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Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-
from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented
dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic
CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up
to 5th order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps.
In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by
6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the
domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction
rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence
length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In
particular, we demonstrate that a radial shift explained by domain wall broadening can be ruled out.
With the unprecedented dynamic range of our data, our results provide convincing evidence that
labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium
conditions, albeit the mechanism inducing the perturbations remains yet to be clarified.

I. INTRODUCTION

Understanding ultrafast magnetization processes [1–
12] is challenging because of the strongly-coupled inter-
actions between the charges, spins, and phonons. These
are difficult to probe and model in equilibrium, and even
more so when a metallic ferromagnet is subjected to a
femtosecond laser pulse that floods the conduction band
with a far-from-equilibrium, dense distribution of hot
electrons. Many theoretical models and mechanisms have
been proposed to explain experimental findings, includ-
ing heat redistribution in the quasi-equilibrium spin, elec-
tronic, and lattice systems [1–3] , superdiffusive spin cur-
rents into metallic spin sinks [4, 13], Elliott-Yafet scat-
tering [4], hot-electron transport [5, 6], ultrafast magnon
generation and exchange splitting reduction [7, 14], opti-
cally induced spin transfer between atomic sites [9, 12],
and recently the observation of critical behavior and a
magnetic phase transition within 20 fs [10, 11].

Many studies of ultrafast magnetization processes use
spatially-averaged measurements such as x-ray magnetic
circular dichroism (XMCD) or magneto-optic measure-

ments using visible or x-ray light. More recently, it
has been possible to study the impact of morphologi-
cal and magnetic spatial inhomogeneities on the dynamic
response of a material by resonant small-angle magnetic
scattering of coherent X-rays that takes advantage of the
unique capabilities of X-ray free electron lasers. This
particular method permits inference of the spatial varia-
tion of ultrafast dynamics from the time-dependence of
the imaged diffraction patterns. [15–19]. Slow changes in
domain feature sizes have been attributed to heating of
the lattice, and a commensurate reduction in magnetic
anisotropy, on the 10 ps timescale [20]. Spin transport
mechanisms [13, 21, 22] have been proposed to describe
spatially-dependent ultrafast responses, such as the de-
magnetization and domain-wall broadening in domain
networks [17, 18, 20, 23], and the imprinting of domain
patterns in ferrimagnetic metallic alloys [15, 16]. An in-
teresting signature of a dynamic nanoscopic spatial re-
sponse is a time-dependent shift in the observed x-ray
scattering. In Ref. 16, a ring contraction was associated
with the transition from a morphologically-induced mag-
netisation pattern into nonlinear dynamical spin textures
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upon partial quenching of a homogeneously magnetised
ferrimagnet.

In Ref. 17, a puzzling ultrafast shift of the first-order
x-ray magnetic diffraction ring radius was first observed
in the case of a labyrinth domain network. The authors
hypothesized that the shift was a higher-order effect due
to domain-wall broadening. Such broadening was pre-
dicted to occur as a result of superdiffusive spin current
propagation across the domain walls [23]. However, the
inability to detect any higher order diffraction rings pro-
hibited quantitative testing of this hypothesis. Only a
very weak or negligible shift in diffraction ring radius
has been detected to date when the experiment is re-
peated with samples that exhibit stripe domain patterns
stabilized by a weak external magnetic field [18–20]. It
was recently shown by use of samples supporting both
stripe and labyrinth domain patterns that the shift in
the diffraction ring radius occurs only with labyrinths
and not with stripes, suggestive of a mechanism that is
sensitive to domain symmetry [19].

Here, we probe time-resolved x-ray diffraction from
labyrinth domain networks in a CoFe/Ni multilayer with
perpendicular magnetic anisotropy to discern the in-
fluence of domain-wall broadening on the shift of the
diffraction rings. We are able to resolve up to the fifth-
order diffraction ring with unprecedented dynamic range,
enabling a quantitative determination of how ultrafast
pumping affects both the domain-wall width and the
magnetic correlation length. We rule out domain wall
broadening as the cause of diffraction ring radius shift.

