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We develop a theory for a continuous bandwidth-tuned transition at fixed fractional electron filling
from a metal with a generic Fermi surface to a ‘Wigner-Mott’ insulator that spontaneously breaks
crystalline space-group symmetries. Across the quantum critical point, (i) the entire electronic Fermi
surface disappears abruptly upon approaching from the metallic side, and (ii) the insulating charge
gap and various order-parameters associated with the spontaneously broken space-group symmetries
vanish continuously upon approaching from the insulating side. Additionally, the insulating side
hosts a Fermi surface of neutral spinons. We present a framework for describing such continuous
metal-insulator transitions (MIT) and analyze the example of a bandwidth-tuned transition at
a filling, ν = 1/6, for spinful electrons on the triangular lattice. By extending the theory to
a certain large-N limit, we provide a concrete example of such a continuous MIT and discuss
numerous experimental signatures near the critical point. We place our results in the context of
recent experiments in moiré transition metal dichalcogenide materials.

I. INTRODUCTION

Conventional quantum phase transitions (QPT) in
insulators associated with the onset of spontaneously
broken symmetries can be described using the classic
Landau-Ginzburg-Wilson framework. The critical field
theory is governed by the long-wavelength and low-
energy fluctuations of a local ‘order-parameter. Continu-
ous QPT in metals are significantly more challenging to
describe theoretically due to the abundance of low-energy
gapless excitations in the vicinity of an electronic Fermi
surface (FS). Arguably the most intriguing example [1]
of such a continuous QPT in a metal is associated with
the abrupt disappearance of an entire electronic FS, as
the metal evolves into an electrical insulator at a fixed
density. A theory for such a continuous Mott transi-
tion at half filling νc = 1/2 was described in Ref. 2.
The corresponding Mott insulating state is a quantum
spin liquid that preserves all symmetries of the underly-
ing microscopic Hamiltonian. In this article, we focus on
a particular class of such continuous bandwidth-tuned
metal-insulator transitions (MIT) at fixed electron fill-
ing, νc < 1/2, where the insulator spontaneously breaks
underlying crystalline space-group symmetries. Such a
state is often dubbed a “Wigner-Mott” (WM) insulator,
and we will use that terminology. The evolution from a
Wigner-Mott insulator to a symmetry preserving Fermi
liquid metal raises a number of fascinating and deep the-
oretical questions, and further may be experimentally ac-
cessible in the near future.

There have been a number of recent theoretical
and experimental breakthroughs in realizing interaction-
induced insulators at partial filling of moiré flat-bands in
bilayers of transition metal dichalcogenide (TMD) ma-
terials [3]. These include the observation of a robust
Mott insulator at half-filling of the moiré unit cell [4]
accompanied by the formation of local moments and a
panoply of Wigner-Mott insulators at a sequence of other
commensurate fillings [5–7]. The WM insulators are ex-
pected to display a variety of translational and/or rota-

FIG. 1. A ‘Wigner-Mott’ (WM) insulator with charge-density
wave order evolves into a metal as a function of increasing
bandwidth at fixed fractional filling. This paper analyzes crit-
ically the possibility of a direct continuous transition between
a (different) WM insulator and a metal with an electronic
Fermi surface.

tional symmetry breaking, some of which have been ob-
served experimentally. More recently, two independent
works have provided compelling evidence for a continu-
ous bandwidth-tuned transition from a Mott insulator to
a Fermi liquid metal at fixed νc = 1/2 [8, 9]. In addition
to a scaling collapse of the electrical resistivity across the
MIT, the experiment finds the charge-gap and the inverse
Fermi velocity to vanish continuously upon approaching
the transition from the insulating and metallic sides, re-
spectively. Magnetic measurements reveal a smooth evo-
lution of the susceptibility across the MIT and no sign of
any magnetic ordering in the Mott insulator down to the
lowest temperatures. Numerous aspects of the observed
phenomenology are reminiscent of a continuous transi-
tion [2] from a Fermi liquid metal to a paramagnetic Mott
insulator with a spinon Fermi surface. Additionally an
exact diagonalization approach lends support to a con-
tinuous MIT at νc = 1/2 in the TMD setting, or at least
a weakly first order transition [10].

In this paper, we will be concerned with the important
theoretical question regarding the nature of the evolution
from a symmetry preserving Fermi liquid to a WM insu-
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lator, which has co-existing crystalline orders, at fixed
νc (< 1/2). This is illustrated in Figure 1. The metal
has an electronic Fermi surface with an area (in units of
the Brillouin zone area) fixed by Luttinger’s theorem by
the filling νc. The WM insulator on the other hand has
no electronic Fermi surface but broken space-group sym-
metries. Given the striking differences between these two
phases an obvious expectation for this evolution is that
it occurs through a direct first order transition. Alter-
nately the evolution can also happen in a more elaborate
manner through intermediate phases which are charge or-
dered but remain metallic. Both of these scenarios have
been considered before in numerous other works, such as
[11–14]. The latter is realized in a simple weak-coupling
treatment of models of correlated electrons. In the in-
termediate phase the broken translation symmetry leads
to an even number of electrons in the enlarged unit cell.
The electronic Fermi surface can then be shrunk contin-
uously to zero across the metal-insulator transition. A
transition of this type is illustrated in Figure 2(a) and
discussed in Section II A. Previous works using a variety
of mean-field like approaches have studied these types of
transitions in twisted bilayer transition metal dichalco-
genides [15–17].

But is a direct continuous transition between the sym-
metry preserving Fermi liquid and a Wigner-Mott insu-
lator at all allowed even in principle? Contrary to the
conventional scenarios described in the previous para-
graph, such a transition must necessarily involve both
the continuous disappearance of the full Fermi surface
(without shrinking), and the concomitant development
of charge order which breaks space-group symmetry. Im-
portantly, the onset of the broken symmetry alone cannot
account for the disappearance of the entire FS across the
transition into the insulator. Thus, in spite of the exis-
tence of a possible order-parameter associated with the
spontaneously broken translational symmetry, the con-
tinuous metal-insulator transition at fixed νc lies fun-
damentally beyond a mean-field order-parameter-based
paradigm in the absence of any fine-tuning (e.g. in the
form of FS ‘nesting’). As a result, the low-energy field
theory will not be governed by the fluctuations of these
order-parameter fields and necessitates a more complex
description.

Remarkably we will show in this paper that contin-
uous Wigner-Mott transitions are indeed possible. We
describe a low energy effective field theory for such tran-
sitions and determine many of its universal critical prop-
erties. The WM insulator we find will be fractionalized
with a Fermi surface of electrically neutral spinons.

