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Abstract

Density functional theory within the local or semilocal density approximations (DFT-

LDA/GGA) has become a workhorse in the electronic structure theory of solids, being extremely

fast and reliable for energetics and structural properties, yet remaining highly inaccurate for pre-

dicting bandgaps of semiconductors and insulators. Accurate prediction of bandgaps using first-

principles methods is time-consuming, requiring hybrid functionals, quasi-particle GW, or quantum

Monte Carlo methods. Efficiently correcting DFT-LDA/GGA bandgaps and unveiling the main

chemical and structural factors involved in this correction is desirable for discovering novel materi-

als in high-throughput calculations. In this direction, we use DFT and machine learning techniques

to correct bandgaps and band-edge positions of a representative subset of ABO3 perovskite oxides.

Relying on the results of HSE06 hybrid functional calculations as target values of bandgaps, we

find a systematic bandgap correction of ∼1.5 eV for this class of materials, where ∼1 eV comes

from downward shifting the valence band and ∼0.5 eV from uplifting the conduction band. The

main chemical and structural factors determining the bandgap correction are determined through

a feature selection procedure.
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FIG. 1. Crystal structures of ABO3 perovskite prototypes and selected A and B atoms. Crystal

structure of (a) Pm3̄m cubic, (b) I4mmm tetragonal, (c) Pnma orthorhombic, and (d) R3̄c rhom-

bohedral strutures of ABO3 perovskites. Green, blue and red spheres represent A, B and O atoms,

respectively. The apical and equatorial B-O-B bond angles, αa, and αe are indicated in (e). The

A and B atoms selected for this study are indicated in the Periodic Table in the lower panel.

INTRODUCTION

The bandgap and band-edge positions (i.e., ionization energy and electron affinity) are

basic properties of semiconductors and insulators, and often dictate the suitability of mate-

rials for device applications. Their prediction, based on first-principles methods, is key to

novel materials discovery. DFT calculations1,2 based on LDA3 or GGA4,5 are often used to

predict stable crystal structures, with lattice parameters within 1-2% of the experimental

values.6,7 These calculations are extremely fast and scalable, permitting the study of the

energetic and structural properties of thousands of materials with relatively modest com-

puting resources and in relatively short times, playing a central role in current materials

discovery research efforts based on high-throughput computation. However, when stan-

dard LDA or GGA functionals are employed, bandgaps (Eg) predicted by DFT are severely

underestimated in comparison to experimental values.8–11 Predicting Eg of semiconductors

and insulators requires going beyond LDA or GGA approximations in DFT, making the

calculations much more involved and computationally expensive.

Methods that accurately predict bandgaps are very expensive with respect to both
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computational resources and wall time. The simplest approach is to mix Fock exchange

with GGA exchange in a hybrid functional,12–15 partially correcting the self-interaction er-

ror in DFT-LDA/GGA, giving bandgaps very close to the experimental values for many

materials.16–19 This increases the computation time tenfold compared to DFT-LDA/GGA

calculations. More formally rigorous approaches would be to use the Greens function quasi-

particle GW20–22 or the wavefunction-based quantum Monte Carlo23–25 method, yet at the

expense of at least an extra order of magnitude in computational time. As a result, these are

not generally amenable to high-throughput computational approaches, posing a stringent

obstacle to novel materials discovery.

Machine learning (ML) techniques have emerged as powerful tools in materials science

research, with applications in a variety of directions, such as prediction and classification of

crystal structures26–31 and building predictive models of various materials properties.32–35 Re-

cent efforts also include predicting bandgaps, however with limited accuracy.36–40 A straight-

forward direction would be to predict bandgaps using the DFT-GGA band structures avail-

able in AFLOW database41 as a training set for machine learning approaches. However,

this would have limited use considering that the predicted bandgaps would still be severely

underestimated. Or one could use DFT+U42 for bandgaps, with computational costs similar

to those of DFT-LDA/GGA; the problem is what value of U to choose and the justification

of applying U to dispersive valence and conduction bands. An interesting approach involves

graph convolutional neural networks (CGCNN) based on atomic connections in the crystal

structure after being trained using DFT bandgaps.38 However, this method was also trained

and aimed at DFT-GGA bandgaps. Recently, reports on automated, high-throughput calcu-

lations of bandgaps based on hybrid functional have appeared in the literature,43–46 pointing

toward more reliable predictions of bandgaps, yet the nature and size of the band-gap cor-

rections from the DFT-GGA values have not been discussed or analyzed.