A 31% ultrafast broadening of the domain-walls is rig-
orously quantified by fitting the relative quench of the
first three diffraction ring amplitudes to a Bloch-wall
model. In addition, we detect a 15% decrease in the
domain correlation length –– from 844.8 nm±5.7 nm to
711.6 nm±8.4 nm within 1.6 ps. This surprising result
is suggestive of an ultrafast spatial alteration of the do-
main structure, possibly the result of a zero-mean ran-
dom domain wall displacements mediated by far-from-
equilibrium electronic excitations. A 6% contraction of
the diffraction ring radii within 1.6 ps of laser excitation
is simultaneously observed, confirming previous reports
of such shifts. [17, 19]. Our observation of significant dis-
tortions in the diffraction ring structure, which include
amplitude, width, and radius, suggests that domain walls
in labyrinth structures are to some extent mobile at ultra-
fast speeds when subjected to far-from-equilibrium condi-
tions. It remains to be determined how such a surprising
effect occurs.

II. TIME-DEPENDENT X-RAY SCATTERING

We measured the femtosecond time-evolution of the
labyrinth domain network by use of pump-probe coher-
ent, time-dependent, soft x-ray small-angle scattering at
the Linac Coherent Light Source (LCLS) free-electron
laser. The time resolution was 400 fs, as further ex-

plained below. The magnetic samples were fabricated
by sputter deposition with the following layer compo-
sition: Si3N4(100) / Ta(3) / Cu(5) / [Co90Fe10(0.2)/
Ni(0.6)]x50 / CoFe(0.2) / Cu(3) / Ta(3), where the
layer thicknesses in parentheses are in nm and the Si3N4

membrane allowed for x-ray transmission. The magnetic
parameters of the 40 nm thick CoFe/Ni ferromagnetic
multilayers were measured as a function of temperature
with a vibrating sample magnetometer (VSM). At room
temperature, we determine a saturation magnetization
Ms = 771 kA/m, a first-order anisotropy constant K1 =
739 kJ/m3, and a negative second-order anisotropy con-
stant K2 = −266 kJ/m3. A non-negligible second-order
anisotropy was previously reported for this material sys-
tem [24]. The net uniaxial anisotropy, including the mag-
netostatic contribution, is 99 kJ/m3. This corresponds to
an effective magnetization Meff = −2.05 kA/m for per-
pendicular ferromagnetic resonance (FMR). The experi-
mentally measured FMR value is Meff = −2.12 kA/m, in
good agreement with the VSM measured value. Despite
the large second-order anisotropy constant, the relative
magnitudes of the first- and second-order anisotropies are
within the range necessary for a net perpendicular mag-
netic anisotropy [25]. We confirmed that the out-of-plane
labyrinth domain network is indeed stabilized at room
temperature by use of magnetic force microscopy mea-
surements with a spatial resolution of ≈ 22 nm, shown
in Fig. 1(a).