Our results generalize the theory of continuous Mott
transitions [2] to fillings νc < 1/2 where WM insulators
can arise. To that end we will work with a parton de-
scription where the electron operator at site r and spin
α is fractionalized as a product: crα = brfrα where br
is a spinless boson (the chargon) that carries the electric
charge of the electron, and frα is an electrically neutral
spin-1/2 fermion (the spinon). In this representation the

conventional Fermi liquid is described [18] as a super-
fluid of chargons in the presence of a Fermi surface of
spinons. The WM insulator, on the other hand, is de-
scribed as a bosonic WM chargon insulator in the pres-
ence of the spinon Fermi surface. The transition between
these two phases is thus viewed as a superfluid-WM in-
sulator transition of the bosonic chargons. A direct con-
tinuous transition between these two phases of bosons is
forbidden by standard Landau theory as they break dis-
tinct symmetries. However Landau-forbidden continuous
phase transitions are known to occur, and are described
by the theory of deconfined quantum criticality [19, 20].
We will thus first study the possibility of such a Landau-
forbidden superfluid-WM transition of bosons. For the
triangular lattice (which will be our main concern here)
a theory for such a transition was formulated in Ref. 21
using a dual description in terms of vortex fields. We will
introduce a large-N generalization of this model that al-
lows us to calculate its properties. We will then include
the coupling to spinons (and associated emergent gauge
fields) to study the electronic WM transition. A cartoon
of this transition is illustrated in Figure 2(b).

A recent work [22] has also discussed the possibility
of a continuous MIT, where the insulator breaks trans-
lational symmetry, focusing mostly on the case of half-
filling on the triangular lattice. Importantly, the authors
do not address the role of the possibly relevant couplings
between gauge-invariant composite operators in the char-
gon and spinon sectors, respectively. In the absence of
a “dynamical-decoupling” between these matter sectors
([2]; see below), the resulting low-energy theory can be-
come strongly coupled and the transition need not be
described solely in terms of condensation of the chargon
fields. We analyze this aspect in the present manuscript
carefully, finding a solvable example where the chargon
and spinon sectors decouple dynamically at the critical
point.

The remainder of this article is organized as follows:
In Sec. II A, we illustrate through several examples the
inherent challenges associated with constructing a sim-
ple order-parameter based Hartree-Fock type theory for
describing a continuous transition between a metal and
a WM insulator at fixed electron filling (in the absence
of fine-tuning). In Sec. II B, we review the key features
associated with electron ‘fractionalization’ and a parton-
based framework that allow us to describe such contin-
uous MIT at fixed electron filling in the simpler setting
of νc = 1/2. In Sec. III, we use the parton formulation
and the charge-vortex duality to develop a theory for
the metal to WM insulator transition at fixed νc = 1/q.
Sec. IV is devoted to discussing the salient experimental
signatures near the MIT and we end with an outlook to-
wards a number of pressing questions in Sec. V. A number
of technical details are summarized in the Appendices.
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FIG. 2. Scenarios for continuous MIT at fixed νc = 1/q (for q > 2): (a) A conventional transition where the electronic Fermi
surface is reconstructed by spin-density wave order and shrinks continuously with increasing strength of this order via a Lifshitz
transition. This type of transition is discussed in detail in Sec. II A. (b) The main subject of the present paper concerns a
direct transition between the WM insulator and a metal without any spontaneously broken symmetries. The chargon theory is
then described by a ‘deconfined’ critical point between a superfluid and charge ordered Mott insulator. Within our theory the
charge order will not be of the

√
3 ×
√

3 type; this is discussed in the main text. We show instead the triangular superlattice
which is a possible mean field charge order in our theory.

II. PRELIMINARIES

A. Limitations of a weak-coupling analysis

In this section, we will discuss two examples of the
onset of simple order-parameters in a metal, inspired by
the possible density-wave states in the WM insulator at a
fixed νc = 1/6 on the triangular lattice. As expected, in
both cases the generic electronic Fermi surface will not
disappear immediately upon the spontaneous breaking
of translational symmetry. Instead, the phase across the
critical point describes a metal with reconstructed elec-
tronic Fermi surfaces. These reconstructed Fermi sur-
faces shrink and can eventually be gapped out once the
magnitude of the order-parameter becomes large. More
generally, a generic electronic Fermi surface cannot be
gapped entirely due to an order-parameter that carries
a finite center-of-mass momentum across a continuous
transition, regardless of its precise microscopic nature.

Let us consider a
√

3 ×
√

3 electronic charge-ordered
state pictured in Figure 1; note that the electrons have
a remaining spin degree of freedom, which needs to be
accounted for in order to describe an insulating state.
Starting from the long-ranged Coulomb interactions in

the microscopic model, the magnetic-ordering in the in-
sulating state will be determined by the competition be-
tween various ferro- and antiferromagnetic exchange in-
teractions [15]. A possible state with the spins form-
ing a 120◦ Néel order on the effective triangular lattice
(
√

3×
√

3) Mott insulator is shown in Figure 3(a). These
orderings can be readily implemented at a mean-field
level (see Appendix A 1). As the strength of the mag-
netic (spin density-wave), ∆, is increased continuously
from zero, there is an onset of a charge gap proportional
to ∆ along certain portions of the electronic Fermi sur-
face. At fixed νc = 1/6, as ∆ increases to the order of
the single-electron bandwidth, the system eventually be-
comes a robust band insulator (Figure 3 (a)). As noted
earlier, the electronic Fermi surface does not disappear
instantly with the onset of the order, but shrinks to zero
via a Lifshitz-type transition deep inside the magnetically
ordered metallic state.

It is possible to host other forms of translational sym-
metry breaking at the same filling; consider e.g. the
case of an electronic ‘stripe’ order (Figure 3(b)). The
charge-density with period three arranges itself into uni-
directional stripes and we must further address the fate
of the spin to account for an insulating phase. A possible
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FIG. 3. Evolution of the electronic Fermi surface with in-
creasing magnitude of various mean-field order-parameters:
(a) Left: The proposed WM insulator is shown in real space,
where the blue circles indicate electronic-density and the ar-
rows indicate the spin configuration. Right: The evolution of
the electronic Fermi surface in the original Brillouin zone as
a function of increasing ∆/t, where t is proportional to the
bandwidth. The Fermi surface disappears around ∆/t & 4.
The faint traces for the Fermi surface correspond to smaller
values of ∆/t and are overlayed in each panel for tracking the
shrinking evolution. (b) Left: The proposed WM insulator
in real space with the same notation as in (a). Right: The
evolution of the electronic Fermi surface with increasing ∆/t.
The Fermi surface disappears for ∆/t & 1.

state is shown in Figure 3(b), where the spins order anti-
ferromagnetically along the unidirectional stripes. When
this density wave is implemented, there are six sites per
unit cell, allowing for a band insulator at filling νc = 1/6.
As discussed in Appendix A 2, once the strength of the
density wave becomes of order the single-electron band-
width, the system will again become a robust band in-
sulator at filling νc = 1/6. However, as in the previous
example, the Fermi surface will not disappear instantly
with the onset of the combined charge and spin density
waves, but will rather undergo a Lifshitz transition out
of a metallic density-wave state.