In this work, we developed machine learning models for mapping bandgaps computed

with DFT-GGA into bandgaps with higher accuracy HSE06 hybrid functional. We chose

perovskite oxides as example to demonstrate the applicability of our approach. Oxide per-

ovskites are a class of compounds that are of great importance in technology and basic

sciences,47 comprising semiconductors, insulators, ferromagnetic and antiferromagnetic, fer-

roelectric, multiferroic, piezoelectric, and high Tc superconductor materials.48 The wide

range of properties is often associated with the orbital character of the bands near the Fermi
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FIG. 2. Correction of the bandgap of ABO3 perovskites based on HSE06 and DFT-GGA PBEsol

calculations. (a) HSE06 vs PBEsol bandgaps, (b) the band-gap correction (∆Eg, light green), cor-

rection of the valence-band maximum ∆VBM (light blue) and conduction-band minimum ∆CBM

(dark red) vs HSE06 bandgap. (c) schematic of the correction of the band-edge of the positions.

The dashed line in (a), placed to guide the eye, has slope equal 1 and crosses the vertical axis at

1.5 eV.

level and are strongly affected by variations in the crystal structure, such as octahedral

rotations and distortions that are associated with deviations from the perfect cubic crys-

tal structure.49 Accurate prediction of their electronic structure, bandgaps, and position of

valence and conduction bands with respect to vacuum level, is crucial for designing novel

devices. An interesting feature of ABO3 perovskite semiconductors and insulators is the

dependence of their band gaps on the metal elements A and B as well as on rotations and

tilting of the BO6 octahedra. Here we restricted the scope of perovskite materials to those

for which the valence band is derived from oxygen 2p orbitals and the conduction band is

derived from A or B valence orbitals, as indicated in Fig. 1. We did not consider perovskites

where the valence and conduction bands are determined by transition metal d orbitals and

the gap associated with spin-splitting of d bands or d-d transitions. We explicitly included

octahedral tilting and rotations leading to tetragonal, orthorhombic, and rhombohedral crys-

tal structures as shown in Fig. 1. Using a high throughput approach,50 we calculated the

band structures of the perovksites with PBEsol and HSE06 functionals. We analyzed the

mapping of valence band maximum (VBM) and conduction band minimum (CBM) between

PBEsol and HSE06 functionals by employing different machine learning models. Our com-

bined DFT-ML model predicts Eg within an error of 0.16 eV to that of HSE computed Eg,
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and reveals the main atomic and structural factors that determine the correction to the

VBM, CBM, and consequently Eg predicted at GGA level.

I. METHODS

The first-principles calculations are based on DFT within the generalized gradient ap-

proximation of Perdew, Burke, and Ernzerhof revised for solids (PBEsol)51 and the projector

augmented wave method52,53 as implemented in the Vienna Ab initio Simulation Package

(VASP).54,55 The wave functions are expanded in plane waves with cutoff energy of 650

eV. Structure optimizations are performed using 7×7×7, 7×5×7, 7×5×5, and 7×7×7 Γ-

centered k-point grid for the integrations over the Brillouin zones of the cubic, tetragonal,

orthorhombic, and rhombohedral primitive cells, respectively. The screened hybrid func-

tional HSE0614,15 is employed to compute target bandgaps, using the structural parameters

found using the PBEsol functional. In tests we found that PBEsol and HSE06 give lattice

parameters that differ by less than 1%, and in good agreement with experimental values.

So we neglected the differences in the bandgap calculated using the PBEsol-optimized lat-

tice parameters and those calculated using the HSE06-optimized lattice parameters. Test

calculations indicate that these differences are less than 0.1 eV.

We used different ML algorithms to build our band-gap prediction model, including the

linear ridge regressor, kernel ridge regressor, and gradient boosted decision tree from open-

source software package Scikit-Learn Toolbox.56 The input to the model is comprised of

atomic and structural properties, including the B-O-B apical angle αa and B-O-B equatorial

angle αe. The regression fit to the input gives the predicted bandgaps. The prediction

performance of the learning models is evaluated by the mean absolute error. The feature

importance of all the descriptors is obtained with GBDT to interpret the importance of

various descriptors in the training model. We conducted a hyper-parameter search for GBDT

models through grid search. The search parameters include max tree depth (1, 2, ... 10),

number of estimators (50, 100, 150, ..., 1000), and learning rate (0.01, 0.02, ..., 0.2). We

used the default hyper-parameter values in scikit-learn package for training LRR and KRR.

We used MinMax Scaling to normalize the data for LRR and KRR. We did not normalize

the raw features for training GBDT since normalization is not necessary to GBDT due to

the tree-based model nature. We partitioned the data such that one-third of the data is
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TABLE I. Mean absolute error (MAE) used to evaluate the performance of fixed correction (FC),

linear regression (LR), linear ridge regressor (LRR), kernel ridge regressor (KRR), and the gradient

boosted decision tree (GBDT) models in predicting the corrections of the valence-band maximum

(∆VBM), conduction-band minimum (∆CBM) and bandgap (∆Eg) of oxide perovskites in DFT-

GGA PBEsol compared to the HSE06 values.