X-ray measurements were performed at the SXR
hutch [26]. The experimental setup is schematically
shown in Fig. 1(b). The free-electron laser (FEL) gen-
erated 60 fs long soft x-ray pulses at a repetition rate
of 120 Hz with a photon energy of 852.7 eV to match
the L3 absorption edge of Ni. Signal-to-noise limitations
prevented performing similar measurements as reported
here at the absorption edge of Co. Circularly polarized
x-rays were achieved by use of a Delta-undulator [27].
The x-ray beam was focused to an elliptical spot with
full-axis widths of a = 23 µm and b = 15 µm. A high-
speed primary pnCCD camera (Max Planck Semicon-
ductor Laboratory supplied by PNSensor GmbH) placed
275.3 mm away from the sample captured the time-
dependent scalar diffracted intensity of the probe beam.
The detector had four 512× 512 pixel panels that could
be moved independently from one another and each pixel
had a maximum well-depth of 16,000 electrons. The CCD
camera had an opening at the center through which un-
scattered x-rays were transmitted. These x-rays were
detected with a secondary CCD camera (Andor Newton
DO940P-BN) placed behind the primary CCD camera.
An Al filter in front of the secondary CCD was used to
suppress the infrared pump beam, which was collinear
with the incident x-ray beam. In addition to scattering
measurements without an applied magnetic field, we car-
ried out measurements of both the scattering (with the
primary CCD camera) and XMCD (with the secondary
CCD camera) when the sample was magnetically sat-
urated to remove any non-magnetic contributions from
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FIG. 1. (a) 10 × 10 µm2 magnetic force microscope (MFM) image of a similar CoFe/Ni multilayer sample to that used for
the x-ray scattering measurements. (b) An incident femtosecond infrared (IR) pulse excites the sample. The time-dependent
magnetization is measured by a time-delayed, circularly-polarized x-ray probe. The scattered x-rays are captured by a primary,
high-speed CCD while the unscattered beam is captured by a secondary CCD acting as a point detector. An electromagnet is
used to saturate the sample, allowing for both measurements of time-resolved XMCD, as well as the static charge contribution
to the scattered intensity. (c) Two-dimensional magnetic component of the scattered intensity obtained with the primary CCD.
The first-order diffraction ring is partially obscured due to the aperture in the middle of the primary CCD.

the zero-field scattering data [28] (see Appendix A for
details). For this, an external magnetic field of 0.6 T
was applied perpendicularly to the surface of the sample.
This experimental geometry allowed us to detect x-rays
scattered at angles of up to ≈ 8◦.

An amplified infrared (IR) laser pump pulse from a
Ti:Sapphire laser at the central wavelength of 795 nm
was used to pump the sample. The duration of the
IR pump pulses was 60 fs, the Gaussian beam waist
size was 172 µm, and the average incident pump fluence
was 23 mJ/cm2. Higher pump fluence resulted in catas-
trophic damage to the sample. The timing of the pump
laser was asynchronously varied randomly with regard to
the FEL pulses over a range set by the desired delay, but
the pump pulse timing relative to the FEL pulses was
precisely measured to within the jitter of the arrival time
of x-ray pulses [28]. The random asynchronous timing of
the pump-probe delay-time is avoids artifacts due to sys-
tematic drifts in the FEL pulse intensity over time that
are not fully accounted for with the implemented pulse
normalization process. The range of the delay time be-
tween the IR pump and the x-ray probe was varied from
negative delays (to probe an unperturbed sample before
the IR pump has arrived) to 20 ps. Scattering patterns at
the different delays were collected in a single-shot man-
ner, and the patterns at a given delay were binned over a
±200 fs range so as to achieve the desired signal-to-noise
at a given pump-probe delay via averaging. In other
words, binning of the randomly distributed pump-probe
delays was utilized to achieve a compromise between time
resolution and the precision of the data.

The time-evolution of the labyrinth domain network is
inferred from the squared magnetic scattering amplitude
|S(q, t)|2, with wavevector q. We isolated this compo-
nent from the diffracted intensity I(q, t) by subtracting
the charge intensity |C(q, t)|2 obtained from the satu-
rated sample, as described in Appendix A. For labyrinth
domains randomly oriented in the film’s plane, |S(q, t)|2

consists of concentric rings, shown in Fig. 1(c). The first-
order diffraction ring contained 500 electrons per pixel
per shot, ≈ 3% of the CCD camera saturation. We note
that the first-order scattering ring is partially obscured
by the location of the through-beam aperture in the cen-
ter of the CCD camera, depicted as a dark-blue box in
Fig. 1(c).