B. Review of continuous MIT at νc = 1/2

To describe a continuous MIT at fixed fractional (com-
mensurate) fillings, we will begin by writing the electron
operator in terms of fractionalized degrees of freedom
(i.e. partons) coupled to emergent, dynamical gauge-
fields. The resulting field-theory in terms of these new
degrees of freedom is strongly coupled and requires care-
ful analysis. We will briefly review the key elements of
the theory which describes a transition from a metal to a
paramagnetic Mott insulator with a spinon Fermi surface
at νc = 1/2, discussed in more detail in [2], before gener-
alizing it to other νc = 1/q (q > 2) in Sec. III below. At
the outset, we note that a field theory for our transition of

interest has not been studied before, even in the setting
of the density (or rs) tuned MIT that have been ana-
lyzed extensively in the context of the two-dimensional
electron gas.

We write the electron operator as, crα = brfrα, where
br is a spinless, charge-e boson (‘chargon’) and frα is
a spin−1/2 electrically neutral fermion (‘spinon’). In
the simplest theory, both of these fields are coupled
minimally to an emergent dynamical U(1) gauge field,
ar ≡ (a0,a). The general form of the imaginary-time
action for the matter fields at any filling can then be
written as,

S = S[f,a] + Sa + S[b,a] + S[b,f ], (1a)

S[f,a] =

∫
τ,k

f†kα(∂τ − ia0 − εfk−a + µf )fkα, (1b)

Sa =
1

2e2
a

f2
µν , (1c)

S[b,f ] =

∫
dτ d2r ObOf , (1d)

where (εfk−µf ) represents the spinon dispersion (includ-
ing the chemical potential, µf ) and fµν = ∂µaν −∂νaµ is
the field strength, with e the gauge-coupling. The terms
in S[b,f ] includes all gauge-invariant operators, Ob and
Of , respectively; a specific example includes the chargon
energy-density (Ob = |b|2) coupled to a fermion bilinear
(Of = f†f). For the case of the WM transitions consid-
ered later, special care will be needed to address the fate
of couplings to a number of physically relevant Ob.

For the bandwidth-tuned MIT at νc = 1/2, S[b,a] is
described by the theory for a relativistic boson, b, coupled
minimally to the gauge-field, a:

S[b,a] =

∫
τ,r

[
|(∂µ − iaµ)b|2 + s|b|2 + λ|b|4 + ...

]
. (2)

At the mean-field level, the MIT is tuned by driving a
superfluid (〈b〉 6= 0) to Mott insulator (〈b〉 = 0) transi-
tion for the boson. The transverse components of the
gauge-field a receive singular frequency and momentum-
dependent corrections from the gapless matter fields (at
the critical point), leading to a z = 2 dynamics. How-
ever, the feedback of a on the boson dynamics remains
non-singular and can be ignored; as a result, S[b,a] is ef-
fectively described by a 3D-XY transition for b in the
presence of a spinon Fermi surface coupled to a. The
fate of the MIT and the low-energy field theory is then
dictated solely by S[b,f ]. For the energy-energy coupling
considered earlier, as long as the correlation length expo-
nent, ν > 2/3, the coupling is irrelevant. This is indeed
the case for the 3D-XY transition. Therefore at νc = 1/2,
the b and f + a sectors of the theory decouple dynami-
cally from each other. This is crucial for describing the
fate of the ultimate low-energy properties of the result-
ing theory, S, and the complex temperature-dependent
crossovers in the vicinity of the MIT. The critical point
also hosts a sharp electronic Fermi surface without any
low-energy quasiparticles — a ‘critical Fermi surface’[1].
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III. CONTINUOUS WIGNER-MOTT
TRANSITION AT νc = 1/q

Let us now generalize the action, S, for describing con-
tinuous bandwidth-tuned transitions at other fixed com-
mensurate fillings. Specifically, the important modifica-
tions will arise in the form of Sb and S[b,f ], respectively.

A. Criteria for dynamical decoupling

As noted earlier, we will be interested in the second
scenario in Figure 2(b), where the chargons undergo a
superfluid to WM insulator transition with broken trans-
lational symmetry. However, before specifying the action
Sb that can describe such a transition, it is important to
note a complication that can arise due to the onset of
broken translational and/or rotational symmetries in the
WM insulator. The ultimate fate of the continuous MIT
at a fixed fractional νc is governed by S[b,f ]. In addition
to the possible terms that were already considered above
(e.g. energy-density couplings), the presence of various
crystalline orders can complicate the nature of the tran-
sition.

As was already evident in the discussion of Fermi sur-
face reconstruction across a density-wave ordering in Sec.
II A, the interplay of the order-parameters that describe
the onset of various crystalline point-group symmetry
breaking and the excitations near the gapless fermi sur-
face can lead to a non-trivial dynamics at low ener-
gies. The same considerations will also apply near the
MIT, where the electron Fermi surface disappears and
evolves into the spinon Fermi surface; see Figure 2(b).
Therefore, we need to include a coupling between the
particle-hole fluctuations near the spinon Fermi surface
to Ob ≡ ρQ, N , where ρQ is a charge-density wave order
at wavevector Q and N is a nematic order (associated
with a spontaneously broken lattice rotational symme-
try) in S[b,f ].

Integrating out the low-energy fermionic excitations
near the spinon Fermi surface generates terms in the ef-
fective action in imaginary frequency of the form,

Seff[ρQ,N ] =

∫
ω,q

[
|ω||ρQ|2 +

|ω|
q
|N |2

]
, (3)

as a result of familiar Landau-damping. In order for Seff

to be an irrelevant perturbation at the critical point be-
tween the metal and WM insulator, we require that the
anomalous dimension for the charge-order and nematic
fields satisfy ηρ > 1 and ηN > 2, respectively. If satis-
fied, the different matter-field sectors (i.e. the chargons
and spinons) will once again decouple dynamically, pro-
vided the energy-energy couplings are also irrelevant, just
as in the νc = 1/2 MIT. Note that the above constraints
on ηρ and ηN do not depend on the precise microscopic
relationship between the order-parameters and the char-
gon fields, which we will specify explicitly in Sec. III D.
However, the actual values of ηρ, ηN will depend on Sb

that is appropriate for a given MIT. Importantly, Sb must
describe a continuous superfluid to Wigner crystal tran-
sition of the chargons, which is Landau-forbidden. The
theory for the chargons must necessarily be a deconfined
quantum phase transition. In the next few sections, we
introduce a theory that realizes such a deconfined phase
transition for the chargons and analyze its fate in the
presence of coupling to the gapless spinons.

B. Dual vortex theory

Instead of working with the chargon (b) fields directly,
it will be fruitful to consider the dual vortex theory [23],
where the vortex field is coupled to a non-compact gauge
field, A, dual to the Goldstone mode of the superfluid.
The vortex condensate is the bosonic Mott insulator and
the vortex insulator is the bosonic superfluid. Impor-
tantly, when a vortex winds around a site containing a
boson it will pick up a flux from A. When the boson
density is νb = 2νc, the flux upon winding around a lat-
tice site is 2πνb. The resulting vortex multiplet theory
then necessarily transforms under the projective symme-
try group (PSG) of the underlying lattice.