FC LR LRR KRR GBDT

∆VBM 0.17 0.09 0.10± 0.01 0.09 ± 0.01 0.09± 0.01

∆CBM 0.24 0.17 0.19± 0.01 0.15 ± 0.01 0.10± 0.003

∆Eg 0.32 0.21 0.23± 0.02 0.20 ± 0.01 0.16± 0.01

reserved for testing. For the remaining two-thirds of the data, three-fold cross-validation

(two-ninths of total data as the test set and four-tenths of total data as the training set

at any given time) was used hyper-parameter tuning. Our MAE results are based on the

testing data set.

RESULTS AND DISCUSSION

We selected 118 oxide perovskites ABO3, and for each we considered four crystal struc-

tures, with symmetries Pm3̄m (cubic), I4/mmm (tetragonal), Pnma (orthorhombic) and

P63/mmc (rhombohedral), as shown in Fig. 1, totaling 472 structures. The selected A and

B atoms, also indicated in the Periodic Table in Fig. 1, are: A = Li, Na, K, Rb, Cs, Cu,

Ag, Au, Be, Mg, Ca, Sr, Ba, Pb, Zn, Cd, Sn, Sc,Y, La, or Bi, and B = P, As, Sb, V, Nb,

Ta, Si, Ge, Sn, Ti, Zr, Hf, Al, Ga, In, or Tl, such that the considered compounds satisfy

valence(A)+valence(B)=6. A data set of DFT-GGA bandgaps was constructed using this

set of materials.

The four crystal structures for all ABO3 compounds were first optimized with the DFT-

GGA PBEsol functional. Then their electronic structures were calculated using PBEsol

and HSE06. In this way, since the average electrostatic potential is used as the reference

for the Kohn-Sham band energies, and does not depend on exchange and correlation, we

can directly compare the PBEsol and HSE06 band structures, extracting the corrections for

VBM and CBM, and the bandgap (i.e., ∆VBM, ∆CBM, and ∆Eg). We note that for all
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FIG. 3. Feature importance in the gradient boosted decision tree (GBDT) model for determining

the band-gap (∆Eg) and band-edge corrections (∆VBM, ∆CBM) of ABO3 perovskites.

compounds studied here, the VBM for the cubic structure occurs at the R point (0.5, 0.5,

0.5) and the CBM occurs at the Γ point in the cubic Brillouin zone, characterizing an indirect

R-Γ fundamental bandgap. For the tetragonal, orthorhombic, and rhombohedral structures,

both VBM and CBM occur at Γ, characterizing a direct Γ-Γ fundamental bandgap.

The calculated HSE06 bandgaps vs PBEsol bandgaps are shown in Fig. 2(a) and Sup-

plementary Information. There are 383 data selected in the 472 materials since others are

not stable according to the to DFT calculation. First, we note that the HSE06 predicted

bandgaps have a nearly linear relationship with the DFT-GGA predicted bandgaps. We

applied a simple linear regression fit using y = ax + b between the two sets of bandgaps,

and obtained a = 1.12 and b = 1.15. The resulting mean absolute error (MAE) is 0.21 eV,

which is comparable to theMAE’ s obtained with the more complicated models presented

in the study. Since the value of a is close to 1, the data had been fit to an even simpler

model of fixed correction, y = x+ b′. Fixed correction is very appealing due to its simplicity

and provides an intuitive physical insight into the nature of the correction. The optimal b′

was found to be 1.5 eV with an MAE of 0.32 eV. The MAE of the fixed correction model

compares well with the typical error in the DFT predicted bandgaps even when hybrid func-

tionals are used. The fixed correction model implies that DFT-GGA underestimates the

bandgap with respect to HSE06 by ∼1.5 eV. This is quite surprising given that in general

DFT-LDA/GGA does not underestimate bandgap of semiconductors and insulators by a

fixed amount.57 The largest deviation from this trend is observed for compounds containing
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Cu, Pb, and Sn occupying the A site. In the case of Cu-B-O3 compounds, the Cu d orbitals

mix with the O 2p orbitals, pushing the VBM to higher energies. In the case of Sn-B-O3

and Pb-B-O3, the VBM has large contributions from Sn and Pb s valence orbitals, which

also pushes the VBM to higher energies. In all the cases where the valence band is mostly

derived from O 2p orbitals, the approximate 1.5 eV band-gap correction fits the data quite

well.