We azimuthally average the magnetic scattering inten-
sity to obtain S2(q, t), where q = |q|. To account for the
incomplete data captured by the primary CCD camera,
we utilize the following algorithm. First, the center of
the scattering pattern, |q| = 0, is determined by fitting
a circle to the third-order diffraction ring. Because this
diffraction ring was not obscured by the central square
aperture, a reliable fit can be obtained for the center
location in pixels. Once the center is determined, the
data are then azimuthally averaged. By definition, the
azimuthal average is

S2(q, t) =

∫ 2π

0
S2(q, θ, t)dθ

L(q)
, (1)

θ is the azimuth for the q vector and L(q) is the circum-
ference for a given q. To account for the missing pixels,

we compute L(q) =
∫ 2π

0
W (q, θ)dθ, where W (q, θ) is a

two-dimensional mask of the CCD cameras and missing
pixels are numerically counted as zeros. In this way, the
azimuthal average is normalized by an abbreviated cir-
cumference. This approach of calculating the azimuthal
average is predicated on the assumption that we can ex-
trapolate the intensity at any given radius q where there
aren’t any pixels from the pixel values that are accessi-
ble. In other words, we assume that there is no azimuthal
variation in the scattering intensity.

The pre-pump (t < 0) average data is shown in loga-
rithmic scale in Fig. 2(a) by a solid black curve. The fifth-
order ring, as well as an exponentially decaying back-
ground, are clearly visible in the azimuthally averaged
intensity. There is a shoulder in the first-order diffrac-
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FIG. 2. (a) Equilibrium azimuthally-averaged magnetic scat-
tering. The data, the fit to the data with Eq. (2), and the
fitted form factor are shown by the solid black, dashed red,
and dashed blue curves, respectively. The same data and fit
are shown in (b) after equalization, as per Eq. (3), to accentu-
ate the quality of the fit for all the diffraction rings. The solid
blue curves represent the three Lorentzian components of the
fit used to determine the periodic structure of the domains.
The asymmetry of the Lorentzians is due to the power law
scaling used to equalize the 1st and 5th order diffraction ring
intensities.

tion ring at q < 0.0375 nm−1, shown by a grey area. The
magnitude of the shoulder is exaggerated due to the log-
arithmic axis of the plot. The true scale of the shoulder
is more apparent in Fig. 2(b), where it can be seen that it
is not actually a shoulder, but rather a slight deviation of
the diffraction ring profile from the Lorentzian function
used to fit the data, as described in Section III. This
deviation from a true Lorentzian is possibly the result
of the very limited number of pixels available in the arc
of data used to extrapolate over the entire circumference
via Eq. (1): The azimuthal angular range for the partially
obscured arc of illuminated pixels scales as the square-
root of the distance between the center of the arc and the
central aperture. As such, the number of pixels available
for integration rapidly collapses to zero as the outermost
edge of the arc approaches the aperture. When there are
very few pixels available for integration, our analysis is
susceptible to any systematic errors in the pixel values
that would normally be corrected by integration over an

entire circumference of data.

III. EMPIRICAL MODEL AND DATA FITTING

To extract information from the azimuthally averaged
scattering S2(q, t), we make use of a Lorentzian empirical
fitting function for the first three of the odd nth order
diffraction rings

f(q, t) = e−2q/Q(t)

M0(t) +
∑

n=1,3,5

Mn(t)(
q−nq0(t)
nΓ(t)

)2

+ 1


2

.

(2)
The first factor outside of the square brackets is an

exponential form factor we associate with the non-zero
characteristic spin-spin correlation length scale, Q(t).
The term in the square brackets is the magnetic struc-
ture factor, consisting of a linear superposition of random
uniform spatial fluctuations M0(t) and three Lorentzian
diffraction rings centred at odd-integer multiples of the
first-order ring position q0(t). Mn(t) are the rings’ ampli-
tudes with subscripts n = 1, 3, 5 denoting the respective
odd order diffraction ring, and the width of each diffrac-
tion ring or linewidth is parameterized by Γ(t). Note that
while each ring is fitted with an independent amplitude,
the ring radii and widths are all constrained to be integer
multiples of the diffraction order.

We stress that f(q, t) is purely phenomenological; it
was found by trial and error that application of such a
function yields an excellent fit to the data. However,
the applicability of a Lorentzial linewidth is consistent
with an exponentially decaying autocorrelation function
for the domain pattern. The fitting function proposed
in Ref. 29 was not used because the underlying model
used in its derivation is only applicable for a system of
parallel stripe domains with domain walls much narrower
that the domain spacing.