In order to be concrete, we will focus on the case of
νc = 1/6 and describe a MIT from a metal to WM insula-
tor with charge-order. On the triangular lattice, which is
of special interest in light of the moiré TMD experiments,
Sb can be expressed in terms of the vortex multiplet, ϕl
(l = 0, 1, 2) as,

S[b,a] =

∫
τ,r

[∑
l

|(∂µ − iAµ)ϕl|2 + s|ϕl|2

+ λ

[∑
l

|ϕl|2
]2

+ g
∑
l

|ϕl|4 + · · ·

+
1

2e2
A

(
εµνλ∂νAλ

)2
+

1

2π
εµνλaµ∂νAλ

]
. (4)

This action is discussed in much more detail in [21]. The
vortex multiplet, ϕl, represents the “permutative repre-
sentation” of the PSG transformations, as listed in Table
I. 1 These vortex flavors can be thought of as tied to
fractional chargons. Indeed if n of the vortex flavors are
condensed then a “vortex” of any of the condensed ϕl,
i.e. a state where the phase of any ϕl winds by ±2π
at infinity, will carry an attached flux of 2π/n and will
thus correspond to a localized boson number of ±1/n.
The emergent gauge field thus couples to the theory via
a mutual Chern-Simons term with Aµ, as εµνλ∂νAλ rep-
resents the physical chargon current.

We have included up to fourth-order terms in the
expansion above, consistent with the PSG transforma-
tions. In particular, the equations are consistent with

1 These variables are denoted ξl in Ref. [21].
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ϕ0 ϕ1 ϕ2

T1 ϕ1 ϕ2 ϕ0

T2 ωϕ1 ω2ϕ2 ϕ0

R2π/3 ω1/4ϕ2 −iϕ0 ω1/4ϕ1

Id1 ω−1/4ϕ∗
2 −ω1/4ϕ∗

1 ω−1/4ϕ∗
0

Id2 ω−1/4ϕ∗
0 −ω1/4ϕ∗

1 ω−1/4ϕ∗
2

TABLE I. Triangle PSG consistent with the gauge choice for
A made in [21]. Here ω = e2πi/3 and the threefold transla-
tional symmetry is evident. These generators are pictured in
Figure 4.

the full permutation symmetry of the vortex multiplets
implied by the triangle PSG and with time-reversal sym-
metry. Additionally they possess particle-hole symmetry
for each vortex multiplet. It is worth noting that Sb in
Eq. 4 is also invariant under an emergent internal sym-
metry U(1)3/U(1), which is broken by a term at the sixth
order that is consistent with the PSG transformations:

Lw = w

[
(ϕ∗0ϕ1)

3
+ (ϕ∗1ϕ2)

3
+ (ϕ∗2ϕ0)

3
+ h.c.

]
. (5)

At the mean field level, Sb in Eqn. 4 can be analyzed
readily. If g < 0, λ > |g| the ground state for s < 0
corresponds to having only one of the vortex flavors con-
densed, leading to an insulator with a single chargon on
every third site [21]; see Figure 1. This is the Wigner
crystalline phase that one would expect from purely clas-
sical considerations due to the further neighbor Coulomb
repulsion on the triangular lattice, and is quite likely the
phase observed in certain moiré TMD bilayers at strong
interactions [24]. On the other hand, for g > 0 it will
be energetically favorable to condense all of the vortex
flavors, leading to other charge-ordered insulators [21]
(see Figure 5(a)). As discussed above, in these states the
chargon will generically split into three.

The role of fluctuations beyond the mean-field level
and the associated low-energy properties of Sb are not
presently known. To make controlled analytical progress
and examine the key theoretical issues that determine
the nature of the MIT, including the fate of dynamical
decoupling, we will construct a ‘solvable’ large−N limit
in the next subsection, where the low-energy properties
can be worked out reliably.

C. Large−N extension of the dual vortex theory

Let us promote each of the vortex flavors to complex
vectors with N components (∈ CN ): {ϕ0, ϕ1, ϕ2} →
{ϕ0,ϕ1,ϕ2} and promote the action in Eq. 4 to

Sb →
∫
τ,r

( ∣∣∣∣(∂µ − i√
3N

Aµ

)
ϕ

∣∣∣∣2 + s|ϕ|2 + λ
(
|ϕ|2

)2
+ g

2∑
l=0

(
|ϕl|2

)2
+

1

2e2
A

(
εµνλ∂νAλ

)2)
, (6)

FIG. 4. The triangular lattice with bosons in blue and vortices
in red. Vortices live in the center of the triangular cells, or
alternatively on the sites of the dotted dual hexagonal lattice.
Each boson will induce a phase when a vortex path encloses
it. Also shown are the generators of the triangular symmetry
group: T1,2 are translations by a1,2, Id1 , Id2 are reflections
about d1, d2, and R2π/3 is a rotation by 2π/3 about the site
labeled with a magenta dot.

where ϕ = (ϕ0,ϕ1,ϕ2) ∈ C3N 2. Note that we have
rescaled the non-compact U(1) gauge field Aµ so that it
will properly drop out in the N →∞ limit; see [25].

In this limit the theory then has an emergent internal
O(6N) symmetry which is broken to O(2N)3oS3 due to
the term proportional to g. Based on a (4−ε)−expansion
[26], the theory has the following four fixed points (Fig-
ure 5(b)):

(1) the Gaussian fixed point with g = λ = 0,

(2) the fully O(6N) symmetric theory with g = 0, λ >
0,

(3) three decoupled O(2N) models with λ = 0, g > 0,
and

(4) the O(2N)3 o S3 fixed point with λ, g 6= 0 [27].

Furthermore the stable fixed point will be (3), i.e. when
λ = 0 and g > 0 [26], implying that the N → ∞ theory
will condense all vortex flavors at the mean field level
on the insulating side. Note that the resulting charge-
density wave order will not be given by the usual

√
3×
√

3

2 This theory has an internal SU(3N) symmetry which is bro-
ken to a U(N)3 o S3/U(1) symmetry by the g term. Note that
the PSG transformations act trivially on the additional degrees
of freedom. The w term in Eq. 5 will further break this to a
U(N) o S3/U(1) ' SU(N) o S3 symmetry. The large-N ex-
tension displays an extra global SU(N)/ZN symmetry; our ulti-
mate interest is in the physical N = 1 limit of this construction.
The SU(N) o S3 symmetry group preserved by the w term is
the smallest internal symmetry group that is consistent with the
both the permutation required by the triangle PSG in Table I
and the requirements for global SU(N) symmetry.
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FIG. 5. (a) Possible mean field states for g > 0. If w < 0
the system will prefer stripe order in one of the three possible
stripe directions, while if w > 0 the system will prefer clusters
of chargons that form a triangular superlattice. Note that
Eq. 4 and Eq. 6 have an additional singlet term |ϕ|8 with a
positive coefficient that ensures stability even if w < 0. (b)
The RG flow in the N = ∞ limit of Eq. 6. In this limit
the stable fixed point corresponds to λ = 0, g > 0, or three
decoupled O(2N) models. The charge configuration in the
mean field will thus be one of the two possibilities in (a).

