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Thermal transport in condensed matter systems is traditionally formulated as a response to a
background gravitational field. In this work, we seek a twisted-boundary-condition formalism for
thermal transport in analogy to the U(1) twisted boundary condition for electrical transport. Specif-
ically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary
condition, and study the response of the system to the boundary condition. As specific examples,
we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered
fermion models. We also identify the boost deformation of integrable systems as a bulk counter-
part of the energy-twisted boundary condition. We show that the boost deformation of the free
fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the
boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the
boost-deformed Bethe ansatz equations.

I. INTRODUCTION

Condensed matter systems are characterized by their
responses to various background fields. For example,
electrical conductivity is a (linear) response to an applied
electric field. More formally, the system can be gauged
or coupled to arbitrary background U(1) gauge field, and
one can study the response of the system.

The electrical response is far from the complete char-
acterization of the system. In particular, for charge-
neutral systems or particle number non-conserving sys-
tems, we need to seek other responses. For example,
thermal transport can be well-defined and investigated
for generic systems. Luttinger [1] identified the gravita-
tional field (gravitoelectric field) as a proper static back-
ground field to formulate the linear response for thermal
transport. (This is based on the Tolman-Ehrenfest effect,
which is similar to the Unruh effect.) This formalism al-
lows us to study thermal transport in much the same way
as electrical transport.

In this paper, we will further pursue parallelism be-
tween thermal and electrical response. In particular, we
seek an analogue of the twisted-boundary-condition for-
malism a la Kohn and Thouless [2–4]. In this approach,
the system’s sensitivity to the twisted boundary condi-
tion – the boundary condition twisted by the particle
number conserving U(1) phase rotation – is related to
the electrical transport. In this paper, we will discuss the
boundary condition twisted by energy, which we call the
energy-twisted boundary condition. Following the anal-
ogy, the sensitivity of the system to the energy-twisted
boundary condition is expected to capture the system’s
transport properties.

For the case of electrical transport, twisting the bound-
ary condition by U(1) phase is gauge equivalent to in-
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troducing bulk background U(1) gauge field. In partic-
ular, the bulk U(1) gauge field can be completely uni-
form (homogeneous). Similarly, in relativistic theories,
the energy-twisted boundary condition can be thought
of as a change in the background metric – we introduce
the background graviphoton field [5, 6]. This is equiva-
lent to put the system in an accelerated frame. However,
our formalism, the energy-twisted boundary condition,
can be applied to any lattice quantum many-body sys-
tems, as far as energy is conserved – we can “accelerate”
or “boost” lattice quantum many-body systems by using
the energy-twisted boundary condition.

While the equivalence between the energy-twisted
boundary condition and the bulk background metric may
not hold for lattice quantum many-body systems in gen-
eral, we will discuss an analogue of the bulk formulation
for the case of integrable lattice quantum many-body sys-
tems. Concretely, we will discuss the so-called boost de-
formation for integrable lattice quantum many-body sys-
tems.

In this paper, we will be mostly interested in (1+1)D
systems, defined on a spatial circle (ring). The twisted
boundary condition, twisted either by U(1) or by energy,
can be thought of as arising from magnetic or gravito-
magnetic flux threading through the ring. For the case
of U(1), this is the setting where we can discuss persis-
tent electrical current [7], related to the Aharonov-Bohm
effect. With energy-twisted boundary condition, we can
also discuss a gravitational analogue of persistent cur-
rent. Just like the persistent current is based on the
Aharonov-Bohm effect, the thermal/gravitational ana-
logue can be thought of as related to the Sagnac effect
[8]. The Aharonov-Bohm effect and the persistent cur-
rent is periodic in the unit of flux quantum. When the
threaded flux is an integer multiple of the flux quantum,
the Hamiltonian is equivalent to the Hamiltonian with-
out magnetic flux, as one can find a large gauge (unitary)
transformation which brings one into the other. While it
is rarely discussed, there is a similar periodicity for the
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Sagnac effect, and for the gravitational persistent cur-
rent. It is related to the large diffeomorphism (modular
transformation) of the spacetime torus.

The rest of the paper is organized as follows. In Sec.
II, we first recall the twisted boundary condition by U(1)
phase and its relation to the Drude weight and Meissner
stiffness. Subsequently, we consider the generalization,
the boundary condition twisted by time-translation sym-
metry. We then introduce the thermal version of the
Drude weight and Meissner stiffness. The precise pre-
scription for the energy-twisted boundary condition is
discussed by using the tensor network representation of
the transfer matrices. In addition, one can formulate the
bulk perspective using the so-called boost deformation
in integrable systems. In Sec. III, we present the cal-
culation of the Meissner stiffness for (1+1)D CFT and
for the transverse-field Ising model. In Appendix C,
we also present the calculation of the Meissner stiffness
for (1+1)D disordered free fermion models by using the
transfer matrix method. In Sec. IV, we take a closer look
at the integrable boost deformation, by first focusing on
the free fermion chain. We will show that the boost de-
formation can be solved in terms of the inviscid Burgers
equation. We also study the boost deformation for the
XXZ model, and its thermal response, in particular, the
nonlinear thermal Drude weights. Finally, we conclude
in Sec. V.

II. ENERGY-TWISTED BOUNDARY
CONDITION

A. U(1) twisted boundary condition, persistent
current, Drude weight and Meissner stiffness

Any symmetry in quantum field theories can be
twisted. This is so in particular for unitary on-site sym-
metries. By twisting, we here mean twisting boundary
conditions by symmetries. (One can also introduce sym-
metry twist defects, which are closely related.) Of in-
terest to us in this paper is twisting by time translation
symmetry (energy). Before discussing twisting by energy,
let us start, as a warm-up, with a more familiar example
of twisting by continuous U(1) symmetry.

To be specific, let us consider a lattice fermion sys-
tem defined on a finite one-dimensional lattice of length
L with the periodic boundary condition (PBC). I.e., the
system is defined on a spatial ring or circle. (The follow-
ing discussion can easily be extended to systems defined
on a d-dimensional spatial torus.) We use ψi(x) to denote
a fermion annihilation operator located at a site x, i rep-
resents some internal degrees of freedom within unit cell
(spin, orbitals, etc.). For general systems, the boundary
condition can be twisted, i.e., we can consider a twisting
boundary condition, ψi(x + L) = eiφψi(x), where φ is
a twisting phase (notice, however, that we have systems
with conserved particle number in mind in the following
to discuss conduction properties.) By using the generator

of U(1), i.e., the total charge (total fermion number oper-

ator), Q =
∑
x

∑
i ψ
†
i (x)ψi (x), this boundary condition

can be written as

ψi(x+ L) = Gφ ψi(x)G−1
φ , Gφ = eiφQ. (1)

As is well known, such twisting boundary condition
can be realized by the Aharanov-Bohm effect, i.e., by
putting magnetic flux through a non-trivial cycle of
the circle. Such magnetic flux may be introduced by
a constant background gauge potential, e.g., A(x) =
φ/L. This gauge potential enters into the hopping el-

ements: ψ†j (x + 1)eiφ/Lψi (x) + h.c. By a gauge trans-

formation ψi(x) → eiφx/Lψi (x), one can remove the

background vector potential, ψ†j (x + 1)eiφ/Lψi (x) →
ψ†j (x + 1)ψi (x), except at the boundary of the system:

ψ†j (1)eiφ/Lψi (L) → ψ†j (1)eiφψi (L) = ψ†j (1)Gφψi(L)G−1
φ .

After this gauge transformation, only the link connecting
the ends at x = 1 and x = L has a phase factor eiφ.

The twisted boundary condition (1) can immediately
be generalized to any unitary on-site symmetries by sim-
ply replacing Gφ by the unitary operator implementing
the symmetry. It can also be generalized to non-on site
symmetries [9], and to antiunitary symmetries (time-
reversal symmetry) [9, 10]. These twisting are useful,
e.g., to detect symmetry-protected topological phases.

With the twisted boundary condition, we can now dis-
cuss the system’s response to the U(1) twist, and as-
sociated quantities that measure the response [2, 11–
15]. (Here, we follow the notation of [14].) First,
when the boundary condition is twisted by a U(1) phase,
ψi(x+ L) = eiφψi(x), inversion symmetry is broken and
a finite electric current, the persistent current,

J = L
dF

dφ
= L

∑
n

e−βEn

Z

dEn
dφ

, (2)

flows in the ground state, where En(φ) is the many-body
eigenenergy as a function of the twisted U(1) phase, Z =∑
n e
−βEn is the partition function, and F = −β−1 lnZ

is the free energy. By taking the second derivative with
respect to the U(1) phase φ, we can measure the stiffness
of a system against the U(1) twist. There are two similar
but different quantities, the Drude weight (charge stiff-
ness) D̄ and the Meissner stiffness D. They are defined,
respectively, by

D̄ =
L

2

∑
n

e−βEn

Z

d2En
dφ2

∣∣∣∣
φ=0

, (3)

D =
L

2

d2F

dφ2

∣∣∣∣
φ=0

. (4)

In transport theory of free fermions, the Drude weight
describes the singular part of the ac electric conductivity
σ(ω) at zero frequency ω = 0,

Reσ(ω) = 2πD̄δ(ω) + σreg(ω). (5)
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On the other hand, the Meissner stiffness measures
the superfluid density and describes the boundary-U(1)-
phase dependent part of the ac conductivity as

σ(ω) =
2iD

ω + iδ
+ σKG(ω). (6)

The second term of the right-hand side is the Kubo-
Greenwood formula of the ac conductivity

In the limit of L → ∞ and then T → 0, the Drude
weight is a measure of metallicity [2], and the Meiss-
ner stiffness is that of superconductivity [12], that is,
D = D̄ = 0 in insulators, D = 0, D̄ 6= 0 in metals, and
D = D̄ 6= 0 in superconductors. The coincidence of the
two stiffnesses occurs when the energy gap is present [12].
In the limit of L → ∞ but at a finite temperature, D̄ is
a measure of ballistic conduction or integrability [16–19],
while D = 0 in one dimension. As for a finite-size sys-
tem, there is typically an energy gap above the ground
state. Thus, at T → 0, the Drude weight and the Meiss-
ner stiffness coincide provided there is no ground state
degeneracy [13].

