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A periodic arrangement of 2D conducting planes is known to host a (bulk) plasmon dispersion
that interpolates between the typical, gapped behavior of 3D metals and a gapless, acoustic regime
as a function of the out-of-plane wavevector. The semi-infinite system — the configuration rele-
vant to Electron Energy Loss Spectroscopy (EELS) in a reflection geometry, as in High Resolution
EELS (HREELS) — is known to host a surface plasmon that ceases to propagate below a cutoff
wavevector. As the f-sum rule requires a finite response whether or not there exist sharp excitations,
we demonstrate that what remains in the surface loss function — the material response probed by
HREELS — is the contribution from the (bulk) plasmon of the infinite system. In particular, we
provide a one-to-one mapping between the plasmon continuum and the spectral weight in the sur-
face loss function. In light of this result, we suggest that HREELS be considered a long wavelength
probe of the plasmon continuum in layered materials.

Introduction

In the mid 1970s, A. L. Fetter [1] applied a hydro-
dynamic analysis to a periodic system of conducting
planes, each hosting a 2D electron gas, and obtained a
rather unique plasmon continuum. The plasmon – the
long wavelength oscillation of the many-electron charge
density – radically changes in character depending on
whether adjacent conducting planes of the system are
oscillating in-phase or out-of-phase. While the in-phase
oscillation (see Fig. 1a) corresponds to a gapped (opti-
cal) mode reminiscent of plasmons in simple 3D metals,
the out-of-phase oscillation (see Fig. 1b) corresponds to
a gapless (acoustic) mode that disperses linearly with in-
plane wavevector. Between the extremes of in-phase and
out-of-phase oscillation lies an acoustic-to-optical plas-
mon continuum (see Fig. 2).

(a) (b)

FIG. 1. A visual representation of the (a) in-phase and (b)
out-of-phase charge oscillation within a periodic system of
conducting planes.

Due to the severe conduction anisotropy in the high-
TC cuprate superconductors [2–5], doped cuprates are
often modeled as a system of copper oxide planes —
i.e., the model studied by Fetter. Significant experi-
mental effort has recently been invested toward demon-
strating that doped cuprates exemplify the plasmon con-
tinuum scenario using Resonant Inelastic X-ray Scatter-

ing (RIXS) on both electron-doped cuprates, such as
La2−xCexCuO4 and Nd2−xCexCuO4 [6, 7], as well as
the hole-doped compounds La2−xSrxCuO4 (LSCO) and
Bi2Sr1.6La0.4CuO6+δ (Bi-2201) [8, 9]. Shared among
these RIXS studies is a peak in the scattered inten-
sity whose (planar) wavevector dispersion changes ap-
preciably as the out-of-plane wavevector is tuned toward
an out-of-phase oscillation between adjacent copper ox-
ide layers. By identifying this peak with the plasmon,
RIXS data provides strong evidence of a nearly-acoustic
mode in doped cuprates coincident with the out-of-phase,
acoustic plasmon dispersion of the Fetter model. This
analogy to the Fetter model can be completed by tracking
the evolution toward the optical plasmon dispersion when
the out-of-plane wavevector corresponds to in-phase os-
cillation; however, the scattering geometry and suppres-
sion of charge excitations at large out-of-plane wavevec-
tor in the RIXS cross section make this connection diffi-
cult to establish concretely [10].
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FIG. 2. Plotted above is the dispersion of the plasma fre-
quency ωp (2) for a periodic system of 2D conducting planes.
The frequency scale is in units of the optical plasma frequency
Ω (3). The in-plane wavevector q and out-of-plane wavevector
Q are given in units of the inter-plane separation a.
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Rather than following the (3D) wavevector dispersion
of charge density excitations, we instead consider an ex-
perimental probe that lacks translation symmetry along a
chosen axis: Electron Energy Loss Spectroscopy (EELS)
in a reflection geometry; i.e., High Resolution EELS
(HREELS). When the reflection surface is perpendicular
to the out-of-plane (layering) direction, the explicitly bro-
ken translation symmetry renders HREELS, in principle,
susceptible to all out-of-plane wavevector contributions–
a point previously made in [11, 12]. Our main result
is that EELS in a reflection geometry (HREELS) does,
in fact, probe the bulk plasmon continuum of the Fetter
model in the long wavelength limit. As a consequence,
layered materials should generically be expected to host
a broad surface response at long wavelengths due to their
underlying bulk plasmon continuum.

While the doped cuprates provide motivation for this
investigation, these compounds are notoriously complex.
Because of its relative simplicity and close correspon-
dence to the plasmon behavior seen in RIXS, we will
instead focus on the Fetter model of layered conducting
planes (e.g., as was also done in [13]). Though the afore-
mentioned studies [6–9] contain more involved computa-
tional analyses to fit their experimental curves, the qual-
itative plasmon behavior (or treatment of the Coulomb
interaction) often mirrors the Fetter result [1]. One could
argue that the Fetter model might represent a patholog-
ical limit since it neglects inter-plane conduction; how-
ever, the inclusion of inter-layer electron hopping results
in a plasmon dispersion that continuously evolves from
the Fetter result to a more general anisotropic dispersion
[14]. This is to say that our results apply inasmuch as
the Fetter model is capable of describing any particular
(strongly) anisotropic system.