pattern, as in Figure 1. Instead, the mean field charge-
density patterns will be as shown in Figure 5(a), depend-
ing on the sign of the w term in Eq. 5. Within our present
large−N framework, we will investigate next whether a
continuous MIT is possible between a metal without any
broken symmetries and either of the two ordered WM in-
sulators shown in Figure 5(a). This primarily requires ad-
dressing the fate of dynamical decoupling, as determined
by the terms contained in S[b,f ] (Eq. 1d) and Seff[ρQ,N ]
(Eq. 3). Note that at the fixed point (3) all terms that are
sixth order or higher, e.g. the w term, will be marginally
irrelevant in (2 + 1)− dimensions.

D. Dynamical decoupling and fate of continuous
MIT

In the N →∞ limit, for the fixed point denoted (3) in
the previous subsection and Figure 5(b), the correlation
length exponent,

ν = 1−O
(

1

N

)
, (7)

and the singlet operator thus has scaling dimension ∆S =
d − 1/ν = 2 + O(1/N). At the decoupled O(2N) criti-

cal point the singlet operator is any linear combination of
the |ϕl|2. All other operators have the scaling dimensions
they exhibit at the Gaussian fixed point, i.e. the näıve
scaling dimension [28]. This allows us to immediately
dispatch with the energy-energy couplings expressed in
S[b,f ]. Based on the arguments we reviewed in Sec. II B,
such couplings will be irrelevant at the critical point [2]
since ν = 1 > 2/3 in the N = ∞ limit. The only thing
remaining then is to investigate whether the effective ac-
tion that is generated in Eq. 3 is irrelevant at the same
critical point.

Let us begin by considering a general density observ-
able,

ρ(r) =
∑
m,n

ρmnω
mr1+nr2 , (8)

where r = r1a1 +r2a2 (a1,2 ≡basis vectors) and the ρmn
are order parameters for the various density wave states
with wavevector Qmn = (mb1 + nb2)/3, and b1, b2 are
shown in Figure 6. In the N = 1 limit of Eq. 6, the ρmn
can be expressed in terms of the vortex flavors as [21]

ρmn ∝ ω−mn/2+(n−m)/6
∑
l

ϕ∗l ϕl+m+2nω
m(l+m+n−1),

(9)
with a proportionality scalar factor, S(m,n), not pre-
scribed solely by the PSG. When we promote ϕl to ϕl
we will require that the global SU(N) symmetry of our
theory space is unbroken, so the ϕl variables in the above
relation will be trivially extended to ϕl.

We first consider the relevance of the order parameters,
ρmn, for m 6= n . These can include the density wave
states with the ordering wavevectors seen in Figure 5(a),
i.e. those we expect to at the mean field level. Based on
Eqn. 9, we conclude that ρmn with m 6= n does not trans-
form as a singlet operator; the näıve scaling dimension
∆ρmn = (d− 2 + ηρmn)/2 = 1, and thus ηρmn = 1. Based
on our earlier arguments of Sec. III A, we conclude that
this is a marginal coupling and so the effect of the charge
order on the spinon Fermi surface must be considered.
However, the ordering wavevector, Q, will only couple
the spinon Fermi surface to the chargon density-wave if
Q connects points along the Fermi surface that are sep-
arated by 2kF , leading to “hot-spots”. Fortunately, at
the densities of interest and for sufficiently generic fermi
surfaces, such hot-spots can be avoided altogether (i.e.
|2kF | < Q). Consider for instance, a dispersion gener-
ated by including up to third nearest neighbor hopping
on the triangular lattice, with t2/t1 = 2, t3/t1 = −1.25
(Figure 6); we can avoid the hot-spots altogether for
Q = b2/3. In fact this choice of hoppings will avoid hot
spots for all Qmn,m 6= n. This serves as a proof of prin-
ciple that it is not unreasonable for the hot-spots to be
absent for Qmn, m 6= n, at the densities of interest.

While the Fermi surface may avoid hot-spots at the
wavevectors noted above, it exhibits near nesting for Q11

and Q22. These correspond to the
√

3×
√

3 charge order
discussed earlier (Figure 2), and we thus must consider
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FIG. 6. The Fermi surface at νc = 1/6 produced by a third
nearest neighbor hopping model on the triangular lattice with
t2/t1 = 2, t3/t1 = −1.25. (a) The Fermi surface is shown in
black. The reciprocal lattice vectors b1, b2 are also pictured
in purple. (b) The Fermi surface shifted by the wavevector
Q01 = b2/3 is shown in purple; it avoids hotspots with the
original Fermi surface. Though not shown this Fermi surface
also avoids hotspots for all Qmn with m 6= n. (c) The Fermi
surface shifted by Q11 = (b1 +b2)/3 is shown in purple; parts
of it are nearly nested with the original Fermi surface.

the relevance of this charge order. We note that for ρmn
with m = n, ρnn ∝

∑
l |ϕl|2ωnl. This is a linear combi-

nation of singlet operators at the decoupled O(2N) fixed
point. Hence, ∆ρnn

= ∆S = 2, leading to ηρnn
= 3. Us-

ing the same arguments from earlier, ρnn is now irrelevant
at the fixed point. Thus, even when the Fermi surface is
nearly nested for these special wavevectors and can host
hot-spots (Figure 6), any possible

√
3×
√

3 density-wave
in the chargon sector will decouple dynamically from the
spinon Fermi surface.

Finally, we must also examine the effects of coupling
the particle-hole fluctuations near the fermi surface to the
nematic order N , as outlined in Eq. 3. The lowest order
possible nematic parameter constructed out of the vor-
tex degrees of freedom that preserves the global SU(N)
symmetry will be of the form

N (ϕ,ϕ†) =
∑
l,k

clkϕ
†
lϕk, (10)

where clk ∈ C. In the presence of only a spontaneously
broken rotational symmetry (i.e. no other form of bro-
ken translational symmetry), we have clk = cl−1,k−1 and
clk = ωl−kcl−1,k−1 from T1 and T2 in Table I. But then
we must have that clk ∝ δlk and N ∝ |ϕ|2. This is
clearly invariant under R2π/3 and thus cannot be a valid
nematic order parameter. Thus N must be at least quar-
tic in the ϕ fields, since it must also preserve global U(1)
symmetry. This means ∆N = (d − 2 + ηN )/2 ≥ 2 and
thus ηN ≥ 3. Once again, the coupling of the nematic
order to the spinon Fermi surface is irrelevant.