B. Energy-twisted boundary condition

We shall now generalize the above line of thinking to
time translation symmetry. Following (1), we are inter-
ested in the “energy-twisted” boundary condition,

ψi(x+ L) = eaHψi(x)e−aH , (7)

where H is the Hamiltonian, and a is a parameter.
To give a precise meaning of (7), we can switch to

the imaginary-time (Euclidean) path-integral language,
where the energy-twisted boundary condition can be in-
troduced, in term of the spacetime field, as

ψi(x+ L, τ) = ψi(x, τ + a), (8)

where τ is the imaginary time. We should note that
the imaginary time is periodic, with the periodicity given
by the inverse temperature β, τ ≡ τ + β. Accordingly,
while not apparent in (7), there is a periodicity in the
twist parameter a with the periodicity, a ≡ a+ β, much
the same way as the U(1) twisted boundary condition
is periodic with periodicity given by the flux quantum,
2π = 2π~c/|q| where ~ = c = 1 and we choose the charge
of the matter field to be one, |q| = 1. We will call the
boundary condition of type (7) or (8) as energy-twisted
boundary condition. We will also work with the rescaled
version of a,

κ =
a

L
, (9)

in terms of which the periodicity condition is given by
κ ≡ κ+ β/L.

It is also useful to consider discretized imaginary
time and the transfer matrix, as commonly done in lat-
tice quantum many-body systems. The energy-twisted

FIG. 1. The tensor network representation of the untwisted
(left) and twisted (right) partition functions.

boundary condition can then be conveniently introduced
when we have a matrix-product-operator representation
of the (column-to-column) transfer matrix. If we dis-
cretize the imaginary-time direction into M lattice sites,
β = ∆τ ×M , the partition function can be written in
terms of the row-to-row transfer matrix V ∼ e−∆τH as
Z = Tr

[
VM

]
. When the system’s transfer matrix is

represented in terms of a matrix product operator, the
partition function on the torus is then given in terms
of a tensor-network, as depicted in Fig. 1. The parti-
tion function can be alternatively written in terms of the
column-to-column transfer matrix W ,

Z = Tr
[
VM

]
= Tr

[
WL

]
. (10)

Now, we distort this spacetime lattice, and consider
the partition function on the twisted torus (Fig. 1 right).
This can be achieved by “reconnecting” the relevant
links, located between x = L and x = 1. This reconnec-
tion implements a discrete version of the energy-twisted
boundary condition. We note that twisted spatial tori
have been discussed in the context of topological order
[20, 21] and Lieb-Schultz-Mattis type theorems [22, 23].

Viewing the horizontal direction as a fictitious time di-
rection, this may be viewed as an insertion of an operator
in the column-to-column picture

Ztwist(a) = Tr
[
WLSa

]
, (11)

where S is the unit shift operator in time direction, that
shifts the temporal coordinate by ∆τ . The twist param-
eter a here is an integer. We note when a = M , SM = 1,
and hence the twisted partition function is periodic in a,
Ztwist(a+M) = Ztwist(a).

C. Energy-twisted boundary condition and
deformation in integrable systems

While the above prescription to introduce energy-
twisted boundary condition is generic, we now turn our
attention to integrable lattice systems and quantum field
theories in (1+1) dimensions. There, the energy-twisted
boundary condition can be implemented without break-
ing their integrability. Integrability of these models also
allows us to consider their boost deformations – bulk de-
formations of the models without breaking integrability



4

[24]. Boost deformation is to energy-twisted boundary
condition what bulk U(1) gauge field is to U(1) twisted
boundary condition. Namely, boost deformations pro-
vide a bulk background “gauge field” corresponding to
the energy-twisted boundary condition.

Let us now briefly review the boost deformation in in-
tegrable (1+1)D lattice quantum many-body systems, by
first using the set of conserved charges, and then by us-
ing the coordinate Bethe ansatz. The latter description
makes its connection to the energy-twisted boundary con-
dition clear, while in the former we have a bulk descrip-
tion in terms of a deformed Hamiltonian.

We recall that integrable spin chains come with an in-
finite tower of commuting charges {Qr}, [Qr, Qs] = 0
(r, s = 2, 3, . . .), the existence of which is the manifesta-
tion of the integrability. Among the conserved charges
is the Hamiltonian of the spin chain, H = Q2. Ref.
[24] introduced one parameter deformations of generic
integrable quantum spin chains. Starting from the in-
finite tower of commuting charges {Qr} of the original
short-range spin chain, the scheme introduced in Ref.
[24] continuously deforms the conserved charges {Qr} →
{Qr(λ)} where λ is the deformation parameter. Under
such deformation, the integrability is maintained, i.e.,
[Qr(λ), Qs(λ)] = 0, but the deformed charges are longer-
ranged. One of the examples of the deformations is the
so-called T T̄ deformation [25]. Of our interest here is
the boost deformation, which is defined, for the second
conserved charge (the Hamiltonian), by

dQr(λ)

dλ
= i[B[Q2(λ)], Qr(λ)]. (12)

Here, B[Q2(λ)] is the boost operator for the charge Q2

and defined by

B[Q2] =
∑
x

x q2(x), (13)

where q2(x) is the density of Q2, Q2 =
∑
x q2(x). The

boost-deformed Hamiltonian Q2(λ) = H(λ) is an ana-
logue of the Hamiltonian H(φ) in the presence of back-
ground U(1) gauge field A(x) = φ/L discussed in Sec.
II A. As will be seen in Eq. (30), the parameter λ can be
identified with the parameter a, κ introduced in Sec. II
as

iλ = κ, (14)

i.e., an analytic continuation of κ. We note that the
flow equation (12) for real λ keeps the conserved charges
hermitian, while the operator twisting the boundary con-
dition in (7) is non-unitary when a and κ are real.

In the above the boost deformation is conveniently de-
scribed for infinite systems. It is however possible to dis-
cuss integrability and the deformation for finite chains.
There, we need to worry about the compatibility between
the long-range nature of the deformed conserved charges,
and the finite size of the system with a boundary condi-
tion. As long as the range of a conserved charge of in-
terest does not exceed the length of the chain L, one can

formulate the Bethe ansatz equations, and expect that
they give the correct spectrum for this particular charge.
The Bethe ansatz equations we use here are asymptotic
ones, valid for large enough L.

Let us consider, as an example, the S = 1/2 XXZ spin
chain

H = J

L∑
x=1

(
SxxS

x
x+1 + SyxS

y
x+1 + ∆SzxS

z
x+1

)
− LJ∆

2
.

(15)

In the following, we will assume L to be even, and J > 0
and −1 < ∆ < 1. We parameterize the anisotropy ∆ as
∆ = cos γ. The coordinate Bethe ansatz for a state con-
taining N “particles” with (quasi) momenta p1, . . . , pN
is given by

|vN 〉 =
∑

x1<x2<···<xN

∑
σ∈SN

∏
j>k

f
(
vσj − vσk

)
×

N∏
j=1

eipσjxjS−x1
· · ·S−xN |↑ · · · ↑〉 , (16)

where SN is the symmetric group of degree N and S−xj =
Sxxj − iS

y
xj . Here, we introduce the rapidity variable vj ,

eipj = eip(vj) =
sinh γ

2 (vj + i)

sinh γ
2 (vj − i)

, (17)

and f(v) is related to the S-matrix and the phase shift,

S(v) = eiδ(v) = −
sinh γ

2 (v + 2i)

sinh γ
2 (v − 2i)

, (18)

by S(v) = f(v)/f(−v). The energy for the state (16) is
given by

E =

N∑
j=1

h(vj) =

N∑
j=1

2J sin2 γ

cos γ − cosh (γvj)
. (19)

Requiring PBC, we obtain the Bethe ansatz equations

eip(vj)L =
∏
k(6=j)

S (vj − vk) , j = 1, . . . , N, (20)

that determine the quasi momenta.
The boost deformation results in the change in mo-

mentum p(vj) → pλ(vj) [24]. We can then consider the
modified Bethe ansatz equations

eipλ(vj)L =
∏
k( 6=j)

S(vj − vk). (21)

As mentioned above, these Bethe ansatz equations are
asymptotic ones, valid for large enough L. In Ref. [26],
it was shown that, in infinite volume, the deformed mo-
mentum pλ depends linearly on λ,

pλ(vj) = pλ=0(vj) + λh(vj), (22)

which is an input to the Bethe ansatz equations.
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D. Thermal response

In analogy to the U(1) case, we expect that the energy-
twisted boundary condition and deformation (12) is re-
lated to thermal transport. The commutator of the
Hamiltonian with the boost operator (the right-hand side
of (12) when r = 2) is the energy current operator, which
is an integral of motion in integrable models. The per-
sistent heat current (an analogue of the persistent charge
current) flowing in the ground state of a boost-deformed
Hamiltonian is thus

JQ = −
〈
dQ2

dλ

〉
= −

∑
n

e−βEn

Z

dEn
dλ

= −dF
dλ

. (23)

From the linear response theory, we can define the ther-
mal Drude weight [14], which is the zero-frequency sin-
gularity part of the ac thermal conductivity

Reκ(ω) =
2πD̄Q

T
δ(ω) + κreg(ω), (24)

and the thermal version of the Meissner stiffness [14],
which is the contribution to the thermal conductivity be-
sides the Kubo-Greenwood part [1]

κ(ω) =
2iDQ

T (ω + iδ)
+ κKG(ω). (25)

Notice that the definition of these quantities is due to
[14], which may be different from other references by T
and a constant. As expected, the thermal Drude weight
and Meissner stiffness of free fermions are identified with
the second derivatives of the energy and free energy, re-
spectively, with respect to the boost-deformation param-
eter λ as

D̄Q =
1

2L

∑
n

e−βEn

Z

d2En
dλ2

∣∣∣∣
λ=0

, (26)

DQ =
1

2L

d2F

dλ2

∣∣∣∣
λ=0

. (27)

(see Appendix D).