The simultaneous fit of all three diffraction rings and
the form factor allows us to to accurately determine all
seven fitting parameters in f(q). This approach takes
advantage of all the available data and the integer multi-
ple relationship between all three rings to obtain an un-
ambiguous fit despite potential artifacts associated with
the partial obscuration by the central aperture. The fits
are performed on the logarithm of the scattering data to
maximize sensitivity of the strongly attenuated 3rd and
5th order diffraction rings.

The fit of the time-averaged t < 0 diffraction data
by use of Eq. (2) is shown in Fig. 2(a) by the red
dashed curve. The fitted first-order ring radius is q0(0) =
0.03922 nm−1 ± 0.00004 nm−1, equivalent to an equilib-
rium domain width of π/q0(0) = 80.10 nm ± 0.076 nm.
Magnetic force microscopy imaging of the labyrinth do-
main network is comparable to this average domain
width. The small error associated with the fitted pa-
rameters is a result of the simultaneous fitting of the
harmonic third-order and fifth-order ring radii.



5

The exponential form factor contribution of Q(0) =
0.1078 nm−1 ± 0.0001 nm−1 is shown by a dashed blue
line. Because Q corresponds to a spatial distribution of
spin density with a Lorentzian-like correlation function,
we may interpret it as an approximation of the exchange
length, λex ≈ 1/Q = 9.279 nm ± 0.007 nm. This quan-
tity is in rough agreement with the calculated exchange
length of 7.3 nm determined from a combination of mag-
netometry measurements and an assumed exchange con-
stant of Aex = 20 pJ/m, so that λex =

√
2Aex/(µ0M2

s ).
To illustrate the quality of the fitting, we show the

azimuthally averaged scattering in Fig. 1(b) using an ad
hoc equalized representation

Se(q, t) =
(
e(2q/Q(t))

√
S2(q, t)−M0(t)

)
q2.12, (3)

where the exponential form factor is divided out, the
magnetic noise background M0(t) is subtracted, and an
adjustable power law scale factor q2.12 was chosen to
equalize the amplitudes of the first-order and third-order
rings. By use of this ad hoc equalization, the excellent
fidelity of the fits is clearly apparent. The individual
Lorentzian components are shown with solid blue curves.
Again, we stress that the radii and widths of all three
Lorentzians are constrained to be odd integer multiples
of the 1st order diffraction ring.

IV. FOURIER ANALYSIS OF THE
EQUILIBRIUM SCATTERED SPECTRA

The empirical model of Eq. (2), f(q, t), provides accu-
rate fits to the azimuthally averaged data, as shown in
Fig. 2. Therefore, we invoke concepts of Fourier analysis
to interpret the salient features of the physical system
captured by the functional form of f(q, t).

First, consider an ideal, 1D periodic function with pe-
riod x0. By Fourier series decomposition, its spectrum
will be composed of harmonically related delta functions
starting at the fundamental frequency 2π/x0. Such a
spectrum is independent of the periodic function’s pro-
file or functional form. Instead, the profile is encoded in
the relative amplitudes of the harmonic delta functions.
In the case of a perfect sinusoidal function, the ratio is
zero, meaning that only the fundamental harmonic ex-
ists. In the extreme case of a square wave, the ratio is
1/n, with n being the odd order index of the Fourier
component. Any smooth profile will therefore exhibit
components with amplitudes with an order dependence
that varies between 0 (sine wave) and 1/n (square wave).
The crucial statement from this ideal situation is that
the spatial profile of the domain walls in a periodic lat-
tice is principally encoded in the relative amplitudes of
the components, not in their widths. The diffraction ring
widths are instead related to phase uncertainty for peri-
odic structures.