The separated corrections ∆VBM and ∆CBM, i.e., the amount the VBM and CBM in

HSE06 differ from the VBM and CBM in DFT-GGA are shown in Fig. 2(b). Contrary to

common wisdom, where it is often assumed that to correct the DFT-GGA bandgap only an

upward shift of the CBM is necessary, we find that about 2/3 of the gap correction comes

from shifting down the VBM and only about 1/3 of the correction comes from shifting the

conduction band upward. This is attributed to large self-interaction correction of the O 2p-

derived valence bands in these materials. Again, the outliers, where the VBM is corrected

by a lesser amount, correspond to compounds containing Cu, Sn, or Pb in the A site. It

is also interesting to note the correction in the VBM derived from O 2p is larger than the

correction of CBM derived from d orbitals, such as in SrTiO3 and similar compounds, despite

the rather flat nature of their conduction bands that are derived from the quite localized

transition metal d orbitals. Finally, we also note that the band-gap correction ∆Eg is slightly

larger than 1.5 eV for compounds with larger bandgaps, approaching 2 eV, and this is traced

back to the correction of the CBM which approaches 1 eV for compounds with Eg is & 4

eV.

Having established the band-gap correction for these oxide perovskites, we now turn to

machine learning techniques to develop a model that correlates the ∆VBM, ∆CBM, and ∆Eg

corrections to atomic and structural properties of the compounds. The atomic properties as

input to the machine learning models include electronegativity, ionization energy, valence-

orbital energies, and atomic radius of both A and B atoms. Structural properties include

octahedral tilting and rotations that are characterized by the apical αa and equatorial αe

angles corresponding to B-O-B angles parallel and perpendicular to the c axis. We employed

three machine learning models, which are the linear ridge regressor (LRR), kernel ridge

regressor (KRR), and the gradient boosted decision tree (GBDT) regressor, as implemented

in Scikit-Learn Toolbox.56 We used a regularization strength of 0.01 to both LRR and KRR

models. For the KKR method, we used a polynomial kernel with a maximum order of 3.
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For the GBDT model, we set the maximum tree depth to 5 with 500 base estimators.

The prediction performance of the LRR, KRR, and GBDT models can be seen in Table. I.

In these models, we use two third of the data as the training set. We also use mean

absolute error (MAE) to measure the performance in predicting ∆VBM, ∆CBM, and ∆Eg.

Among the three models, GBDT gives the highest prediction accuracy with low variance;

the KRR model performs better than LRR. Note that we obtain lower MAE than previous

models,31,36,44,58,59 likely to the better quality or more uniformity of our training dataset.

The results indicate that there exists a nonlinear relation between the input properties and

the target results, explaining why the pure linear model LRR performs poorly. Note that

all three ML models predict ∆VBM with similar performance, indicating that the VBM

correction has a more linear relationship with the input properties than the CBM and Eg

corrections.

What are the main atomic and structural properties that determine the band-gap and

band-edge corrections? The answer is shown in Fig. 3, where the input properties are ranked

according to their contributions to the prediction accuracy based on the mean decrease in the

impurity of the GBDT model.60 We find that the electronegativity, the energy of p valence

orbital of atom A, and the equatorial angle of the octahedral rotation are the main properties

that determine ∆VBM. For ∆CBM, the main properties are the electronegativity, ionization

energy of atom B atom and the equatorial angle of the octahedral rotation. For more

advanced feature importance evaluation methods with higher local and global consistency

and interpretability, we refer to the literature.61,62 We have also applied LRR, KRR and

GBDT models to the data by excluding the discovered less-important features for each

label, and no obvious accuracy improvement is identified.

For both ∆VBM and ∆CBM, the equatorial angle determines the overlap between the

orbitals of B and O in the directions parallel to the a-b plane, which in turn, affect both

VBM and CBM positions. Note that the dependence on the apical angle αa is less than

that on the equatorial angle αe since the former affects the B-O orbital overlap only along

the c direction. Finally, we also note that the relative importance of the electronegativity,

ionization energies, and rotation angles is higher for atom A than for atom B in determining

the bandgap. This is attributed to the larger contribution of the VBM correction than the

CBM correction to ∆Eg.
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SUMMARY

Using high-throughput DFT-GGA PBEsol and HSE06 calculations we determined the

bandgap correction of a representative set of oxide perovskites, finding that the HSE06-based

correction pushes down the valence band by ∼1 eV and pushes up the conduction band by

∼0.5 eV. These results are then used in machine learning models that include atomic and

structural properties as input to determine the corrections to the valence band, conduction

band, and bandgap. The properties used as fitting parameters are ranked according to their

relative importance to the corrections. We find that electronegativity of the A and B atoms

together with the equatorial angle of rotation of the BO6 octahedra are the main factors

involved in the corrections. These results serve as starting point and guide to developing

machine-learning-based approaches applicable to the discovery of novel electronic materials.
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