I. The semi-infinite Fetter model

In our implementation of the Fetter model, we consider
a system of conducting planes separated by (insulating)
dielectric layers — i.e., a semi-infinite, single-layer super-
lattice (see Fig. 3). The conducting planes are charac-
terized by a long wavelength, 2D Drude conductivity σ
at frequency ω through the standard relation

σ(ω) =
ine2

mω (1 + i/ωτ)
, (1)

where n is the 2D (planar) electron density, e the electron
charge, m the electron mass, and τ corresponds to a re-
laxation time associated with electron scattering. The
layer periodicity of the 2D conducting planes (or the
inter-layer distance) is denoted by a and we model the in-
sulating, dielectric regions through a dielectric constant
ε > 1.

The excitations of the infinite Fetter model — the pe-
riodic system of conducting planes without boundary —
are well studied. In the limit of negligible conduction
dissipation (ωpτ � 1), the bulk plasmon dispersion with
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FIG. 3. The semi-infinite model of periodic conducting planes
— the semi-infinite Fetter model — considered in the text.
The thick black lines denote 2D conducting planes, the di-
electric constant within the insulating layers is denoted by ε,
and the layer periodicity is given by a.

the in-plane wavevector q and out-of-plane wavevector Q
is given by [1, 15–19]

ωp(q,Q) = Ω

√
qa sinh qa

2 cosh qa− 2 cosQa
, (2)

where Ω is the optical plasma frequency defined as

Ω2 :=
ne2

ε0εma
. (3)

The ωp dispersion (2) is plotted in Fig. 2.
In the semi-infinite geometry (i.e., as in Fig. 3), bulk

plasmons are no longer self-sustained resonances of the
system due to the lack of translation symmetry in the
out-of-plane direction. Instead, surface plasmons — pla-
nar charge density oscillations that decay away from the
vacuum-material interface — are the long-lived excita-
tions of the superlattice. When corrections due to the
finite relaxation time τ are negligible, the surface modes
follow the dispersion relation [16, 17, 19]

ωsp(q) = Ω

√
qaε [ε cosh qa− sinh qa]

(ε2 − 1) sinh qa
, (4)

whose functional form depends on the dielectric mis-
match at the vacuum-material interface. The ωsp dis-
persion (4) is plotted in Fig. 4. Curiously, the surface
plasmon ceases to exist for sufficiently long wavelengths
and is never a resonance of the system in the absence of
a dielectric background [20]. The cutoff wavevector q∗,

q∗a := ln

(
ε+ 1

ε− 1

)
, (5)

marks the lower bound for surface plasmon propagation
at a given ε > 1 [15, 17, 19].
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FIG. 4. Plotted above is the dispersion of the surface plasma
frequency ωsp (4) in the semi-infinite Fetter model (solid
line) for the value ε = 2. The bulk optical and acoustic
branches (dashed lines) are obtained from the plasma fre-
quency ωp(q,Q) (2) at Qa = 0 and Qa = π, respectively. The
vertical bar denotes the cutoff wavevector q∗a, determined
by ε through (5), below which the surface plasmon ceases to
propagate.

II. Dielectric analysis

The lack of long-lived charge density excitations in the
q < q∗ regime of the semi-infinite Fetter model poses
an interesting question for a High Resolution Electron
Energy Loss Spectroscopy (HREELS) experiment: What
does HREELS measure at wavevectors below q∗? Inde-
pendent of sharp excitations, the spectral weight in the
(dissipative) density response for q < q∗ is nevertheless
constrained by the f-sum rule in a reflection geometry
[21–26]. Put simply, HREELS has to measure some-
thing associated with charge density excitations at long
wavelengths — and a fixed amount of it. It has previ-
ously been found that, in addition to the surface plas-
mon, there is a finite contribution from the bulk plas-
mon [27, 28]; however, the bulk correction typically con-
stitutes a weak or visually-imperceptible shoulder in the
surface loss function above the (bulk) plasma frequency.
In order to quantify the redistribution of spectral weight
in the q < q∗ regime of the semi-infinite Fetter model, we
study the surface loss function

g(q, ω) := − e2

2ε0|q|

ˆ ∞
0

dzdz′χ′′(q, ω; z, z′)e−|q|ze−|q|z
′

(6)

since this dimensionless quantity captures the mate-
rial response contribution to the HREELS cross section
[25, 29–31]. In (6), χ′′ denotes the imaginary part of
the density response function χ which has been Fourier
transformed along the planar and temporal directions —
i.e., we assume planar translation invariance — and the
material region is chosen as the half-space z > 0.

