noise spectroscopy.

Appendix C: Spin bath properties derived from the
observed noise spectrum

In the main text, we used to model the noise spec-
trum with a sum of Ornstein-Uhlenbeck (OU) noise pro-
cesses, each given by an auto-correlation 〈B(T )B(0)〉 =
b2e−T/τc , fully characterized by two parameters (b, τc).
Here we want to show how such a model can be related
to the physical characteristics of spin baths.

1. Local spin density from noise strength

The first parameter b2 = 〈B2(0)〉 describes the noise
strength. In the case of dephasing of a central qubit via

the magnetic dipole interaction Hint = Sz
∑N
k AkI

k
z to

other spins, b can help estimate the local spin density.
The dipolar coupling strength Ak between the central
and k-th spin is Ak = µ0γeγk~

4πr3k
(1− 3 cos2(θk)), with γe(k)

the gyromagnetic ratio of central (k-th) spin, rk the inter-
spin distance between the central and k-th spin, and θk
the polar angle between ~rk and the external magnetic
field (assumed to be aligned with the zero-field splitting
of the NV.) Here we assume for simplicity γk = γe.

By defining the noise Hint = BSz with B =
∑N
k AkI

k
z

and Assuming the bath to be at thermal equilibrium,

ρB = 11/2N , we can replace the bath spin-1/2 operators
with random variables, and define the effective spin-qubit
Hamiltonian Hint = BSz with the random variable B =∑N
k AkI

k
z characterized by b2,

b2 = 〈B2(0)〉

= 〈
∑
k

A2
k11/4 +

∑
k 6=l

AkAlI
k
z I

l
z〉

= Tr

ρB(
∑
k

A2
k11/4 +

∑
k 6=l

AkAlI
k
z I

l
z)


=

N∑
k

1

4
A2
k, (C1)

We remark that b2 is the second moment M2 = (∆ω2)SI
of the dipolar broadening by unlike spins [59].

In the limit of a diluted spin bath (f � 1), we can
replace the sum with an integral,

b2 =

∫
1

4
A2(~r)ρ(~r)d3~r,

where A(~r) =
µ0γ

2
e~

4πr3 (1 − 3 cos2 θ) and we introduced the

spin density ρ [cm−3] (or atomic fraction f [ppm]). We
can thus estimate ρ from the experimentally measured
decoherence rate b,

b2 =
µ2

0γ
4
e~2

4(4π)2

(
16π

15

∫ R

rmin

ρ

r4
dr

)
≈ 4πµ2

0γ
4
e~2

(4π)215

ρ

r3
min

(C2)

for sufficiently large R3 � r3
min. Here, rmin should not

be taken as the lattice constant, but instead it represents
the typical inter-spin distance in the sparse distribution
of spins in the host lattice. We can assume that the
probability of finding n spins in a volume of radius r
is given by a Poisson distribution of mean 4πr3ρ. Then,
following [60], rmin can be taken as the distance at which
the probability of finding no other spin is 1/2, i.e., p(x=

0) = e−4πρr3min/3 = 1/2, which yields rmin ≈ 0.55ρ−1/3.
We finally have

b2 =
4πµ2

0γ
4
e~2

(4π)215

ρ2

0.553
≈ 1.69× 1010f2(rad/s)2, (C3)

from which we can estimate f (f = ρ [cm−3]
1.77∗1017 [cm−3] ppm)

from the experimental knowledge of b. Our estimate, of
b ≈ 0.13× 106f rad/s, compares favorably with previous
numerical results[26], which found b ≈ 0.78×106f rad/s.

We remark that this estimation of the density from the
dephasing time (yielding a linear relationship, T ∗,−1

2 ∝
f) is limited to sparse density f < 0.01 [26], while for

sufficiently dense systems (f > 0.1) one expects T ∗,−1
2 ∝√

f [59]. Indeed, in that case one can approximate the
sum in Eq. C1 as

b2 =

N∑
k

A2
k/4 = f

′∑
k

A2
k/4 ≡ fA2

tot,
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where the prime indicates sum over all lattice sites. For
a known lattice structure in either 1,2, or 3D, it is
possible to (numerically) calculate the convergent sum
A2

tot =
∑′
k A

2
k/4, leaving f as the only unknown. Simi-

larly, even for sparse systems, one can evaluate the inte-
gral over other geometries, such as a 2D layer of surface
spins [34, 35]).

2. Disorder strength in the local bath of two spins

The auto-correlation time τc, also called the correlation
or ‘memory’ time of the bath, describes the characteristic
timescale of the noise fluctuation, and is thus expected
to be independent of the spin-qubit used to probe the
environment.

Even for a generic (quantum) bath, The knowledge of
τc may be of practical interest for a generic (even quan-
tum) bath, e.g., to establish its Markovian character (in-
dicated by τc → 0), which allows modeling the qubit open
system dynamics via a Lindblad master equation; or to
investigate sources of correlated noise in a multi-qubit

device, more probable for long-correlated noise sources,
which is more difficult to analyze and correct.

For a spin bath, the autocorrelation function
〈B(T )B(0)〉, describes the properties of the field gen-
erated by the spin bath configuration, B(T ) =
eiHBTB(0)e−iHBT . The correlation time τc, then, char-
acterizes the timescale over which B(T ) loses memory of
its initial state B(0) =

∑
k AkI

k
z , due to evolution un-

der its internal dipolar Hamiltonian HB , which leads to,
e.g., spin flip-flops within the bath [51]. The correlation
function can be often written as an exponential decay,
〈B(T )B(0)〉 = b2e−T/τc , with τ−1

c ≡
∑
j>k Rjk given by

the total spin flip-flop rate between all j, k spin pairs
Rjk ∝ Ajk

Γd

Γ2
d+δ2

[52]. Then, the correlation time de-

pends not only on the spin density, Ajk ∝ f , but also
on the distribution of the spin frequencies. Indeed, the
flip-flop rate Rjk is suppressed by frequency differences δ
between each spin pair. Whereas δ is small for a homoge-
neous spin species, different hyperfine interactions (with
strength on the order of MHz), can severely suppress the
flip-flop via dipolar coupling (∼kHz). Even dipolar cou-
pling to other electronic spin species or to nuclear spins
can quench the bath fluctuations [52, 61].
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