Variations in the periodicity of a 1D oscillatory func-
tion, akin to jitter in temporal signals [30], introduces

uncertainty in the component frequency. The greater
the variations, the broader the individual Fourier com-
ponents of the periodic function. Most importantly, the
broadening scales with the integer order of the individual
components, i.e. the fractional uncertainty in the peri-
odicity of the domain structure is the same, regardless of
the diffraction order of the ring. The form of Eq. (2) ac-
counts for these fundamental properties of any periodic
domain structure.

From the aforementioned properties of Fourier series,
it becomes clear that the azimuthally averaged scatter-
ing provides two distinct types of information: 1) the
position of the harmonic peaks is related to the aver-
age spatial frequency of the magnetic texture, and 2)
the relative amplitude of the harmonic rings is related
to the profile of the magnetic texture, i.e., the domain-
wall width. These properties have profound implications
in the interpretation of the time-dependent modifications
of the scattering.

It is worth pointing out that this analysis is rooted in
linear response theory. In other words, these arguments
hold as long as the system does not exhibit nonlineari-
ties, i.e. coupling between the phase and amplitude of
the waveform. If nonlinearities are present, the Fourier
spectrum can indeed exhibit an artificial shift based on
the distortion of the underlying waveform. Such a shift,
however, is accompanied by a spectral distortion of the
peak itself. As we show below, our experiments exhibited
no discernible spectral distortion, suggesting that linear
response theory is appropriate.

V. ULTRAFAST MODIFICATION OF THE
DIFFRACTION PATTERN

We apply Eq. (2) to fit the time-dependent, az-
imuthally averaged scattering data. In Fig. 3(a), (b),
and (c), we show the fitting results in the form of Se(q, t)
at select times. In all panels, the diffraction amplitudes
are quenched, c.f. Fig. 2(b), as expected for ultrafast
demagnetization. The full temporal evolution of the nor-
malized amplitudes M1,3,5(t)/M1,3,5(t = 0) is shown in
Fig. 3(d), exhibiting three distinct dependencies on time.
At 1.6 ps, the third-order ring is quenched slightly more
than the first-order ring. Both the first-order and third-
order rings partially recover until 13 ps after quenching.
For t > 13 ps, the third-order ring resumes quenching,
but at a much slower rate of ≈ 2% per picosecond. The
fifth-order ring is still detectable in spite of a greatly re-
duced signal-to-noise ratio due to the low photon flux at
high q. The error of the fifth-order ring amplitude shown
as a gray background in Fig. 3(d) is estimated from the
fitted amplitude’s fluctuations at t < 0. It is still appar-
ent that the 5th order ring amplitude is almost entirely
quenched after pumping, despite the reduced signal-to-
noise. By averaging the scattering data over a time-span
from 6 ps to 11 ps, we are able to fit the fifth-order ring
with better accuracy and confirm that its amplitude is
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FIG. 3. The equalized data, fits, and Lorentzians, as per Eq. 3, are shown by solid black, dashed red, and solid blue curves,
respectively for three instances in time after pumping: (a) 1.6 ps, (b) 11.2 ps, and (c) 18.8 ps. The error in the determination of
S(q, t) is shown as a gray background, but it is barely visible due to the high accuracy of the equilibrium fitted parameters. The
horizontal black lines illustrate the relative amplitude of the first- and third-order diffraction rings. (d) Temporal amplitude
evolution of the first- (blue), third- (red), and fifth-order (grey) diffraction rings. The vertical dashed lines correspond to the
time instances shown in panels (a), (b), and (c). Error bars represent one standard deviation of the fitted quantities. The grey
area represents the standard deviation of fifth-order magnitude by averaging the pre-pump (t < 0) data.

quenched by almost 90 percent, see Appendix B. The
almost total quench of the 5th order ring is important
for the quantitative analysis presented below.