To conclude, for our specific large−N generalization
of the model, we arrive at the remarkable result that the
dual vortex theory for the chargons decouples dynami-
cally from the spinons for N → ∞. In our discussion so

far, we did not explicitly state the role of the transverse
gauge-field fluctuations, a. Including the effects of these
fluctuations does not modify these conclusions and the
matter fields remain decoupled (see Appendix B 3). The
situation is reminiscent of the bandwidth-tuned transi-
tion at νc = 1/2 [2]; the Landau damping term for a that
is generated from the Fermi surface behaves like a “Higgs
mass” term when the dynamical critical exponent, z = 1,
for the chargons. Thus, the fluctuations of a do not affect
the chargon dynamics, and neither can the f affect the
chargons indirectly via a coupling to a.

IV. EXPERIMENTAL SIGNATURES

Based on our theoretical framework, we can make
a number of predictions for experimentally measurable
quantities near the metal-WM insulator critical point.
Interestingly, a number of these signatures are qualita-
tively similar to the behavior near the bandwidth-tuned
transition for νc = 1/2 [2], while the exact critical sin-
gularities are different. The technical details are sum-
marized in Appendix B and we only focus on the results
here.

As the critical point is approached from the insulating
side the charge gap will vanish continuously with expo-
nent zν, where z = 1; within our large-N formulation,
νz = 1. Going beyond this limit, even to N = 1, a second
order transition of the kind we describe is only possible
if ν > 2/3, z = 1.

Upon approaching the critical point from the metallic
side, the fermion self energy due to scattering off the
fluctuations of the renormalized U(1) gauge field will be
given by

Σf (K, iω) = iaω

{
2 ln(1/ρs) on the FL side

ln(1/|ω|) at the critical point
,

(11)
where a is a constant and K lies on the spinon Fermi sur-
face. At the critical point we recover a marginal Fermi
liquid form for the self-energy; in the Fermi liquid, the
singular form is cut off by ρs ∼ 1/ξ, the superfluid stiff-
ness associated with the chargons, and ξ the correla-
tion length. On the FL side, the quasiparticle residue
will behave as Z ∼ |s − sc|2β/ ln(1/|s − sc|), where s is
the parameter tuning the transition. For the theory at
large−N , we have β = 1/2. Additionally the effective
mass of the quasiparticle will diverge logarithmically as
the transition is approached from the FL side, which will
likely manifest itself in a Kadowaki-Woods scaling of the
coefficient of the T 2−resistivity and in the Sommerfeld
coefficient associated with the specific heat. The Ioffe-
Larkin rule (Appendix B 4) for the electronic compress-
ibility, κ−1 = κ−1

b + κ−1
f , with κb ∼ ρs also leads to the

conclusion that κ vanishes continuously upon approach-
ing the critical point from the metallic side.

The Ioffe-Larkin rules also determine the evolution of
the resistivity across the critical point. In the clean limit,
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there is a jump in the resistivity at the critical point of
order ∼ Rh/e2, with R a universal number [2, 29]. How-
ever, there is a minor modification beyond the consid-
erations of the bandwidth-tuned transition at νc = 1/2,
arising from the structure of the dual vortex multiplet
theory. Specifically, the fixed point in the large−N limit
of our theory is described by three CPN−1 models coupled
by the non-compact U(1) gauge field Aµ. The WM insu-
lator corresponds to each of the ϕl condensed, where each
CPN−1 will have a topological defect that corresponds to
the winding of the phase of ϕl. As noted earlier, these
defects correspond to fractionalized chargons and carry
charge e/3 [21] and the universal jump in resistivity at
the critical point will be given by

ρb =
Rh

3(e/3)2
=

3Rh

e2
, (12)

which is three times the size of the jump absent any frac-
tionalization. This enhancement is discussed in greater
detail in [22]. Note that the above relation assumes the
underlying large-N limit. More generally, the universal
jump in the resistivity at this filling will have a mag-
nitude that is different from the corresponding jump at
half-filling.

Turning our attention now to the effects of transla-
tion symmetry breaking, which is a new ingredient be-
yond the MIT at νc = 1/2, there is a continuous on-
set of charge density order upon entering the WM in-
sulator. The density-density correlations for the vari-
ous order parameters are controlled by the correspond-
ing scaling-dimensions, ∆ρ. Specifically for our large−N
formulation of the theory, we anticipate the

√
3×
√

3 or-
dering to have a scaling dimension ∆ρnn

= 2, with all
other charge orderings having scaling dimension 1.

The magnetic properties across the MIT can be probed
through measurements of the spin-susceptibility, as has
already been done in the recent experiments of νc = 1/2
bandwidth-tuned transition in moiré TMD materials [8].
For the MIT discussed in this paper, the spin suscepti-
bility in the WM will be temperature independent at the
lowest temperatures due to the presence of the spinon
Fermi surface. Moreover, the susceptibility will evolve
smoothly across the transition to the expected Fermi liq-
uid form on the metallic side. However, the bandwidth
associated with the spinon Fermi surface is expected to be
small, as it is controlled by the exchange interactions that
are generated due to the longer range hopping and inter-
action scales in the ordered Wigner crystal. Therefore,
as a function of increasing temperatures, the spinons are
expected to crossover into their ‘high-temperature’ state
and can exhibit an analog of a ‘Pomeranchuk-effect’ with
a significant enhancement in their entropy from the fluc-
tuating local-moments.

V. OUTLOOK

Preliminary thermodynamic measurements studying
the bandwidth tuned transition at fixed commensurate
fillings out of certain WM insulators in moiré TMD ma-
terials find no evidence of hysteresis [8]. These platforms
provide an ideal playground for investigating the con-
tinuous metal-insulator transitions that have been the
focus of the present theoretical study. We have used a
large-N approach to describe the transition analytically
in a controlled fashion and demonstrated the possibil-
ity of realizing such a continuous transition without any
fine-tuning. However, the physical situation at N = 1
lies beyond the strict regime of control within our ap-
proach and is possibly described by an entirely different
fixed-point. Moreover, the specific form of translational
symmetry breaking at large−N in our theory is different
from the

√
3 ×
√

3 charge ordering observed experimen-
tally [24]. It would be very interesting and helpful to the
community to use a combination of more sophisticated
numerical and analytical techniques to directly study the
strongly coupled theory in the N = 1 limit in the future.

The Wigner-Mott insulator in the present theoretical
discussion hosts a Fermi surface of neutral spinons. It is
natural to address the possibility of a direct transition
from a metal to a Wigner-Mott insulator without gap-
less Fermi surfaces of any excitations. Such a transition
presents a significant challenge to theory and requires the
spinon Fermi surface to disappear infinitesimally away
from the critical point on the insulating side without any
fine-tuning. A possible route to describing such transi-
tions has been discussed in another context recently [30?
, 31].