As our implementation of the semi-infinite Fetter

model (see Fig. 3) is made up of alternating conduct-
ing and dielectric layers, we calculate the surface loss
function in (6) through a dielectric analysis of the sys-
tem. In the dielectric theory of reflection EELS [30, 32–
34] (and the vacuum scattering contributions in [29, 35]),
one characterizes the system through local dielectric re-
sponse (in the out-of-plane, or layering, direction) and
derives the long-ranged effect of the Coulomb interaction
by enforcing electromagnetic boundary conditions across
each interface. Superlattice boundary conditions are of-
ten written in the full electrodynamic formalism in terms
of the electric and magnetic field vectors [15, 16, 36]. In-
stead, we take the non-retarded limit q2 � ω2/c2 from
the outset and work in a theory of potentials φ, φD for
the electric field E = −∇φ and the electric displacement
D = −ε0∇φD, which are themselves related in the di-
electric regions through D = ε0εE. At each interface, we
have the standard boundary conditions that the planar
components of E are continuous and, across a conduct-
ing plane, that the discontinuity in the Dz is given by
the planar charge density. By use of the continuity equa-
tion and recognizing that the finite (q, ω) components of
the planar charge density are entirely due to the induced
response, the discontinuity in Dz can be related to the
planar components of E and the conductivity σ. Lastly,
the infinite system of boundary conditions can be closed
by requiring decaying (bounded) behavior for the φ, φD
within the material (e.g., see [16, 19]).

The dielectric analysis provides calculational utility
since the surface loss function (6) is encoded in the vac-
uum solution for the electric potential when a driving
field is applied [25, 33, 37, 38]. To be concrete, consider
a semi-infinite system whose boundary is defined by a
barrier to its charge density at z = 0, as in our Fet-
ter model of Fig. 3, and is embedded within a dielectric
medium characterized by ε. If a perturbing potential φext
is sourced by a charge density localized entirely within
the vacuum region (implementing the negligible material
penetration assumption used to construct the HREELS
cross section [30–32]), then the material responds to a
field of the form

φext(q, ω, z > 0) = Cext(q, ω)e−|q|z (7)

by inducing the charge density

ρind(q, ω, z) = e2Cext(q, ω)

ˆ
z′>0

dz′χ(q, ω; z, z′)e−|q|z
′

(8)

via the definition of the density response function χ. Out-
side of the material (in the vacuum region z < 0), the
induced charge density (8) sources an induced potential

φind(q, ω, z < 0) =
e2

2ε0|q|

(
2

1 + ε

)
(9)

×Cext(q, ω)e+|q|z
ˆ ∞
0

dz′dz′′χ(q, ω; z′, z′′)e−|q|z
′
e−|q|z

′′
.

In (9), φind depends on ε through the boundary condi-
tions across z = 0. Already, the induced potential in
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vacuum (9) is probing the density response function in
the same way as the surface loss function (6).

In order to extract the surface loss function from the
induced potential (9), we require an explicit form of the
external field coefficient Cext in (7). A convenient ex-
ternal field — φext of (7) — to consider is the classical
dielectric description of EELS in a reflection geometry
[33, 39, 40] wherein an incoming electron is modeled by
a trajectory that undergoes elastic reflection off the ma-
terial surface (z = 0) at the time t = 0. The potential
φext sourced by this classical electron trajectory is

φext(q, ω, z < 0) = A(q, ω) cos
[(
ω − q · v‖

)
(z/vz)

]
−
(

ε

1 + ε

)
A(q, ω)e+|q|z (10)

in the vacuum region and

φext(q, ω, z > 0) =

(
1

1 + ε

)
A(q, ω)e−|q|z (11)

in the material region. In (10) and (11), dependence on
ε is through the boundary conditions across z = 0, the
coefficient A is defined by

A(q, ω) := − 2evz

ε0

[
q2v2z +

(
ω − q · v‖

)2] , (12)

and the reflection trajectory of the classical electron is
parameterized by its velocity components v‖ and vz,
which are, respectively, parallel and perpendicular to
the (z = 0) surface. In light of (11), we can immedi-
ately write down the material response (in vacuum) to
this particular φext using (9) through the replacement
Cext → A/(1 + ε) as

φind(q, ω, z < 0) =
e2

2ε0|q|
2

(1 + ε)2
A(q, ω)e+|q|z (13)

×
ˆ ∞
0

dz′dz′′χ(q, ω; z′, z′′)e−|q|z
′
e−|q|z

′′
.

The vacuum response of the material (13) provides a
recipe to calculate the surface loss function within a di-
electric model. Since A (12) is real (and, as a result, so
is φext (10) in vacuum), the imaginary part of the to-
tal potential φtot := φind + φext is solely through the
material contribution in φind. From the definition of the
surface loss function (6), only the imaginary contribution
of the material response is needed and we can extract this
quantity from the total vacuum potential φ as

g(q, ω) = −
[

(1 + ε)2

2A(q, ω)

]
Im φ(q, ω, z = 0) (14)

= −
[

(1 + ε)2

2A(q, ω)

]
Im φind(q, ω, z = 0) (15)

even when the φind, φext aren’t known separately. Natu-
rally, the (total) potential φ associated with the electric
field can be obtained through a dielectric analysis of the
semi-infinite Fetter model and the calculation of the sur-
face loss function reduces to using (14) on the vacuum
solution.