At a finite temperature, the thermal Meissner stiffness
is zero unless superconducting [14]. The thermal Drude
weight has been studied in 1d quantum systems in [27–
32]. [Specifically, see (43).]

III. ENERGY-TWISTED BOUNDARY
CONDITION AND THERMAL MEISSNER

STIFFNESS

In this section, we consider the energy-twisted bound-
ary condition in (1+1)D CFT and lattice many-body sys-
tems, and calculate the thermal Meissner stiffness.

β ω2=iβ

ω1=L+iLκLκ

L x

τ

FIG. 2. The spacetime torus with the energy-twisted bound-
ary condition. (Here, we set the velocity to be one, v = 1, for
simplicity.)

A. (1+1)D CFT

Let us start with a simple example, the (1+1)D chiral
Dirac fermion theory,

H =

∫ L

0

dxψ†Hψ, H = −iv∂x, (28)

where ψ(x) is a complex fermion field operator, and v
is the Fermi velocity. The single-particle eigen functions
are given by fp(x) = eipx/

√
L with the single-particle

energy ε(p) = vp, Hfp(x) = ε(p)fp(x). Requiring the
regular (unboosted) PBC leads to the quantization of
p, p = 2π/L × integer . The energy-twisted boundary
condition can be imposed by requiring

fp(x+ L) = eipLfp(x) = eκε(p)Lfp(x), (29)

where κ is the twist parameter. Thus, p is quantized as

(p+ iκε(p))L = 2πn, n ∈ Z,

⇒ p =
1

1 + ivκ

2πn

L
. (30)

This equation should be compared with (21) with iλ = κ.
We now consider the partition function in the presence

of energy-twisted boundary condition. In relativistic sys-
tems this can be incorporated by introducing gravipho-
ton field in the background metric (Appendix A). For
2-torus, the twist can be incorporated by modifying the
modulus. For the untwisted case, the partition function
is

Z = Tr e−βH = Tr qL0−c/24, (31)

where L0 is the Virasoro generator, c = 1 is the central
charge, and q is given by

q = e2πiτ = e−
2πvβ
L . (32)

With (30), the partition function in the presence of the
twist is given by Z = Tr qL0−c/24, where q is now given
by

q = e2πiτ = e−
2πvβ
L

1
1+ivκ . (33)
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Namely, the modulus changes from the untwisted to
twisted case as

τ =
ivβ

L
→ ivβ

L

1

1 + ivκ
. (34)

Recall that the modulus is the ratio of two periodicities
ω1 and ω2 on the complex plane, τ = ω2/ω1. After the
twist, ω1 is changed as L → L + iLvκ, while ω2 = ivβ
remains unchanged (Fig. 2). When κ = β/L, (34) is
nothing but the modular transformation TST ,

τ → τ

1 + τ
, (35)

where T : τ → τ + 1 and S : τ → −1/τ are the
generators of the modular group SL(2,Z)/Z2: τ →
(aτ + b)/(cτ + d) (a, b, c, d ∈ Z). The modular trans-
formation leaves the spacetime torus unchanged (it acts
as a large diffeomorphism), and hence the spacetime at
κ and κ+ β/L are equivalent.

Let us now consider the energy-twisted boundary con-
dition in a generic (1+1)D CFT using the formalism in
Sec. II. In Lorentz invariant theories, row-to-row and
column-to-column transfer matrices are essentially the
same. The row-to-row transfer matrix is given in terms
of the Hamiltonian H as V = exp(−H). For a CFT
placed on the spatial circle of circumference L, H is
given in terms of the Virasoro generators L0 and L̄0 and
the central charge c as H = (2πv/L)(L0 + L̄0 − c/12).
(v is the velocity of the excitations and plays the role
of the speed of light.) The corresponding column-to-

column transfer matrix is given by W = exp(−H̃) where

H̃ = (2π/vβ)(L0 +L̄0−c/12). The partition function can
be written in two different ways, Z(β, L) = TrH e

−βH =

TrH̃ e
−LH̃ , where H and H̃ are the CFT Hilbert space on

a ring of circumference L and β, respectively. Introduc-
ing the moduli as

τ = ivβ/L, τ̄ = −ivβ/L,
τ̃ = −1/τ, ¯̃τ = −1/τ̄ , (36)

the partition function can be written as

Z(β, L) = TrH e
2πiτ(L0−c/24)e−2πiτ̄(L̄0−c/24)

= TrH̃ e
2πiτ̃(L0−c/24)e−2πi¯̃τ(L̄0−c/24). (37)

To introduce the energy twist, we modify the moduli as

τ =
ivβ

L
→ ivβ

L

1

1 + ivκ
,

τ̃ =
iL

vβ
→ iL

vβ
(1 + ivκ). (38)

The energy-twisted partition function is invariant under
τ̃ → τ̃ + n or Lκ→ Lκ+ nβ, where n is an integer.

The energy-twisted partition function in the low-
temperature limit, vβ/L→∞, can be evaluated as

Z(β, L) ∼ e2πiτ(h− c
24 )e−2πiτ̄(h− c

24 ),

(−1/β) lnZ ∼ − (c− 24h)πv

6L(1 + v2κ2)
. (39)

-1.0 -0.5 0.0 0.5 1.0

-0.06

-0.04

-0.02

0.00

β=10
β=30
β=100
β=300

Lκ/β

F(
κ)

FIG. 3. The variation of the free energy of the Ising CFT
with energy twist.

Here, h denotes the (rescaled) ground state energy. The
thermal Meissner stiffness in the low-temperature limit
converges to

DQ(T = 0) ∼ − (c− 24h)πv3

6L2
. (40)

This quantifies the variation of the ground state energy
in response to the energy-twisted boundary condition.
According to Appendix D 1, DQ(T = 0) agrees with the
same limit of the thermal Drude weight D̄Q(T = 0) due
to the presence of a finite-size gap and the uniqueness of
the ground state. As an example, the twisted free energy
of the Ising CFT is plotted in Fig. 3. The behavior near
κ = 0 matches with (39) with h = 0.

Between Lκ/β = 0 and 1, the free energy at low tem-
perature has smaller Lorentzian peaks

F ' − (c− 24h)πv

6q2L(1 + v2δκ2)
, (41)

at Lκ/β = p/q + Lδκ/β, where p and q are mutually
coprime integers and δκ is a small deviation from p/q
(see Fig. 3). Specifically, a peak at Lκ/β = 1/2 is 1/4
the height at κ = 0, peaks at Lκ/β = 1/3 and 2/3 are
1/9 the height at κ = 0, and so on. These peaks have
the same origin as the fidelity after a quantum quench in
CFT [33]. The quench dynamics at a time t are traced
by a modulus τ = v(iβ + t)/L, which is related to our
twist by the S-modular transformation and interchanging
β and L. As a result, the fidelity has more peaks at
higher temperature, while the energy-twisted free energy
has more peaks at lower temperature.

Following [33], the formula (41) can be derived as fol-
lows. A successive application of modular transforma-
tions STn0STn1 · · ·STnk maps a modulus τ = q/p to
τ = 0, where n0, · · · , nk are integers appearing in the
continued fraction of p/q as

p

q
= n0 −

1

n1 −
1

n2 − · · ·

. (42)
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By the same modular transformation, a modulus τ =
ivβ/(L + iv(p/q)β + ivLδκ) is mapped to τ ' iq2L(1 +
ivδκ)/vβ when vβ/L � 1, which relates the behavior
around Lκ/β = p/q with that around κ = 0. Finally
performing the S transformation again, the free energy
(41) is obtained, provided vβ/L� q2 and Lδκ� β.

On the other hand, high-temperature (vβ/L� 1) be-
havior can be addressed provided the modular invariance
is present. From (37), we obtain DQ ∼ 0, which agrees
with [14]. Notice that high temperature in CFT indi-
cates a temperature regime that is much higher than
the energy-level spacing. At high temperature in CFT
but, simultaneously, sufficiently lower than other energy
scales, such as the band width or Ising coupling, the ther-
mal Drude weight estimated from the heat current has
been reported [29, 31], and is given by

D̄Q =
(c− 24h)πvT 2

6
. (43)

B. The transverse-field Ising model

While in the above we demonstrated the basic ideas
using (1+1)D CFT as an example, it is interesting to
apply the idea to broader systems, which do not have
conformal symmetry nor Lorentz invariance. Here, we
consider the transverse-field Ising model

H =

L∑
i=1

(
−Jσxi σxi+1 − hσzi

)
, (44)

satisfying PBC (σL+1 = σ1). The Ising coupling fa-
vors a ferromagnetically ordered phase (J > h), and the
transverse field favors a disordered (paramagnetic) phase
(J < h). These phases are related to each other by an
order-disorder duality transformation [34]. The phase
transition between them occurs at h/J = 1 (the self-dual
point), at which the low-energy properties are described
by the Ising CFT [35].

We use the transfer matrix formalism introduced in
Sec. II to calculate the response to the energy-twisted
boundary condition. Some details can be found in Ap-
pendix B. The twisted free energy F (κ) = −β−1 lnZ(κ)
is evaluated numerically for a ring of perimeter L = 10.
Here, we fix the Ising coupling by J = 1. The free energy
at the critical point (h = J = 1) agrees with the CFT
result (Fig. 4 bottom left). The free energy has a period
of κ = β/L and the peaks of the free energy become clear
as the temperature is lowered. The free energy changes
non-monotonically as a function of the twist parameter
κ, which is in stark contrast to a monotonically varying
free energy of electrons under the U(1) twist within a
single quantum flux, exhibiting a saw-tooth shape. The
free energy shifted by a suitable constant is plotted.