Finally, it would be interesting to study the effect of
doping slightly away from νc = 1/6 on the insulating
side. There are at least three possibilities. In the sim-
plest scenario, the excess carriers form a small Fermi sur-
face, behaving as a spectator to the MIT described above
without altering its criticality. However, at these low
densities in the experimental setup, quantum localiza-
tion corrections and effects of long-wavelength disorder
likely play an important role. More interestingly, if the
excess carriers get fractionalized due to strong-correlation
effects on the insulating side, the corresponding chargons
can condense. However, this can immediately lead to a
transition into a metallic state where the spinon Fermi
surfaces reveal themselves and become electronic Fermi
surfaces consistent with the full Luttinger count in the
reduced Brillouin zone (due to the underlying transla-
tional symmetry breaking). Additionally, we also note
that the excess doping could, in principle, enlarge the
spinon Fermi surface enough to introduce ‘hot-spots’ at
the relevant charge ordering wavevectors, and change the
nature of the underlying fixed point.
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Appendix A: Mean-field theory of electronic
density-wave ordering

1. 120◦ Néel order

Consider a single spin density wave of the form dis-
cussed in Section II A, e.g. one that rotates the spins by
120◦ as they increment along the a2 direction (shown in
Figure 4) but leaves them unchanged in the a1 direction.
The spin wave order parameter will thus be given by

mi =∆S2

[
cos

(
1

3
(b2 · ri)

)
x̂ + sin

(
1

3
(b2 · ri)

)
ŷ

]
(A1)

mq =
∆S2

2

[(
δq,Q2

+ δq,−Q2

)
x̂− i

(
δq,Q2

− δq,−Q2

)
ŷ
]
,

(A2)

where Q2 = b2/3 is the spin density wave vector. The
SDW Hamiltonian will then be

HSDW,2 =
∑
k,q

c†k,αmq · σαβck+q,β (A3)

=∆S2

∑
k

c†k,↑ck+Q2,↓ + c†k,↓ck−Q2,↑. (A4)

As discussed in Section II A the full SDW will be de-
scribed by competing SDW states; one state that wants
the spins to increment by 120◦ as they travel along a2 but
be aligned along a1 and the other which wants alignment
along a2. This second state will be given by HSDW,1, oth-
erwise written the same as above but with the order pa-
rameter ∆S1

and the spin density wavevector now given
by Q1 = b1/3. The full Hamiltonian will then be given
by

H = Ht +HSDW,1 +HSDW,2, (A5)

where Ht is the hopping Hamiltonian. Since Q1 and Q2

are both commensurate with the original Brillouin zone
the bands can be folded into the reduced Brillouin zone
spanned by Q1 and Q2. As each Q has periodicity 3
the enlarged unit cell will contain 9 sites, as we noted it
must. Accounting for spin this means there will be 18
bands. This gives us a chance of observing a band gap
at fixed filling νc = 1/6.

We can numerically tune the order parameters ∆Si

with a specific model of the hopping and confirm that
there is indeed a band gap at νc = 1/6 filling at large
∆S . Firstly, we take ∆S1 = ∆S2 = ∆ in order to get
maximal frustration and encourage the charge density
wave pattern seen. Next we consider

Ht =
∑
k

ξkc
†
kσckσ, (A6)

where ξk is the dispersion given by nearest neighbor hop-
ping on the triangular lattice, accompanied by a chemi-
cal potential term meant to keep the system at νc = 1/6.
The results are displayed as Figure 3(a). With increas-
ing ∆/t the Fermi surface is eventually gapped out. We
further measure this gap to be proportional to ∆, so it is
not sensitive to the details of the hopping Hamiltonian.

2. Stripe order

In the case of the stripe order shown in Figure 3(b) we
have a SDW with period 2 along the a2 direction and a
charge density wave with period 3 along the a1 direction.
The SDW Hamiltonian is given by

HSDW = ∆S

∑
k

c†k,ασ
z
αβck+Q2,β , (A7)

where Q2 = b2/2. The charge density wave order will
not couple to the spins and can be written simply as

HCDW = ∆C

∑
k,σ

c†k,σck+Q1,σ, (A8)

where Q1 = b1/3. Note that in real space this is given
by

HCDW =
∑
ri,σ

[
∆C cos

(
1

3
(b1 · ri)

)]
nri,σ. (A9)

Since we want to make it energetically favorable to fill
the first site, ri = 0 and not the next two, ri = a1, 2a1,
we must take ∆C < 0. Finally, we note that the enlarged
unit cell will now contain 6 original lattice sites, making it
possible to observe a band insulator with filling νc = 1/6.

In order to numerically check this we take −∆C =
∆S = ∆ > 0. With the same hopping Hamiltonian
Eq. A6 we find that a gap does open up for νc = 1/6
as ∆/t is increased. Further we find that this gap is pro-
portional to ∆ for large ∆, so it is again not sensitive to
the details of the hopping Hamiltonian.
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Appendix B: Further details of the low-energy field
theory

In this appendix, we will compute the effective action
of the emergent gauge field aµ and use this to understand
the physics of the low-energy field theory.

1. Effective action for emergent U(1) gauge-field

The effective action for the emergent gauge field, aµ,
includes dynamical contributions from both the gapless
spinons and the chargon fields. The spinons couple min-
imally to a and lead to a familiar contribution, once the
particle-hole fluctuations near the Fermi surface are in-
tegrated out. At small |ω| and |q| (the momentum devi-
ation from the FS), the spinon polarizability is

Πf (q, iω) =
k0|ω|
vF0 |q|

+ χd|q|2 + · · · , (B1)

where k0 is of order the typical spinon Fermi momentum,
vF0 is the typical spinon Fermi velocity, and χd represents
the diamagnetic susceptibility of the spinons.

In the original chargon description, the emergent gauge
field aµ will couple via a term aµj

µ
b , where jµb is the

chargon number current. On the dual side, this current
is given by εµνλ∂νAλ/2π; physically this is because the
presence of a boson corresponds to 2π flux from A. Thus
on the dual side there will be no direct coupling of aµ
to the vortices, instead they will be coupled indirectly
via a mutual Chern-Simons term with Aµ. The effective
action for the transverse parts of A and a will then be
given by

Seff [a,A] =

∫
q,ω

[
Π[a,f ](q, iω)|a(q, ω)|2 +

iεµνλqν
2π

Aµaλ

]
+ Seff [A], where (B2)

Π[a,f ](q, iω) =
q2

e2
a

+ Πf (q, iω) (B3)

and Seff [A] is the effective quadratic action in terms of Aµ
when the vortex fields are integrated out, which we return
to later. Note the presence of an i factor in the mutual
Chern-Simons term above; this is because of its extra
factor of i even in a Euclidean path integral framework.
The effective action for the transverse components of a,
after integrating out the A field, is given by

Seff [a] =

∫
q,ω

(
Π[a,f ](q, iω) +

q2

(4π)2ΠA(q, iω)

)
|a(q, ω)|2,

(B4)
where ΠA(q, iω) is the vortex polarizability. We thus
see that the behavior of the effective action for aµ when
the matter fields are integrated out requires knowledge
of ΠA. In order to calculate this in a sensible way the N
counting must be done correctly. With the action given
in Eq. 6 the gauge field Aµ will drop out of any correlators

involving the vortex multiplets in the N →∞ limit [25].
However, the reverse is not true and the ϕl fields will
affect the effective action of A when they are integrated
out, i.e. make ΠA nontrivial.