III. Results

Upon applying the aforementioned electromagnetic
boundary conditions to our implementation of the semi-
infinite Fetter model, we can extract the surface loss func-
tion g from the vacuum potential φ through the relation
given in (14). The surface loss function can be separated
into two components

g(q, ω) = gs(q, ω) + gb(q, ω) , (16)

where

gs(q, ω) :=
(1 + ε)2

4
(17)

× Im
2q̄ε2s cosh q̄ −

(
2ω̄2ε2 + q̄εs

)
sinh q̄

q̄ε2s cosh q̄ − [(ε2 − 1) ω̄2 + q̄εs] sinh q̄

and

gb(q, ω) :=
(1 + ε)2

4
(18)

× Im
ε
√

sinh q̄ [(4ω̄4 + q̄2s2) sinh q̄ − 4q̄ω̄2s cosh q̄]

q̄ε2s cosh q̄ − [(ε2 − 1) ω̄2 + q̄εs] sinh q̄

are loosely associated with surface (gs) and bulk (gb)
plasmon excitation; similar decompositions have been
previously noted [17, 27, 28]. In the definition of gs (17)
and gb (18), the dimensionless parameters q̄ := qa, ω̄ :=
ω/Ω, s := (1 + i/ωτ)−1 have been introduced, Ω is the
optical plasma frequency (3), and the assumption ε > 1
has been used. Additionally, the complex square root in
the definition of gb (18) corresponds to the branch with
positive imaginary part.

At sufficiently large q > q∗, the essential behavior of
the surface gs (17) and bulk gb (18) contributions to the
surface loss function g can be gleaned from their identical
pole structure. Notably, both gs and gb have the same
denominator that, in the s → 1 (τ → ∞) limit, can be
written as

1

q̄ε2 cosh q̄ − [(ε2 − 1) ω̄2 + q̄ε] sinh q̄

=

[
1

(ε2 − 1) sinh q̄

]
1

ω2
sp(q)/Ω

2 − ω̄2
(19)

in terms of the surface plasma frequency, ωsp of (4). So
long as the relaxation time τ is not short enough to rad-
ically alter the surface plasmon dispersion, both the sur-
face gs and bulk gb terms peak at ω = ωsp. When the
surface plasmon is a sharp resonance of the semi-infinite
Fetter model (i.e., for q sufficiently larger than q∗), both
gs and gb appear similar in character and simply pro-
vide two contributions to the spectral weight at the sur-
face plasma frequency ωsp. This behavior can be seen
at qa = 4 in Fig. 5a; the gs, gb curves lie atop one an-
other and the cutoff wavevector q∗a = ln 3 ≈ 1.1 (from
(5) using ε = 2 of Fig. 5) is suitably smaller than qa = 4.

When q > q∗ approaches q∗, the distinction between
gs and gb becomes apparent as the square root in the
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FIG. 5. Plotted above is the surface loss function, g = gs + gb of (16), at ε = 2 and τ = 10/Ω across several values of the
in-plane wavevector q. At ε = 2, the cutoff wavevector is given by (5) as q∗a = ln 3 ≈ 1.1. At each wavevector the surface
plasma frequency ωsp and continuum of bulk plasma frequencies can be determined by (4) and (2), respectively. In (a), qa = 4
(q > q∗), ωsp ≈ 1.63 Ω, and the plasmon continuum spans 1.39 Ω < ω < 1.44 Ω. In (b), qa = 1.5 (q > q∗), ωsp ≈ 1.10 Ω, and the
plasmon continuum spans 0.69 Ω < ω < 1.09 Ω. In (c), qa = 0.9 (q < q∗), ωsp ≈ 1.04 Ω is non-propagating, and the plasmon
continuum spans 0.44 Ω < ω < 1.03 Ω. In (d), qa = 0.01 (q < q∗) is the qa→ 0 limit, ωsp ≈ 1.15 Ω is non-propagating, and the
plasmon continuum spans 0 < ω < Ω.

numerator of gb (18) begins to appreciably contribute.
In the s→ 1 (τ →∞) limit, the quartic polynomial in ω̄
within the square root of (18),(

4ω̄4 + q̄2
)

sinh q̄ − 4q̄ω̄2 cosh q̄ , (20)

has the zeroes

ω = ωp(q,Q = 0) and ω = ωp(q,Q = π/a) . (21)

In (21), ωp is the bulk plasma frequency given by (2), and
Q labels the out-of-plane wavevector of the bulk plasmon
in the infinite Fetter model. Even in the s → 1 limit,
the square root in the definition of gb (18) contributes a
finite imaginary part when ω is within the bulk plasmon
continuum, or ωp(q,Q = π/a) < ω < ωp(q,Q = 0). The
bulk part (gb) of the surface loss function g, then, is made
up of two contributions: a peak at the surface plasma

frequency ω = ωsp and a continuum of modes across the
bulk plasmon dispersion ωp(q,Q) (2) at fixed in-plane q.
The contribution of both bulk and surface modes can be
observed in Fig. 5b at qa = 1.5 where the chosen value
of ε = 2 still maintains qa > q∗a = ln 3 ≈ 1.1 from (5).