Away from the critical point, we can see that the free
energy variation decays rapidly due to the stiffness of
the order (Fig. 4 bottom right). In addition, the free

0.2 0.5 1 2 5
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10-4

10-2

h/J

Ferro Para

| D
Q
|

0 0.5 1

-0.04

-0.02

0.00

Lκ/β

Critical (h/J=1)

δF
(κ
)

Lκ/β

δF
(κ
)

β=10
β=30
β=100
β=300

0 0.5 1

-1.5

-1

-0.5

[×10-4]
0

Ferro (h/J=0.5)

FIG. 4. (Top) The thermal Meissner stiffness of the
transverse-field Ising model (L = 10 and J = 1) at β = 100.
(Bottom) The variation of the free energy of the transverse
Ising model at the critical point (J = h = 1, left) and in a
ferromagnetic phase (J = 1, h = 0.5, right) and the perimeter
L = 10 against the twist parameter κ is shown for tempera-
ture β = 10, 30, 100, and 300 (from red to blue).

energy peaks besides Lκ/β = (integer) fade out even at
low temperature. The peak height at these points is no
longer related to that at the origin as it is at the critical
point. This would be a signature of the deviation of
the theory from the Ising CFT. The free energy profile
obeys the duality of the model, that is, h/J < 1 in the
ferromagnetic phase and h′/J ′ = (h/J)−1 > 1 in the
paramagnetic phase have the same response against the
twist.

In Appendix C, we consider yet another lattice model,
the 1d disordered free fermion model(s), and discuss the
thermal Meissner stiffness.

IV. BOOST DEFORMATION IN INTEGRABLE
SYSTEMS

In this section, we discuss the boost deformation in
(1+1)D integrable lattice systems. In particular, we first
look at the free fermion model in detail and show that
the boost deformation leads to the Burgers equation of
the single-particle dispersion. We then turn to the XXZ
model, and, by using the boost-deformed Bethe ansatz
equations, calculate the ground state energy as a function
of the boost parameter, and the thermal Drude weight.
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A. The free fermion model

a. The boost deformation and the inviscid Burgers
equation We start from the (undeformed) tight-binding
model on a 1d lattice (x ∈ Z), H = −

∑
x(c†xcx+1 +h.c.),

which defines the initial condition Q2(λ = 0) = H of the
boost deformation (12). It is straightforward to verify
that the Hamiltonian (the second charge) stays quadratic
during the boost deformation. Hence, we represent the
Hamiltonian and the corresponding boost operator as

Q2(λ) =
∑
x,z

tz(λ)c†xcx+z,

B[Q2(λ)] =
∑
x,z

(x+ z/2)tz(λ)c†xcx+z, (45)

where the set of λ-dependent coefficients tz(λ) param-
eterize the boost-deformed Hamiltonian with the initial
condition tz(λ = 0) = −δ1,z−δ−1,z. In terms of the coef-
ficients tz(λ), the flow equation of the boost deformation
(12), reduces to

dtz(λ)

dλ
= − iz

2

∑
w

tw(λ)tz−w(λ). (46)

Starting from the nearest neighbor tight-binding model
Q2(λ = 0), the boost deformation (12) (or the coupled
ODE (46)) generates a longer-range hopping Hamiltonian
Q2(λ). For a given λ, we consider a large enough chain
of length L, and impose PBC. By the Fourier transform
cx = L−1/2

∑
k e

ikxc̃k, [k = 2π(integer)/L], the Hamil-

tonian in momentum space is H(λ) =
∑
k f(λ, k)c̃†k c̃k,

where the energy dispersion f(λ, k) is given by the
Fourier transform of tz(λ):

f(λ, k) :=
∑
w

eiwktw(λ). (47)

From the perspective from the coupled ODE (46), the
dispersion f(λ, k) can be considered as the “generating
function” of the coefficients tz(λ). So far as the generat-
ing function is differentiable with respect to k, it obeys
a PDE, the inviscid Burgers equation

∂f

∂λ
+ f

∂f

∂k
= 0, (48)

which can be derived from (46).
The inviscid Burgers equation has a formal solution

derived by the method of characteristics [36]. The equi-
energy contour in the λ-k space is k = λf(λ = 0, k0)+k0

that emanates from a point (λ, k) = (0, k0). This equa-
tion indicates how an initial state with a momentum
k0 and an eigenenergy f(0, k0) evolves by fixing the
eigenenergy. A state of (k, f(λ, k)) on the dispersion re-
lation moves along the momentum direction at a speed
of f(λ, k) = f(0, k0). Thus the deformed dispersion re-
lation is obtained by tilting the energy axis by arctanλ.
The Hamiltonian can be deformed until the dispersion
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DQ(TD limit)
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DQ(L=32)D

Q
,D

Q

T
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0.15

0.20
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CFT(h=1/16)
APBC
CFT(h=0)

f(λ
,k
)

k

λ=0
-2

0

2

-π 0 π

D
Q
,D

Q
(T
=0
)

L

FIG. 5. (Top) The thermal Drude weight and thermal Meiss-
ner stiffness of the free fermion chain with L = 8, 16, 32 (solid
and dotted lines, respectively) and the thermal Drude weight
in the thermodynamic limit (red line). (Bottom) The thermal
Drude weight (thermal Meissner stiffness) at zero temperature
is shown. The inset is the evolution of the dispersion relation
from λ = 0 (black) to λ = 4.

relation becomes singular, where the slope of the disper-
sion relation diverges. Beyond this point, the generating
function is no longer differentiable (the formation of the
shock wave by the terminology of the hydrodynamics).

When the generating function is not differentiable with
respect to k, it obeys an integro-differential equation

∂

∂λ

∫
dk e−iwkf(λ, k) =

1

2

∫
dk
∂e−iwk

∂k
f(λ, k)2. (49)

Solutions to (49) are known as weak solutions to the in-
viscid Burgers equation (48). We should regard the weak
solutions as the genuine generating function since the
integro-differential equation (49) is equivalent to (46).

A non-differentiable solution to the inviscid Burgers
equation can also be addressed by the inviscid limit of the
Burgers equation, which is exactly solvable by the Cole-
Hopf transformation. In general, the asymptotic solution
of the Burgers equation in the inviscid limit becomes a
linear dispersion f(λ, k) = (k−kM )/λ, where kM satisfies
f(0, kM ) = 0 and ∂f(0, kM )/∂k > 0.

Specifically, the dispersion of the deformed Hamilto-
nian is the solution of

f(λ, k) = −2 cos[k − λf(λ, k)]. (50)

The evolution of the dispersion relation is shown in
the inset of Fig. 5 (bottom). Starting from f(0, k) =
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FIG. 6. (Top) The ground state energy of the boost-
deformed XXZ model with L = 100 for ∆ = −0.1, 0, 0.1 com-
puted from the boost-deformed Bethe ansatz equations. Here
δE0 = E0(λ) − E0(0). The inset shows the ground state en-
ergy of the boost deformed XXZ model for −0.9 ≤ ∆ ≤ 0.9
with step size of 0.1 from top to bottom. (Bottom) The size
dependence of the thermal Drude weight (26) at zero tem-
perature calculated using the Bethe ansatz equations (dots).
Solid lines represent the CFT predictions (40).

−2 cos k, the shock wave is formed after λ = 1/2,
where the slope at k = −π/2 diverges, and the disper-
sion relation converges to f(λ, k) = (k − π/2)/λ (k ∈
[−π/2, 3π/2]).

b. The boost deformation, the thermal Drude weight,
and the thermal Meissner stiffness The thermal Drude
weight and the thermal Meissner stiffness of the lattice
free fermion model calculated by (26) and (27) are plotted
in Fig. 5. As shown in Appendix D 3, the thermal Drude
weight of a clean fermion system converges to πvT 2/6
in the thermodynamic limit L → ∞ at low temperature
T � 1. The thermal Drude weight (and thermal Meiss-
ner stiffness) at T = 0 is consistent with the CFT re-
sult (40) by taking into account that a complex fermion
is equivalent to two real fermions (c = 1/2) and that
2(c− 24h) = −2 for PBC (h = 1/16) and 2(c− 24h) = 1
for APBC (h = 0). However, notice that physical prop-
erties of a free fermion depends on the length modulo 4
(for details see Appendix D 4).

B. The XXZ chain with boost deformation

We now turn to the boost deformation of the XXZ
model (15). As outlined in Sec. II C, the boost deforma-

tion can be implemented in the Bethe ansatz equations.
Specifically, we solve

L[p1(vλj ) + λh(vλj )]−
N∑
k=1

p2(vλj − vλk ) = 2πIj (51)

with pn(v) = 2 tan−1
(

tanh γv
2

tan nγ
2

)
. Here, focusing on the

ground state at half-filling, N = L/2, the quantum num-
bers in (51) are given by Ij = −N−1

2 + j − 1. We then
obtain the ground state energy E(λ) as a function of the
boost parameter (Fig. 6).

When ∆ = 0, we have checked that the calculation
using the boost-deformed Bethe ansatz equations repro-
duces the free fermion result. We observe that for small
λ, there is a “plateau-like” structure, whereas for larger
λ, the ground state energy depends more sensitively on
λ. At the free fermion point ∆ = 0, this change in the be-
havior of the ground state energy coincides with the for-
mation of the shock wave in the dispersion at λ = ±1/2.