2. Approach from Fermi liquid side

After integrating out the gapped vortex fields (i.e. con-
densed chargons) within our large−N formulation, the ef-
fective action for (the transverse part of) Aµ to quadratic
order is given by

Seff [A] =

∫
q,ω

(
q2

e2
A

+ Πϕ(q, iω)

)
|A(q, ω)|2, (B5)

where Πϕ is the polarizability of a single species of vor-
tices; the N−normalization is chosen such that Πϕ is
O(1). The polarizability will have the form

Πϕ(q, iω) = σϕ
√
ω2 + c|q|2P

(√
ω2 + c|q|2
ρs

)
, (B6)

where P is some function which scales as P (x → 0) ∼
x/π and P (x→∞) ∼ 1, σϕ is the universal vortex con-
ductivity at the critical point, ρs and c are the superfluid
stiffness and velocity of the chargons, respectively.

We then obtain

ΠA(q, iω) =
q2

e2
A

+ σϕqP

(
q

ρs

)
, (B7)

where q =
√
ω2 + c|q|2. In the Fermi liquid, ρs > 0,

such that for q � ρs, P (q/ρs) ∼ q/(πρs). As expected,
integrating out the gapped ϕ fields leads to non-singular
terms that simply renormalize 1/e2

A → 1/e2
A + σϕ/πρs.

The effective theory for a at low energies is then given
by:

Seff [a] =

∫
q,ω

(
k0|ω|
vF0 |q|

+
q2

(4π)2[q2/e2
A + σϕq2/πρs]

)
|a(q, ω)|2

∼
∫
q,ω

(
k0|ω|
vF0 |q|

+
πρs

(4π)2σϕ

)
|a(q, ω)|2, (B8)

as ρs becomes small relative to eA. As in the example of
the MIT at νc = 1/2 [2], the term proportional to ρs cuts
off the singular divergence of the fermion self energy due
to scattering off the a−fluctuations, leading to a regular
Σf (K, iω) ∼ iω ln(1/ρs). The ρs term is an analog of a
Higgs term for the emergent gauge fields at low energies.
This term is proportional to the chargon phase stiffness
ρs. Clearly, at the critical point ρs → 0 and the criti-
cal vortex (or, equivalently the chargon) fluctuations will
lead to singular contributions to the effective action for
a, which will affect the fermion self-energy.
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3. Low energy theory at the critical point

At the critical point, the form of the effective action
for a is modified primarily due to the contribution from
the gapless bosonic matter fields. In this limit, the action
becomes

Seff [a] =

∫
q,ω

(
k0|ω|
vF0
|q|

+
c2|q|2

(4π)2[c2|q|2/e2
A + σϕc|q|]

)
|a|2

=

∫
q,ω

(
k0|ω|
vF0
|q|

+
c

(4π)2σϕ
|q|
)
|a(q, ω)|2. (B9)

We note that the above low energy effective action is
nearly identical to the critical theory for the bandwidth-
tuned transition at νc = 1/2 [2]. As expected, our formu-
lation leads to the appearance of the vortex resistivity,
∼ 1/σϕ, instead of the boson conductivity, σ0, which are
related to each other [32]. On a quantitative level, this
universal conductivity (resistivity) describes the contri-
bution from a superfluid to charge-order deconfined crit-
ical point, unlike that of the 3D XY critical point for the
νc = 1/2 transition.

As anticipated, the effect of the above z = 2 gauge-
field is to lead to a Σf (K, iω) ∼ iω ln(1/|ω|) form of the
fermion self-energy at the critical point; the chargon self-
energy receives only analytic corrections from the gauge-
field. The chargons are described by zb = 1 and the
Landau damping term in Eq. B9 effectively behaves as
a Higgs mass. As a result, the fluctuations of a in the
chargon sector and their criticality will thus be unaffected
by a, and hence by any indirect coupling from f to a.

4. Ioffe-Larkin rules

In this appendix, we review the Ioffe-Larkin rules for
the effective electromagnetic (and related) response func-
tions, starting from the dual vortex side. We imagine
coupling the system to an external (probe) U(1) gauge
field Aext

µ . Since we have assigned the physical electric

charge to the chargons, and not the spinons, Aext
µ only

couples to these matter fields. In the original chargon de-
scription this coupling would be of the form Aext

µ jµb with

jµb the chargon number current. By the same arguments
given in Appendix B 1, we see that on the dual vortex
side Aext will thus couple to εµνλ∂νAλ/2π and the ef-
fective action in terms of a and A (Eq. B2) will gain a

term

−
∫
q,ω

i

2π
Aµε

µνλqνA
ext
λ . (B10)

When A is integrated out, as done in Appendix B 1, we
will now have that the effective action in terms of a is
given by

Seff [a,Aext] =

∫
q,ω

[
Πf (q, iω)|a|2 + Πb(q, iω)|a−Aext|2

]
,

(B11)

Πb(q, iω) =
q2

(4π)2ΠA(q, iω)
. (B12)

The coefficient of the a − Aext term is Πb(q, iω), since
this is how it must appear in the chargonic description
of the theory. We have also dropped the unrenormalized
a propagator from the Π[a,f ] term since this will turn
out to be irrelevant for our interests. If we now integrate
out the internal gauge field aµ we recover the Ioffe-Larkin
result [33] for the effective theory in terms of the external
gauge field Aext,

Π(q, iω)−1 = Πf (q, iω)−1 + Πb(q, iω)−1. (B13)

The above can be used immediately to obtain, e.g. the
compressibility and resistivity. In terms of the polariz-
ability the compressibility of a system is given by

κ = lim
|q|→0

Π(q, iω = 0), (B14)

such that κ−1 = κ−1
b +κ−1

f . On the FL side where ρs > 0,
we have

κb =
ρs

16π[πρs/e2
A + σϕ]

∼ ρs
16πσϕ

. (B15)

Thus κb ∼ ρs ∼ 1/ξ as the critical point is approached.
The conductivity is given by

σ = lim
ω→0

1

ω
ImΠ(q = 0, iω → ω + iδ), (B16)

and ρ = ρb + ρf . In the presence of some weak disorder,
σf , is finite; the chargon conductivity is infinite on the
FL side, while on the insulating side it must be zero. At
the critical point we will have

σb = lim
ω→0

1

ω
Im

[
−ω2

(4π)2[−ω2/e2
A + iσϕω]

]
=

1

(4π)2σϕ
.

(B17)
Note that the universal value at the critical point for σϕ
will determine the “jump” in the resistivity (the ‘Rh/e2’
coefficient introduced earlier).
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