For q < q∗, the surface plasmon is no longer a self-
sustained resonance of the semi-infinite Fetter model:
this is how q∗ in (5) is defined. The lack of surface plas-
mon propagation is a precise statement occurring at q∗

so long as finite-τ corrections to the surface plasmon dis-
persion are negligible [17, 19, 41]; however, the spectrum
itself evolves continuously across q = q∗ [42]. Neverthe-
less, there is a sharp, qualitative change in the surface
contribution gs across q = q∗. From the definition of
gs (17) at finite τ (i.e., not in the s → 1 limit), gs is
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proportional to the frequency-independent factor

gs(q, ω) ∝
[
−2ε cosh qa+

(
1 + ε2

)
sinh qa

]
, (22)

which vanishes at the cutoff wavevector q = q∗ of (5).
For q > q∗, the multiplicative factor in (22) is positive
whereas it is negative for q < q∗. Naturally, the total
surface loss function g = gs + gb cannot become negative
as the density response in (6) is related to a sum of tran-
sition amplitudes for charge density excitations via the
fluctuation-dissipation theorem. Instead, the sign change
across q = q∗ represents a kind of inverse “begrenzungs
effect” [34, 43] wherein the surface component gs sup-
presses spectral weight at the (non-propagating) surface
plasma frequency arising from the pole in gb at ω = ωsp.
The net effect of the suppression at ω = ωsp is to increase
the relative contribution from the bulk plasmon contin-
uum to the (total) surface loss function g. This behavior
can be observed in Fig. 5c at qa = 0.9 < q∗a = ln 3 ≈ 1.1
for the chosen value ε = 2.

In the qa→ 0 limit, the non-propagating surface plas-
mon peak at ω = ωsp becomes increasingly suppressed,
leaving only a broad response across the bulk plasmon
continuum 0 < ω < Ω. This behavior can be observed in
Fig. 5d for qa = 0.01 and ε = 2: there is no appreciable
feature in the surface loss function g at the peak ω = ωsp
visible for either gs or gb. As the vertical scale due to gb
and gs obscures g in Fig. 5d, g is plotted by itself in Fig.
6a. Curiously, the broad response across the bulk plas-
mon continuum is relatively insensitive to the relaxation
time τ so long as the plasmon dispersion is not notice-
ably altered from its free electron value in (2). In Fig.
6b, the surface loss function g is plotted for the same
qa → 0 limit (qa = 0.01) and dielectric constant ε = 2,
but at the long relaxation time τ = 1000/Ω; notwith-
standing, the broad shape across 0 < ω < Ω remains
and the only qualitative difference is the loss of curva-
ture near ω = 0, Ω when compared to g at τ = 10/Ω in
Fig. 6a. The low energy, linear tail and broad peak near
— but not at — the optical plasma frequency Ω appear
as signatures of the underlying bulk plasmon continuum,
rather than resulting from any particular damping factor.
While this statement is qualitatively general, it should be
noted that the precise shape of the surface loss function
in the qa→ 0 limit is sensitive to the dielectric constant
ε. In Fig. 7, the qa→ 0 surface loss function is shown at
ε = 1.1, 2, 5, 10 to demonstrate the influence of ε on the
spectrum.

In addition to the surface loss function having sup-
port across the (bulk) plasmon continuum, the induced
potential at these energies oscillates in step with the as-
sociated plasmon. Through our dielectric analysis, we
can provide a precise, one-to-one correspondence between
the plasmon at out-of-plane wavevector Q — ωp(q,Q) of
(2) — and the material response at fixed q across the
plasmon continuum. In the dielectric theory, this out-
of-plane oscillation occurs in the decay factor exp[−βa],
which relates the potential in adjacent dielectric lay-
ers: φn = exp[−βa]φn+1. In order to maintain a
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FIG. 6. Plotted above is the surface loss function g = gs + gb
at ε = 2 and the qa → 0 limit implemented by qa = 0.01.
In (a), g from Fig. 5d (τ = 10/Ω) is plotted on its own for
clarity. In (b), g is plotted for the same ε = 2 and qa = 0.01,
but at the much longer relaxation time τ = 1000/Ω. In the
qa → 0 limit, the bulk plasmon continuum is bounded by
0 < ω < Ω from (2).
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FIG. 7. Plotted above is the variation of the qa → 0 (qa =
0.01) surface loss function g (16) with the dielectric constant
ε. The parameters used are τ = 10/Ω and: ε = 1.1 (q∗a ≈ 3.0)
in (a), ε = 2 (q∗a ≈ 1.1) in (b), ε = 5 (q∗a ≈ 0.41) in (c),
ε = 10 (q∗a ≈ 0.20) in (d). The value ε determines q∗ through
(5).