The finite-size scaling of the zero temperature ther-
mal Drude weight is shown in the bottom plot of Fig.
6. Here, as we take the limit β → ∞ before L → ∞,
the thermal Drude weight and thermal Meissner stiff-
ness coincide. We can thus compare the result from the
Bethe ansatz with the CFT prediction. Recalling (39),
the ground state energy in the presence of boost at low
temperature is

E = E∞ −
cπvs

6L(1 + v2
sκ

2)
. (52)

Here, c = 1 is the central charge and vs = π sin γ
γ is the

sound velocity. With the identification iλ = κ, we obtain
the CFT prediction

D̄Q =
1

2L

d2E

dλ2

∣∣∣
λ=0

= D̄Q
∞ −

cπv3
s

6L2
. (53)

This is basically the same as (40). As shown in Fig. 6, the
result from the Bethe ansatz agrees well with the CFT
prediction, and converges to zero in the L→∞ limit as
predicted [27].

Using our formalism, it is also possible to discuss
the nonlinear thermal Drude weights. They can be de-
fined, following the definition of the nonlinear spin Drude
weights [37, 38], as

D̄Q(n) =
1

L

dn+1E

dλn+1

∣∣∣
λ=0

, n > 1. (54)

The results are shown in Fig. 7. From Fig. 7, we see that
the CFT prediction still fits well the higher order non-
linear thermal Drude weight obtained from the Bethe

ansatz, if we assume D̄
Q(n=3,5)
∞ = 0: the nonlinear ther-

mal Drude weights also converge to zero at large system
sizes.

Finally, we can also obtain the nonlinear thermal
Drude weights at finite boost parameter λ, as shown in
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FIG. 7. The linear (a), third (b), and fifth (c) order nonlinear thermal Drude weights at λ = 0 as defined in Eq.(54) for different
system sizes. The dots are from solving the Bethe ansatz and the solid lines are calculated from Eq. (54).

Fig. 8. The nonlinear thermal Drude weights at zero
temperature could be computed as

D̄Q(n)(λ) =
1

L

dn+1E

dλn+1
∝ 1

1− v2
sλ

2
. (55)

Since vs = π sin γ
γ ∈ (0, π), as we change ∆, there is a

singularity at vs = 1/λ. We indeed see in our Bethe
ansatz calculation that at certain value of ∆, D̄Q(n)(λ)
diverges for λ = 0.5 and λ = 0.7 (Fig. 8). We confirmed
that these divergence values coincide with vs = 1/λ.

These findings should be compared with the behav-
iors of the nonlinear spin Drude weights [37, 39, 40].
First, we did not observe divergences for D̄Q(n=3,5) in
contrast with the nonlinear spin Drude weights. Second,
the Bethe ansatz results for D̄Q(n=3,5) are described very
well by the CFT predictions.

To address these questions (at least partially), let us
focus on the non-interacting case and consider the effect
of the non-linearity of the dispersion on the nonlinear
thermal Drude weight. 1 We consider the single particle
spectrum:

ε(p) = v1p+ v3p
3 + · · · =

∑
m=1

v2m−1p
2m−1. (56)

As in Eq. (30), we impose the energy-twisted boundary
condition,

p− λ
∑
m=1

v2m−1p
2m−1 =

2π

L
(−r + α), r ∈ Z (57)

where α = 0(1/2) for PBC (APBC). This quantization
condition on p can be solved order-by-order in λ. If we
expand the momentum p as p =

∑
l=0 λ

lAl, we can de-

1 We thank Hosho Katsura who suggested this calculation.

termine Al as

A0 =
2π

L
(−r + α),

A1 =
∑
m=1

v2m−1A
2m−1
0 ,

A2 =
∑
m=1

v2m−1(2m− 1)A2m−2
0 A1,

...

Al =
∑
m=1

v2m−1

∑
i1<i2<···≤l−1
r1+r2+···=2m−1
i1r1+i2r2+···=l−1

Cr1,r2···A
r1
i1
Ar2i2A

r3
i3
· · · ,

...

(58)

with Cr1,r2... = (2m−1)!
r1!r2!... . We assume the ground state

where all single-particle states with −r + α < 0
are filled. The ground state energy is then
given by E(λ) =

∑∞
r=1

∑
m=1 v2m−1p

2m−1(λ) =∑∞
r=1

∑
m=1 v2m−1

(∑
l=0 λ

lAl
)2m−1

. The nonlinear
thermal Drude weight is obtained by taking the (higher)
derivative of the ground state energy with respect to λ.
Focusing on the contributions from the linear part of the
dispersion,

dnE

dλn
=
n!vn+1

1 2π

L

∞∑
r=1

(−r + α) + · · · (59)

We have so far focused on the left-movers. Combining
the contributions from the right-movers, for which the
dispersion is given by

∑
m v2m−1(−p)2m−1, we see that

the contributions cancel for odd n, while they add up for
even n. For APBC, we can regularize

∑∞
r=1(−r + α) =

−1/24. Hence,

dnE

dλn
=

 −n!vn+1
1 π

6L
n : even

0 n : odd
(60)
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FIG. 8. The second-order nonlinear thermal Drude weight at λ = 0.2 (a), λ = 0.5 (b), and λ = 0.7 (c) for different system
sizes. The dots are from solving the Bethe ansatz and the solid lines are calculated from Eq. (55). The blue vertical lines in
(b) and (c) indicate the divergence region calculated from Eq. (55).

This is consistent with the calculation from Eq. (39)
which suggests

E(λ) = − (c− 24h)πv

6L(1− v2λ2)
(61)

(we take c = 1 and h = 0). The nonlinear thermal Drude
weight is then

D̄Q(n) =
1

L

d(n+1)E

dλ(n+1)
=

 − (n+ 1)!vn+2
1 π

6L2
n : odd

0 n : even

(62)

To conclude, we see that the leading contributions to
the nonlinear thermal Drude weights come from the lin-
ear part of the dispersion v1. This should be contrasted
with the nonlinear spin Drude weights, which are gov-
erned by the non-linearity of the dispersion, v2m−1>1 [41].
I.e., the purely linearly-dispersing band or CFT predicts
vanishing nonlinear spin Drude weights and fails to re-
produce lattice calculations. On the other hand, for the
nonlinear thermal Drude weight, CFT still captures the
dominant contributions.

V. CONCLUSION

We have formulated a symmetry twist of the boundary
condition relevant to thermal transport as the energy-
twisted boundary condition, and shown that the stiffness
against the twist quantifies thermal transport properties.
We have also identified its bulk counterpart as the boost
deformation, which has been studied in the context of
a long-range deformation of integrable systems. These
have a close analogy with the U(1) twisted boundary
condition and the equivalent bulk U(1) gauge transfor-
mation relevant to electric transport. The relations have
been confirmed by the agreement of the thermal Drude
weight and the thermal Meissner stiffness estimated by
each method. Specifically, the CFT result under the
energy-twisted boundary condition agrees with the other

results as far as CFT is applicable. A rigorous relation
between the stiffnesses and the ac conductivity is shown
only at the free fermion point.

The energy-twisted boundary condition is imposed on
tori and is mostly suited for the evaluation of the parti-
tion function via the reconnection of tensor networks. It
is thus compatible in particular with exact methods in
1 + 1 dimensions and numerical analysis in any dimen-
sions. We have demonstrated how this method works in
the estimation of the thermal Meissner stiffness of CFTs
based on the modular transformation, and also that of
the transverse-field Ising model and disordered lattice
fermions in 1+1 dimensions based on the transfer matrix.

The boost deformation is a sort of integrable deforma-
tion applied in the bulk, and thus suited for integrable
systems in 1 + 1 dimensions. We showed an implemen-
tation of the boost deformation in the Bethe ansatz,
and addressed the linear and nonlinear thermal Drude
weights of the XXZ Heisenberg spin chain. We also ana-
lyzed the energy-twisted deformation of the free fermion
chain via the inviscid Burgers equation. The agreement
of the thermal Meissner stiffness with that of the Ising
CFT under the energy-twisted boundary condition indi-
cates an equivalence of the bulk and boundary-condition
methods at least in a critical model.

Extending these analyses to a wider range of sys-
tems, beyond those studied in this paper, is an impor-
tant open question. In particular, unlike the energy-
twisted boundary condition, the boost deformation is for-
mulated by making use of the integrability of (1+1)D
quantum many-body systems, or in continuum systems
with Lorentz invariance. It is important to formulate
and study the boost deformation outside of these con-
texts. Also interesting is to study the energy-twisted
boundary condition and boost deformation in quantum
many-body systems in higher dimensions. As a simple
warm-up, in Appendix E, we present the implementation
of the energy-twisted boundary condition in the 2d inte-
ger quantum Hall effect. Just like Laughlin’s argument
for the quantized Hall conductance, the transverse en-
ergy transport can be induced by an adiabatic change in
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the boost parameter. Studying interacting 2d quantum
many-body systems (e.g., fractional quantum Hall sys-
tems) using the energy-twisted boundary condition and
boost deformation would be a natural next step. In this
regard, it would be interesting to make a comparison with
other formalisms, such as Ref. [42].
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Appendix A: Graviphoton field on 2-torus

Consider the (1+1)D Euclidean spacetime with the
metric

ds2 = (dτ +AE
xdx)2 + dx2, (A1)

where AE
x is the background gravitomagnetic vector po-

tential. By the Wick rotation, τ = it and AE
x = iAg

x,
the line element in the Minkowski signature is given by
ds2 = −(dt+Ag

xdx)2 + dx2. The gravitomagnetic vector
potential induces a gravitational counterpart of magnetic
flux. Provided that the gravitomagnetic vector potential
AE
x is static, the metric (A1) is obtained from the regular

flat metric by a transformation

(τ, x)→ (τ + βa(x), x), (A2)

where a(x) = β−1
∫ x

0
dx′AE

x (x′). To be consistent with

the spatial periodicity, we assume AE
x is a periodic func-

tion of x, AE
x (x + L) = AE

x (x). If we start from the
spacetime 2-torus with periodicity

(τ, x) ∼ (τ + β, x) ∼ (τ, x+ L), (A3)

then after the transformation the new identification con-
dition is given by [6]

(τ, x) ∼ (τ + β, x) ∼ (τ + βa(L), x+ L). (A4)

Appendix B: Lattice spin systems and transfer
matrix formalism

In this appendix, we review the derivation of the
column-to-column transfer matrix of the transverse-field

Ising model following [43–47], and derive the twisted par-
tition function. Consider the transverse-field Ising model
in a general form

H =

L∑
i=1

(
−Jiσxi σxi+1 − hiσzi

)
, (B1)

satisfying PBC (σL+1 = σ1). By Trotterizing the imag-
inary time direction, the partition function is written
in terms of the row-to-row transfer matrix V as Z =
Tr e−βH ' TrVM , where an integer M is the length of
the temporal direction. The transfer matrix can be writ-

ten as a product form, V = V (1)1/2
V (2)V (1)1/2

, where

V (1) =

L∏
i=1

eγiσ
z
i , V (2) =

L∏
i=1

eKiσ
x
i σ

x
i+1 . (B2)

Here, the coefficients are defined by Ki = βJi/M
and γi = βhi/M . By introducing vectors B0(ε) =

(
√

cosh ε, 0)T and B1(ε) = (0,
√

sinh ε)T , we obtain [46]

eKiσ
x
i σ

x
i+1 =∑

si,ti+1

BTsi(Ki)Bti+1
(Ki) (σxi )

si
(
σxi+1

)ti+1
, (B3)

where si and ti+1 take 0, 1, and thus

V (2) =
∑

s1,t1,k2,··· ,kL

BTs1(K1)Ck22 · · ·C
kL
L Bt1(KL)

× (σx1 )
s1+t1 ⊗ (σx2 )

k2 · · · ⊗ (σxL)
kL , (B4)

where Cki =
∑
sBs(Ki−1)BTs+k(Ki) and, the subscript

of Bs(ε) is defined modulo 2. By making the imaginary-

time coordinate explicit, we obtain VM =
∏M
j=1 Vj where

Vj =
∑

s1j ,t1j ,k2j ,··· ,kLj

BTs1j (K1)C
k2j
2j · · ·C

kLj
Lj Bt1j (KL)

×Xs1j+t1j
1j ⊗Xk2j

2j · · · ⊗X
kLj
Lj , (B5)

and Xk
ij = eγiσ

z
i /2(σxi )keγiσ

z
i /2.

When the spacetime is twisted by a lattice sites, Ising
coupling connects the boundary spin at a position (L, j)
to the spin on the other side at (1, j+a). This changes the
ket vector in (B5) as Bt1j (KL)→ Bt1j+a(KL). Inserting
the identity matrix 1 =

∑
τj
|τj〉〈τj | of the auxiliary 2-

dimensional space in front of Bt1j+a(KL), the transfer
matrix on a twisted spacetime becomes

Vj(a) =
∑
τj

∑
k1j ,··· ,kLj

〈τj−a|C
k1j
1j · · ·C

kLj
Lj |τj〉

×Xk1j
1j ⊗X

k2j
2j · · · ⊗X

kLj
Lj . (B6)

Due to the duality between C and X, the column-to-
column transfer matrix is

Wi =
∑
σi

∑
ki1,··· ,kiM

〈σi|Xki1
i1 · · ·X

kiM
i1 |σi〉

× Cki1i1 ⊗ C
ki2
i2 ⊗ · · · ⊗ C

kiM
iM , (B7)



13

which satisfies Z =
∑
σ〈σ1 · · ·σL|

∏
j Vj(a)|σ1 · · ·σL〉 =∑

τ 〈τ1−a · · · τM−a|
∏
iWi|τ1 · · · τM 〉. Here, the auxiliary

spin is also periodically identified: τj+M = τj .
The spin operators C and X can be rewritten by a

similar expression as the original X and C, respectively,
as

Ckij = αie
K∗i−1τ

z
j /2
(
τxj
)k
eK
∗
i τ
z
j /2, (B8)

Xk
ij = βi

∑
s

Bs(γ
∗
i )BTs+k(γ∗i ), (B9)

where tanhKi = e−2K∗i and tanh γi = e−2γ∗i from the
standard notation [34], αi = (sinh 2Ki−1 sinh 2Ki/4)1/4,
and βi = (2 sinh 2γi)

1/2. Notice that the vector Bs(ε) in
(B9) is the spinor of the real spin σ, while that in (B3)
is of the auxiliary spin τ . These expressions lead to the
column-to-column transfer matrix in terms of the auxil-

iary spin as Wi = (αiβi)
MW

(1)
i−1

1/2
W

(2)
i W

(1)
i

1/2
, where

W
(1)
i =

M∏
j=1

eK
∗
i τ
z
j , W

(2)
i =

M∏
j=1

eγ
∗
i τ
x
j τ

x
j+1 . (B10)

The transfer matrix is diagonalized by introducing
fermionic representation via the Jordan-Wigner transfor-

mation: τzj = 2c†jcj − 1, τ+
j = τxj + iτyj = 2eiπ

∑
l<j c

†
l clc†j .

The Ising coupling is then written by the hopping of the
Jordan-Wigner fermions as

τxj τ
x
j+1 = (c†j − cj)(c

†
j+1 + cj+1), (B11)

where, at the boundary, cM+1 = −eiπ
∑
j c
†
jcjc1 is im-

posed. Since the Hamiltonian is bilinear in the fermion

operators, the total fermion number F =
∑
j c
†
jcj modulo

2 is conserved. The Fock space is then decomposed into
even- and odd-fermion-number subspaces, within which
the fermion operator obeys APBC and PBC, respectively.
The boundary condition in the temporal direction ap-
pears in the frequencies of the Fourier mode:

cj =
e−iπ/4√
M

∑
ω

eiωjcω, (B12)

where

ω =


± π

M
,±3π

M
, · · · ,± (M − 1)π

M
(F :even)

0,±2π

M
, · · · ,± (M − 2)π

M
, π (F :odd)

(B13)

for even M , and

ω =


± π

M
,±3π

M
, · · · ,± (M − 2)π

M
, π (F :even)

0,±2π

M
, · · · ,± (M − 1)π

M
(F :odd)

(B14)

for odd M . The transfer matrix is then written as

Wi =
∏

ω∈[0,π]

Wi(ω), (B15)

where the summation is over the non-negative part of
(B13) and (B14), and by using nω = c†ωcω,

Wi(0) = e(K∗i−1+2γ∗i +K∗i )(n0−1/2), (B16)

Wi(π) = e(K∗i−1−2γ∗i +K∗i )(nπ−1/2), (B17)

Wi(ω) = eK
∗
i−1(nω+n−ω−1)

× e2γ∗i (cosω(nω+n−ω)+sinω(c†−ωc
†
ω+cωc−ω))

× eK
∗
i (nω+n−ω−1), (B18)

We can decompose the Fock space into subspaces speci-
fied by Fourier components of ω = 0, π, and combined ω
and −ω. To be specific, the ω = 0/π subspace is spanned

by |0〉 and c†0/π|0〉, and a ω 6= 0, π subspace by |0〉, c†ω|0〉,
c†−ω|0〉, and c†−ωc

†
ω|0〉. The trace of the column-to-column

transfer matrix (B15) is thus the product of the traces of
small matrices corresponding to the subspaces.

When the spacetime is twisted, the fermion operators
at i = 1 are changed as cm → cm+a, which shifts the
Fourier mode by a frequency-dependent phase as

cω → eiaωcω. (B19)

This modifies the trace operation so that the bra vector is
shifted by a phase determined by the number of fermion
and the frequency as

〈n0| → 〈n0|, 〈nπ| → (−1)anπ 〈nπ|,
〈nωn−ω| → eiaω(nω−n−ω)〈nωn−ω|. (B20)

Finally, the partition function after the twist is the sum of
contributions from even- and odd-fermion-number spaces
as

Z(a) ∝
∑
±

∏
ω∈[0,π]

Tr′ω

[
1± (−1)F

2

L∏
i=1

Wi(ω)

]
, (B21)

where the first summation is over the even- and odd-
fermion-number spaces, and Tr′ω is the trace over a ω
subspace with the modified bra vector (B20). A propor-
tionality constant (αiβi)

LM is omitted. Specifically, the
trace of a twisted ω 6= 0 subspace is

Tr′ω

[
(±1)F

L∏
i=1

Wi(ω)

]

=

 〈0|
±eiaω〈0|cω
±e−iaω〈0|c−ω
〈0|cωc−ω


T

L∏
i=1

Wi(ω)


|0〉
c†ω|0〉
c†−ω|0〉
c†−ωc

†
ω|0〉

 . (B22)

The matrix element of the Fourier-decomposed transfer
matrix Wi(ω) can be found in [34].
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Appendix C: Transfer matrix method for free
fermion models

Following [48], we consider the free fermion model on
a 1d lattice with the Hamiltonian

H =
∑
i

hi,i+1 = −
∑
i

ti(c
†
i ci+1 +h.c.)+

∑
i

(Ui−µ)c†i ci.

(C1)
To implement the transfer matrix method, we decom-
pose the system into even and odd sites and define H1 =∑
i=odd hi,i+1, H2 =

∑
i=even hi,i+1. With the local

transfer matrices defined as V1 = e−εH1 =
∏
i=odd vi,i+1,

and V2 = e−εH2 =
∏
i=even vi,i+1, where vi,i+1 =

e−εhi,i+1 , the partition function can be written as

Z = Tr (e−βH) = Tr (V1V2)M +O(ε2), (C2)

where ε = β/M and M is Trotter number. By inserting
the complete set of states, we can write the row-to-row
partition function as

Z =
∑
{nli}

M∏
l=1

(v2l−1,2l
1,2 · · · v2l−1,2l

N−1,N )(v2l,2l+1
2,3 · · · v2l,2l+1

N,1 ),

(C3)

where vl,l+1
i,i+1 = 〈nli, nli+1|vi,i+1|nl+1

i , nl+1
i+1〉 with i and l

represent the site number in space and Trotter directions,
respectively.