bounded solution as n → ∞, we require Re β ≥ 0 ⇐⇒
| exp[−βa]| ≤ 1; decaying modes (surface plasmons) cor-
respond to | exp[−βa]| < 1 whereas wavelike modes (bulk
plasmons) correspond to | exp[−βa]| = 1 [16, 19, 44]. In
the τ → ∞ limit of negligible conductivity dissipation,
the decay factor across the plasmon continuum is deter-
mined solely by the out-of-plane oscillation of the (bulk)
plasmon. Specifically, rearranging the plasmon disper-
sion ωp in (2),

cosQa =
1

2

[
2 cosh qa−

(
Ω

ω

)2

qa sinh qa

]
, (23)

enables us to label the bulk plasmon at fixed (q, ω)
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through its out-of-plane wavevector Q. Using the pre-
scription in (23), we find that exp[−βa] = exp[−iQa]
at energies satisfying the plasmon dispersion ωp(q,Q) of
(2). In Fig. 8, we demonstrate this behavior by plotting
the decay factor exp[−βa] across the bulk plasmon con-
tinuum at qa = 0.5, ε = 2, and in the τ → ∞ limit. For
clarity, the equivalence exp[−βa] = exp[−iQa] is main-
tained at arbitrary in-plane wavevector qa and dielectric
constant ε > 1 across the bulk plasmon continuum. The
surface loss function, then, is a direct probe of the (bulk)
plasmon across ωp(q,Q) at fixed in-plane q.

Re exp[-βa]

cosQa

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.0

-0.5

0.0

0.5

1.0

ω/Ω

(a)

Im exp[-βa]

-sinQa

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ω/Ω

(b)

FIG. 8. Plotted above are the (a) real and (b) imaginary
parts of the decay factor exp[−βa] to demonstrate the equality
between the out-of-plane oscillation in the electric potential
and the out-of-plane wavevector Q (23) across the plasmon
continuum. The parameters used are qa = 0.5, ε = 2, and the
τ → ∞ limit. In both (a) and (b), the two curves lie atop
one another.

The surface loss function g (16) demonstrates the tran-
sition from surface plasmon propagation at large in-plane
wavevectors to a long wavelength regime dominated by
the bulk plasmon continuum (see Fig. 5). Instead of
a sharp peak at a single frequency, the qa → 0 surface
loss function is characterized by a linear tail at low en-
ergies and a broad peak across the (bulk) plasmon con-
tinuum. This shape is only weakly influenced by the
intrinsic damping parameter (see Fig. 6); however, the
spectrum is sensitive to the dielectric constant ε (see Fig.
7). Though the bulbous peak might initially suggest a
damped, residual surface plasmon at long wavelengths,
the oscillatory behavior of the electric potential across
the plasmon continuum (e.g., the exact correspondence
exp[−βa] = exp[−iQa] demonstrated in Fig. 8) suggests
that the broad spectrum is intrinsic to the plasmon itself.
From this perspective, we find that the long wavelength
surface loss function is purely a bulk probe of the semi-
infinite Fetter model.

IV. Discussion

Previous studies [17, 27, 28, 33, 40, 42, 45–48] have
demonstrated, and emphasized, that bulk charge den-
sity excitations appear in the surface loss function (i.e.,
the HREELS cross section); however, the contribution
of bulk excitations typically presents as either a weak,

possibly imperceptible, shoulder near sharp surface ex-
citations or a broad background. We found similar be-
havior in the semi-infinite Fetter model for sufficiently
large (in-plane) wavevectors. At qa = 1.5 > q∗a in Fig.
5b, a shoulder forms across the bulk plasmon continuum
before the strong peak at the surface plasma frequency.
Just below the cutoff wavevector (q < q∗) in Fig. 5c, how-
ever, the peak at the (non-propagating) surface plasma
frequency has become suppressed and the surface loss
function takes on a broad shape across the bulk plasmon
continuum. In the long wavelength limit (qa → 0), the
peak at the (non-propagating) surface plasma frequency
is visible in both gs and gb in Fig. 5d; yet, no such fea-
ture appears in the surface loss function, g = gs + gb,
of Fig. 6a. In essence, the long wavelength surface loss
function of the semi-infinite Fetter model probes only the
bulk plasmon continuum of the infinite system.