In order to go from the row-to-row to column-to-
column transfer matrix, we rotate each block as

τ l,l+1
i,i+1 = 〈nli, 1− nl+1

i |vi,i+1|1− nli+1, n
l+1
i+1〉. (C4)

Explicitly, it is given by

τ l,l+1
i,i+1 = bi


ui 0 0 0
0 ai − wi b−1

i 0
0 bi ai + wi 0
0 0 0 ui

 (C5)

in the basis of {|00〉, |01〉, |10〉, |11〉} with parameter de-
fined as

αi =
−ε(Ui − µ)

2
, γi =

√
α2
i + ε2t2i ,

bi = eαi , ui =
εti sinh γi

γi
,

ai = cosh γi, wi =
αi sinh γi

γi
.

(C6)

Therefore, the partition function in terms of the column-
to-column transfer matrices is written as

Z = Tr [T1,2T2,3 · · ·TN,1], Ti,i+1 =
∏
l

τ l,l+1
i,i+1 . (C7)

Once we write the partition in the matrix form, we can
perform the Fourier transform in the Trotter direction,
and the partition function can be written as

Z =
∏
i

CMi
∏
ω

Tr [2 + Tω], Tω =

N/2∏
i=1

t2i−1t2i,ω, (C8)

where Ci = uibi, and t2i−1 and t2i,ω are defined as

t2i−1 =
1

u2i−1

(
a2i−1 − w2i−1 b−1

2i−1

b2i−1 a2i−1 + w2i−1

)
, (C9)

t2i =
1

u2i

(
a2i + w2i e−iωb2i
eiωb−1

2i a2i − w2i

)
. (C10)

We use the even number of Trotter sites, and hence ω =
(2m+1)π

M with m = −M2 , · · · − 1, 0, · · · M2 − 1.

1. Phase-twisted boundary condition

Now we consider the system with phase twisted bound-
ary condition, i.e., tN → tNe

2πiφ where φ = Φ/Φ0. This
results in the change of the parameter uN in the transfer
matrix τN,1,

τ l,l+1
N,1 = bN


uN 0 0 0
0 aN − wN b−1

N 0
0 bN aN + wi 0
0 0 0 u∗N

 . (C11)

Accordingly, the modified partition function is

Z =
∏
i

CMi
∏
ω

Tr [2 cos(2πφ) + Tω]. (C12)

We use M = 2N to ensure the convergence of the par-
tition function. The results are shown in Fig. 9. The
period of φ is 1 which is equal to a phase twist of 2π.
Here we consider the system with onsite random poten-
tial Ui to be Gaussian distributed with variance σ. We
see that as the disorder strength increases, the free en-
ergy curves become more flat which means the system is
more localized and less sensitive to boundary conditions.

Then we compute the electrical Meissner stiffness D =
(2L)−1d2F/dφ2 (Fig. 9). For the clean free fermion sys-
tem (black), we observe the electrical Meissner stiffness
decays algebraically as D ∼ L−2 for L � β, which we
confirmed is consistent with the analytical result. (Here,
we take the parameter β = 500.) On the other hand,
for the high temperature (long wire) regime, β � L, the
Meissner stiffness decays exponentially.

We also studied two types of disordered fermion chains,
one with on-site disorder, and the other with bond disor-
der. Here, for the on-site randomness, we consider Ui to
be Gaussian distributed with variance σ. For the random
hopping model, the hopping amplitudes are drawn from
a uniform distribution, ti,i+1 ∈ [1 − σ, 1 + σ]. We focus
on the length regime ` � L � β, where ` is the mean
free path.

For the case of on-site disorder, we see that as the
disorder strength increases (σ increases), the Meissner
stiffness decreases as expected. The algebraically de-
caying part follows L−2 and the exponents of the ex-
ponentially decaying part grows as disorder strength is
increased. Such behavior fits the Anderson localization
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FIG. 9. (Left) The U(1)-phase-twist variation of the free energy of the free fermion model with random on-site potential.
The curves are shown as varying σ from 0 to 0.8. The calculation is done with L = 50 and β = 100. The electrical Meissner
stiffness for the disordered free fermion chain with random on-site potential (middle) and with random hopping (right). Dots
represents the results from the transfer matrix method and solid lines are fitting with D ∼ Lae−bL. The fitting parameter are
labeled in plots with β = 500.

picture where the localization length decreases as the dis-
order strength increases. A similar behavior is also ob-
served for the random hopping model, where the electri-
cal Meissner stiffness also follows algebraically and expo-
nentially decay. We note that the electrical conductance
for the random hopping model is known to decay alge-
braically, g ∼ 1/

√
L. The exponentially decaying part

could be explained by the normalization of energy level
spacing.

2. Energy-twisted boundary condition

We now turn to the energy-twisted boundary condi-
tion. It can be implemented in the column-to-column
transfer matrix method as

Z = Tr [T1,2 · · ·TN−1,Ne
iP∆τ ]. (C13)

Similar to the phase-twisted boundary condition, the en-
ergy twist results in the coupling ti,i+1 → ti,i+1e

iωMκ

where ω is the frequency in the Trotter direction. There-
fore, following the same calculation as the phase twist,
the partition function can be written as

Z =
∏
i

CMi
∏
ω

Tr
[
2 cos(ωMκ) + Tω

]
. (C14)

The energy-twisted free energy and the thermal Meiss-
ner stiffness, computed by the transfer matrix method,
are plotted in Fig. 10. As before, we study the clean
fermion model, the disordered model with on-site disor-
der, and the random hopping model. For the free energy
plot, we consider the system with on-site random poten-
tial Ui to be Gaussian distributed with variance σ. We
could see that as the disorder strength increases, the free
energy curves become more flat, which means the system
is more localized and less sensitive to boundary condi-
tions.

For the clean system, we checked that the thermal
Meissner stiffness decays algebraically as DQ ∼ L−4

(for L � β), which agrees with the CFT prediction
d2F/dκ2 ∼ L−3. For the case of on-site disorder, the
algebraically decaying part generally follows DQ ∼ L−4.
As the disorder is stronger, the thermal Meissner stiffness
decays exponentially with length as expected from An-
derson localization. The exponent represents the inverse
of the localization length and it increases as the disorder
is stronger.

For the random hopping model, the thermal Meissner
stiffness also shows algebraic and exponential decay as
the case of Anderson localization. The electrical conduc-
tance of the random hopping model decays algebraically
as g ∼ 1/

√
L. Due to the Wiedemann-Franz law, we

expect the thermal conductance also behaves similarly.
The conductance is given by g ∼ E/∆ with E being the
sensitivity of the energy to the twisted boundary condi-
tion and ∆ = 1/ρ(0) is the energy level spacing at zero
energy. The exponential decay might be due to the zero
energy level spacing of the random hopping model.

Appendix D: Boost deformation and thermal
response

In this section, we show that the thermal Drude weight
and thermal Meissner stiffness of a disordered lattice
fermion are related to the boost deformation via (26)
and (27). The argument in this section is basically in
parallel with the analogous U(1) twist.

1. Thermal conductivity

First, we review the thermal Drude weight D̄Q and the
thermal Meissner stiffness DQ following [14].

The ac thermal conductivity of a local Hamilto-
nian H0 =

∑
iHi coupled with a gravitational field



16

-1.0 -0.5 0.0 0.5 1.0

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

σ = 0
σ = 0.2
σ = 0.4
σ = 0.6
σ = 0.8

Lκ/β

δF

101 102

10-7

10-5

10-3

10-1

L

D
Q

clean, a = -3.95
σ = 0.2, a = -3.55, b = 0.005
σ = 0.4, a = -3.61, b = 0.014
σ = 0.5, a = -3.77, b = 0.019
σ = 0.6, a = -3.51, b = 0.03

101 102

10-9

10-6

10-3

100

clean, a = -3.95
σ = 0.2, a = -4.04, b = 0.003
σ = 0.4, a = -4.76, b = 0.006
σ = 0.5, a = -5.50, b = 0.006
σ = 0.6, a = -5.97, b = 0.008
σ = 0.8, a = -5.17, b = 0.026

L

D
Q

FIG. 10. (Left) The energy-twist variation of the free energy of the free fermion model with random on-site potential. The
curves are shown as varying σ from 0 to 0.8. The calculation is done with L = 20 and β = 100. The thermal Meissner stiffness
for the disordered free fermion chain with random on-site potential (middle), and with random hopping (right). Dots represent
the results from the transfer matrix method with β = 500 and solid lines are fitting with DQ ∼ Lae−bL.

ψj(t) = eiqj−i(ω+iη)t, serving as a temperature profile
via ∇ψ(r) = [∇T (r)]/T (r), is given in (25) in the limit
of q → 0, where

DQ =
1

2L

(
〈Θ〉 −

∫ β

0

dτ〈JQ(−iτ)JQ〉

)
, (D1)

κKG(ω) = − 1

LT

∫ 0

−∞
dte−i(ω+iη)t

∫ β

0

dτ〈JQ(t− iτ)JQ〉.

(D2)

Here, A(t) = eitH0Ae−itH0 , 〈A〉 = Tr[e−βH0A]/Z, Z =
Tr[e−βH0 ] is the partition function, and the heat current
and thermal operators are

JQ =
∑
j

JQj = − i
2

∑
jk

(j − k)[Hj , Hk], (D3)

Θ = −1

2

∑
jak

(j − k)(j − a)[[Hj , Ha], Hk]. (D4)

Notice that these operators are defined unambiguously
when the distance of two sites j − k is uniquely defined,
that is, when the Hamiltonian is local (the distance |j−k|
up to which [Hj , Hk] 6= 0 is bounded) or unless subject
to PBC.

In terms of the eigenenergy En and eigenstates |n〉 of
the Hamiltonian H0, the thermal Drude weight is

D̄Q = DQ +
1

2LT

∑
n,m

En=Em

e−βEn

Z
|〈n|JQ|m〉|2

=
1

2L

〈Θ〉 − 2
∑
n,m

En 6=Em

e−βEn

Z

|〈n|JQ|m〉|2

Em − En

 . (D5)

In the limit of vanishing temperature (T → 0) while keep-
ing the system size finite (L � ∞), the thermal Drude
weight and the thermal Meissner stiffness coincide unless
the ground state is degenerate.

When a disordered, free lattice fermion Hamiltonian

H0 =

L∑
jk

tjkc
†
jck (D6)

is considered, the above operators are given, respectively,
by

JQ = − i
2

L∑
jak

(j − k)tjatakc
†
jck, (D7)

Θ = −1

4

L∑
jabk

(j − k)(j + a− b− k)tjatabtbkc
†
jck. (D8)

2. Boost deformation

We consider a disordered lattice fermion model and the
corresponding boost operator given by

H(λ) =
∑
jk

tjk(λ)c†jck, (D9)

B[H(λ)] =
∑
jk

j + k

2
tjk(λ)c†jck. (D10)

The boost deformation (12) is reduced to

dtjk(λ)

dλ
=
i(j − k)

2

∑
a

tja(λ)tak(λ), (D11)

and from this equation the second derivative is

d2tjk(λ)

dλ2
= −j − k

4

∑
ab

(j + a− b− k)tja(λ)tab(λ)tbk(λ).

(D12)

Notice that we adopted a specific Hamiltonian (D9) since
the second derivative of a general local Hamiltonian H =
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Hj cannot be obtained in this way. Referring to (D7)

and (D8), the deformed Hamiltonian is expanded around
λ = 0 as

H(λ) = H(λ = 0)− λJQ +
λ2

2
Θ +O(λ3), (D13)

where the operators JQ and Θ are defined with hopping
parameters before the deformation tjk(λ = 0).

From (D13), the perturbative expansion of an eigenen-
ergy up to the second order in the boost parameter is

En(λ) = En(λ = 0)− λ〈n|JQ|n〉

+
λ2

2

〈n|Θ|n〉 − 2
∑
m

En(0) 6=Em(0)

|〈n|JQ|m〉|2

Em(0)− En(0)

 ,

(D14)

which gives a relation between the thermal Drude weight
(D5) and the boost deformation as shown in (26).

On the other hand, the derivative of the free energy
F (λ) = −β−1 lnZ(λ) is, by using (D13) and the absence
of the heat current 〈JQ〉 = −dF/dλ|λ=0 in the ground
state,

d2F (λ)

dλ2

∣∣∣∣
λ=0

= 〈Θ〉 −
∫ β

0

dτ〈JQ(−iτ)JQ〉, (D15)

which leads to the relation (27) between the thermal
Meissner stiffness and the derivative of the free energy.

3. A clean system in the thermodynamic limit

We rederive the thermal Drude weight and thermal
Meissner stiffness of a clean lattice fermion in the ther-
modynamic limit [14] by using the boost deformation.
When spatial translation symmetry is present and in the
thermodynamic limit L→∞, the single-particle eigenen-
ergy εq =

∑
a tjj+ae

iqa is a differentiable function of the
momentum q and the boost parameter λ, and thus the
heat current and thermal operators are

JQ = −
∑
q

∂εq
∂λ

c†qcq =
∑
q

εq
∂εq
∂q

c†qcq, (D16)

Θ =
∑
q

∂2εq
∂λ2

c†qcq =
∑
q

∂

∂q

(
ε2q
∂εq
∂q

)
c†qcq, (D17)

where cq = L−1/2
∑
j e
iqjcj . The derivatives of the av-

eraged many-body eigenenergy En and the free energy
F = −β−1

∑
q ln(1 + e−βεq ) are

∑
n

e−βEn

Z

d2En
dλ2

=
∑
q

f(εq)
∂2εq
∂λ2

, (D18)

d2F

dλ2
=
∑
q

[
f(εq)

∂2εq
∂λ2

+
df(εq)

dεq

(
∂εq
∂λ

)2
]
, (D19)

where f is the Fermi distribution function. Substituting
into (26) and (27), we obtain

D̄Q =
1

4π

∫
dq

(
− df

dεq

)(
εq
∂εq
∂q

)2

=
π

12β2

∑
FP

|vF |,

(D20)

DQ =
1

4π

∫
dq

∂

∂q

[
f(εq)ε

2
q

∂εq
∂q

]
= 0, (D21)

where FP stands for the Fermi points.

4. Finite length behavior

In this subsection, we see that the thermal Meissner
stiffness at T = 0 depends qualitatively on the length
modulo 4, and that they are related to the low-energy
excitations.

Figure 11 shows the detailed length dependence of the
thermal Meissner stiffness at T = 0 for PBC and APBC.
When the length is L = 4n(n ∈ N), the thermal Meissner
stiffness of PBC scales as 2πv3/6L2 while that of APBC
scales as −πv3/6L2. However, when the length is L =
4n + 2, these behaviors are inverted. When the length
is an odd integer (L = 4n + 1 or 4n + 3), the thermal
Meissner stiffness scales as −(1/4)πv3/6L2.

As was shown in Sec. III A, the thermal Meissner stiff-
ness (40) of CFT at sufficiently low temperature is pro-
portional to the ground state energy E0 = −(2πv/L)(c−
24h)/12. A one-dimensional Dirac fermion is equivalent
to two real fermions corresponding to the Ising CFT, and
hence the ground state energy of the Dirac fermion is
equal to twice that of the Ising CFT (c = 1/2). Specifi-
cally, when a boundary condition ψ(x + L) = e2πiαψ(x)
where α ∈ [0, 1) is imposed, the single-particle eigenen-
ergy of a chiral Dirac fermion H = −iv∂x is 2πrv/L (r ∈
Z + α), and hence

H =
2πv

L

∑
r

rc†rcr =
2πv

L

∑
r

r : c†rcr : +E0, (D22)

where : : is the normal ordering, and via the zeta-function
regularization,

E0 =
2πv

L

∞∑
n=1

(−n+ α) = −2πv

L

[
1

24
− 1

2

(
1

2
− α

)2
]
.

(D23)

As for the left mover, we impose ψ(x+L) = e−2πiαψ(x)
to make α-dependence of the energy levels the same as
the right one. Then the ground state energy of the helical
Dirac fermion (including both left and right movers) with
PBC (α = 0) is E0 = (1/6)(2πv/L) that corresponds
to twice the ground state energy of CFT with c = 1/2
and h = 1/16, and that with APBC (α = 1/2) is E0 =
(−1/12)(2πv/L) corresponding to c = 1/2 and h = 0.
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FIG. 11. Low energy excitations for α = 0, 1/4, 1/2, and 3/4.
The thermal Meissner stiffness at zero temperature of a lattice
free fermion is shown for PBC and APBC and is fitted by the
corresponding CFT results.

To make a connection to the lattice fermion, we naively
anticipate that the ground state energy used for deriv-
ing the thermal Meissner stiffness can be identified with
that of the linearized helical Dirac fermion, since low-
energy states are relevant to low-temperature behavior.
In doing so, we notice that energy levels near the Fermi
level depend on the length and the boundary condition
(Fig. 11). Let us assume the cosine band εk = −2 cos k.
With PBC and L = 4n, there are states kF = ±π/2 ex-
actly at the Fermi level and thus the right and left movers
correspond to α = 0. Similarly, PBC with L = 4n+2 cor-
responds to α = 1/2, and PBC with L = 4n+ 1(4n+ 3)
to α = 3/4(1/4). Specifically, when the length is odd,
the ground state energy is −(1/48)2πv/L from (D23),
and the corresponding thermal Meissner stiffness is esti-
mated as DQ = −(1/4)(πv3/6L2). Strictly speaking, the
ground state energy obtained in this way is not the ac-

tual energy, but a quantity related to thermal response.
When switched to APBC, the above results still hold by
shifting α→ α+1/2 mod 1, and hence this explains mod
4 behavior seen in Fig. 11. Notice that this argument is
true when the chemical potential is 0, where α depends
on the length only modulo 4.

Appendix E: Quantum Hall systems with boost
deformation

In this Appendix, we consider the boost deformation of
the quantum Hall system. We start with the Hamiltonian
of 2d electron gas in the presence of uniform magnetic
field,

H =
1

2m
(−i~∂ − eA)2, (E1)

with Landau gauge A = (−By, 0). We consider the cylin-
der geometry with periodic x direction. The energy lev-
els (Landau level) are given by εN = ~ωc(N + 1

2 ) where
ωc = |e|B/m. The corresponding wave functions for the
N -th Landau level are given by

ψN,px(x, y) ∝ eipxxe−(y−y0)2/2l2HN (y − y0), (E2)

where y0 = ~px/eB, l is the magnetic length, and HN is
the Hermite polynomial.

If we consider the boost deformation in x direction
and impose the energy-twisted boundary condition, this
amounts to shifting single-particle momentum, px → px+
λεN . From the periodicity in x direction, (px +λεN )L =
2πr where r is an integer. As εN does not depend on px,
this equation can be readily solved,

px =
2π

L

(
r − LλεN

2π

)
. (E3)

As we change λ from 0 to (2π)/(LεN ), px changes
from 2πr/L to 2π(r − 1)/L. This results in the
shift of the Landau level center, y0 = (~px)/(eB) =
(~2πr)/(eBL) → (~2π(r + 1))/(eBL). As Laughlin’s
argument for the quantized Hall conductance, the adi-
abatic change in λ transports one electron (≡ ∆N) from
one end of the cylinder to the other. Hence, ∆N/∆λ =
1/[(2π)/(LεN )] = (LεN )/(2π). The transported energy
∆E = εN∆N is given by (∆E)/(∆λ) = (Lε2

N )/(2π).
Following the analogy to Laughlin’s argument for the
quantized Hall conductance, the transverse energy trans-
port is induced by the adiabatic insertion of a boost-
analogue of magnetic flux.
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