In the absence of a propagating surface plasmon, the
transfer of spectral weight to the bulk plasmon contin-
uum is required by the f-sum rule. While we have per-
formed a dielectric analysis, the electromagnetic response
encoded within the vacuum potential (14) genuinely be-
haves as the many-body response function defined in (6).
In particular, the f-sum rule,

ˆ ∞
0

dω ω g(q, ω) =
πe2|q|
4ε0m

ˆ ∞
0

dz n(z)e−2|q|z , (24)

relates the spectral weight within the surface loss func-
tion g (6) of our layered model to the electron density
n(z). Notably, the f-sum rule in (24) is reduced when
compared to its standard form [21, 24, 25, 28] due to the
lack of out-of-plane dispersion in the semi-infinite Fetter
model (e.g., see the derivation in [49]). As a system of
regularly-spaced conducting planes, the electron density
in our analysis is simply n(z) = n

∑
j δ(z − ja), where n

is the planar electron density of a single layer, and the
right-hand side of the f-sum rule in (24) can be evaluated
as a geometric series to provide

ˆ ∞
0

dω ω g(q, ω) =

(
πΩ2

0

8

)
2|q|a

1− e−2|q|a
, (25)

where

Ω2
0 :=

ne2

ε0ma
= εΩ2 (26)

is the unscreened optical plasma frequency.
The crucial consequence of the f-sum rule (25) is that

the qa → 0 limit of the surface loss function remains
finite:

lim
qa→0

ˆ ∞
0

dω ω g(q, ω) =

(
πΩ2

0

8

)
. (27)

The sharp q → 0 surface plasmon in an isotropic metal
exhausts the spectral weight required by the f-sum rule
[21, 28]; however, the semi-infinite Fetter model lacks this
mode in the long wavelength limit. Nevertheless, the f-
sum rule is indifferent to whether or not sharp excitations
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are present: the contribution from the bulk plasmon con-
tinuum must compensate for the lost spectral weight at
the surface plasmon peak. To demonstrate how this spec-
tral weight is redistributed across the cutoff wavevector
q∗, we can scale the surface loss function according to the
f-sum rule (25) as

f(q, ω) :=

[(
8

πΩ2
0

)
1− e−2|q|a

2|q|a

]
ω g(q, ω) (28)

so that f has unit weight:
´∞
0
dω f(q, ω) = 1. One should

note that the re-scaling in (28) slightly distorts the spec-
trum of f (compared to the surface loss function g) due
to the multiplicative factor of ω. In Fig. 9, the dispersion
of f at ε = 2 and τ = 10/Ω is shown across several val-
ues of qa to demonstrate the rearrangement of spectral
weight as the surface plasmon peak is suppressed below
q∗a = ln 3 ≈ 1.1 (using (5) for ε = 2).

qa = 4

qa = 3

qa = 2

qa = 1

qa = 0.5

qa = 0.01

0.5 1.0 1.5 2.0

2

4

6

8

ω/Ω0

f

FIG. 9. Plotted above is the redistribution of spectral weight
from the surface plasma frequency to the (bulk) plasmon con-
tinuum in the scaled surface loss function f (28). The param-
eters used are ε = 2, τ = 10/Ω, and the cutoff wavevector
(determined through (5) by ε = 2) q∗a = ln 3 ≈ 1.1. By con-
struction, all curves have the same (unit) integrated weight.
The frequency axis has been scaled by Ω0 =

√
εΩ to demon-

strate the normalization; in these units, the plasmon contin-
uum spans 0 < ω < Ω0/

√
ε in the long wavelength limit.

Before comparing our results with existing data, we
should acknowledge that the model presented in section I
— the semi-infinite Fetter model (see Fig. 3) — contains
several simplifying approximations. When describing the
conducting planes, the planar conductivity σ(ω) (1) was
characterized by a constant relaxation time τ up to —
or, in the q > q∗ regime, beyond — the plasma frequency
and we neglected dispersion with the planar wavevector
q. The lack of dispersion means that we should restrict
our analysis to the long wavelength limit, ql � 1, where
l is the planar lattice spacing. If the inter-layer distance
between conducting planes, a, is sufficiently larger than
the planar lattice spacing (i.e., l � a), then the sur-
face loss function, g of (16), can disperse with qa while
maintaining ql � 1. Additionally, we chose to model

the insulating layers by frequency-independent dielectric
constants. So long as the band gap of the dielectric lay-
ers is sufficiently large compared to the bulk or surface
plasmon energies under consideration, we are primarily
neglecting the low-energy phonon contributions of these
insulating regions.

The approximations used in our simplified Fetter
model of section I are consistent with a long wave-
length analysis of the layered structure in the high-TC
cuprate superconductors. To be specific, we will con-
sider the structure of Bi-2212 (also modeled within a
system of conducting layers in [45]), which is character-
ized by the inter-bi-layer distance between copper oxide
planes a ≈ 15.4 Å and the planar (nearest-neighbor Cu-
Cu) lattice spacing l ≈ 3.8 Å [50]). The small value
l/a ≈ 0.25 permits the surface loss function, g of (16),
to disperse with qa while remaining in the (planar) long
wavelength limit of ql � 1. While the low-frequency
scattering rate, 1/τ(ω), is famously linear in cuprates
near optimal doping, the linearity of 1/τ(ω) in Bi-2212
begins to deviate near excitation energies of ~ω ∼ 0.37
eV [51]. The relaxation time, τ(ω), eventually satu-
rates to a constant near ~ω ∼ 0.62 eV [51], which is
well below the optical plasmon energy of doped Bi-2212
(~Ω ∼ 1 eV from the optically-determined loss function
[12, 52, 53]). More subtly, Bi-2212 is a bi-layer cuprate
with two closely-spaced copper oxide planes repeated ev-
ery a ≈ 15.4 Å (i.e., we neglect the planar lattice shift of
the full c ≈ 30.8Å unit cell [50]). This bi-layer structure
in a layered electron gas results in an additional, narrow
band of acoustic modes [11, 16, 54] below the (bulk) plas-
mon continuum; however, the dispersion shown in Fig. 2
remains intact and qualitatively unaltered. As a result,
we will neglect these lower-energy acoustic modes and
focus on the broader plasmon continuum that occurs in
the single-layer Fetter model of Fig. 3.

HREELS measurements of Bi-2212 at long wavelengths
[12, 55, 56] corroborate the broad spectrum and (low en-
ergy) linear tail of our dielectric model, which can be
seen in Figs. 6 and 7 at various relaxation times and
dielectric constants, respectively. Due to the large inter-
bi-layer spacing of Bi-2212, the long wavelength regime
of the surface loss function is set by the small wavevector
1/a ≈ 0.06 Å−1; using (5), we can approximate the cut-
off wavevector as q∗ ≈ 0.03 Å−1 from the value ε ≈ 4.5
[12, 51, 53]. In this regime, HREELS studies [12, 55, 56]
observe a broad peak — i.e., a peak with FWHM wider
than the plasmon peak in Bi-2212 inferred via optical
means [12, 53, 57, 58] — centered near the optical plasma
frequency which, in our model, is associated with the
broad spectrum of bulk plasmon excitation (i.e., the dis-
persion in Fig. 2 at small qa). Unfortunately, significant
damping — either the result of the (insulating) cap layer
[45] or some otherwise novel cuprate behavior — at larger
wavevectors (detailed in [55, 56]) prevents tracking the
dispersion of this broad spectrum beyond the long wave-
length limit; consequently, the regime of surface plasmon
propagation for q � q∗ is not observed. This discrep-
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ancy suggests that the planar conductivity — or, as dis-
cussed in [55, 56], the polarizability — disperses in a
nontrivial manner beyond the long wavelength limit. As
an additional complication, the low energy incident elec-
trons used in HREELS result in a skewed spectrum for
long wavelength scattering near the wavevector resolu-
tion [12, 59, 60]. The peak structure of broad, eV-scale
losses can be entirely washed out at these long wave-
lengths [12, 56], rendering the surface loss function dif-
ficult to extract in Bi-2212. Nevertheless, correcting for
this distorted spectrum appears to recover a long wave-
length surface loss function that scales linearly at low
energies [12], rather than the quadratic tail observed in
optical studies of the (bulk) loss function [52, 53]. In
our model, this linear tail is associated with the broad
plasmon continuum at long wavelengths (see Fig. 2).
Further, both a broad peak near the optical plasma fre-
quency and (low energy) linear tail were observed in the
HREELS spectrum of the related single-layer compound
Bi-2201 [12], which suggests that these features are re-
lated to the cuprate layering structure.

Summary

Electron Energy Loss Spectroscopy (EELS) in a re-
flection geometry (High Resolution EELS or HREELS)
is often understood as a surface probe whose character-
istic long wavelength excitation is the surface plasmon.
In the semi-infinite Fetter model (see Fig. 3), however,
the extreme limit of conduction anisotropy restricts sur-
face plasmon propagation to finite in-plane wavevectors
q above a cutoff value q∗. Below q∗, the system lacks a
surface plasmon and, therefore, has only the (bulk) plas-
mon as its collective, long wavelength excitation. As the
plane of reflection explicitly breaks translation symme-

try, the plasmon contributes a continuum of excitations
due to the non-conserved out-of-plane wavevector. To
understand how this continuum might be observed in an
HREELS experiment, we have employed a dielectric anal-
ysis to calculate the surface loss function — the material
response probed by HREELS — of the semi-infinite Fet-
ter model.

Our results can largely be summarized by Fig. 5. At
sufficiently large q > q∗ in Figs. 5a and 5b, the sur-
face loss function g of (16) is characterized by a sharp
surface plasmon peak with only a weak (or, in Fig. 5a,
imperceptible) shoulder across the plasmon continuum.
Just below q∗ in Fig. 5c, the surface plasmon peak be-
comes actively suppressed and the plasmon continuum
receives significant spectral weight. In Fig. 5d, the long
wavelength limit has successfully suppressed the non-
propagating surface plasmon peak and all that remains
in the surface loss function is a broad response across the
plasmon continuum (see Fig. 6a or 7b). While the par-
ticular shape of the surface loss function requires a cal-
culation, our results can be understood within the con-
text of the f-sum rule (24) governing the semi-infinite
Fetter model (25). Whether or not there exist sharp ex-
citations in the long wavelength limit, the surface loss
function must contain significant spectral weight (27).
Consequently, the long wavelength surface loss function
becomes a probe of the bulk plasmon continuum in the
semi-infinite Fetter model.
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