The time evolution of the form-factor, Q(t), is shown
in Fig. 4, exhibiting an ultrafast increase and subsequent
recovery to equilibrium, shown by a solid magenta line,
at ≈ 10 ps. It is possible this is the result of an ultra-
fast alteration in the characteristic exchange length of the
sample. If it is indeed the case that Q ∝ 1λex, then the
ultrafast change in Q would suggest that the exchange
stiffness is attenuated more than the magnetization im-
mediately after optical pumping. This is in agreement
with previous studies that found significant evidence for
a reduction in the exchange splitting in ultrafast pump-
ing experiments [4, 7]. The fact that Q(t) returns to
its equilibrium value 13 ps after pumping suggests that
this is the time scale at which conventional equilibrium
concepts relating temperature, magnetization, and the
renormalization of exchange, i.e., A ∝Ms, are valid [31–
33]. Coincidentally, 10 ps is the time scale at which the
electron, spin, and lattice thermal baths are generally
considered to be in thermal equilibrium with each other,

see Appendix E and Refs. 1 and 34.

The diffraction ring radii also exhibit ultrafast changes.
In Fig. 5 we show colour contour plots of the azimuthally
averaged magnetic diffraction ring intensity profiles for
the first- and third-order rings as a function of both time
and q, divided by the equilibrium form factor. We can
clearly see by eye that the maxima of the diffraction in-
tensity shift to lower wavenumber after pumping. The
visible shifts in both radii of the maximum diffraction in-
tensity are marked with horizontal lines that indicate the
q-value for the time-averaged ring radii before (dashed
red line) and between 6 and 11 ps after optical pumping
(dashed black line). The difference in the average radii,
δq, is 0.0018 nm−1±0.0001 nm−1 for the first-order ring,
and 0.0054 nm−1±0.0003 nm−1 for the third-order ring.
These differences in the average radii are harmonically
related by a factor 3, indicating that the full spectrum
shifts. The shift in question is 4.6% ± 0.25 % for both
peaks, reminiscent of previously observed shifts in the
scattering of labyrinth domains [17, 19]. We note that
while these shifts can be observed from the raw data,
the analysis presented below allows us to disentangle the
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FIG. 4. Time evolution of the fitted form factor, Q(t). The
magenta solid line indicates the pre-pump equilibrium value,
Q(0). The dashed vertical black lines indicate t = 0 ps and
t = 13 ps, when Q(t) recovers its pre-pump value.

contribution due to other factors, such as the exponential
background in the data

VI. EFFECTIVE BLOCH DOMAIN-WALL
MODEL

For materials with strong perpendicular magnetic
anisotropy, a hyperbolic Bloch-wall model is applica-
ble [25], with a one-dimensional (1D) profile given by

md(x, t) = m(t) tanh

(
x

a(t)

)
, (4)

where m(t) is the time-dependent, normalized magne-
tization within the adjacent domains and a(t) is pro-
portional to the domain-wall width. Equation (4) is
strictly applicable to materials with negligible second-
order anisotropy constant. In our case, the ratio be-
tween the second and first-order anisotropy constants is
κ = −0.36. This ratio leads to a broader domain-wall,
yet similar in shape to that predicted from Eq. (4). See,
e.g., Figure 3.60 in Ref. 25.

Our use of a particular equilibrium model for the do-
main wall profile is meant to be applied to our data anal-
ysis in the most general sense. In particular, it is power-
ful in its ability to provide a quantitative interpretation
of the time-resolved diffraction intensities. However, the
general intention of this model is to, at a minimum, pro-
vide a qualitative description of how the domain walls be-
have under conditions of ultrafast pumping. Any model
for the domain wall profile will have a monotonically de-
creasing intensity of the diffraction rings with diffraction
order. While the sharpness of the domain wall is some-
how encoded in the dependence of intensity on q, we can
only speculate as to the exact details of that wall pro-
file since we can only measure those intensities up to

FIG. 5. Color contour plots of the azimuthally-averaged mag-
netic diffraction ring intensity profiles, after form-factor nor-
malization, as a function of both time and radial q for the
first and third-order rings. The first and third-order rings
are presented in the bottom and top panel, respectively. The
dashed red line marks the radius of the maximum diffrac-
tion ring intensity prior to optical pump. The dashed black
line marks the maximum intensity radius averaged between
6 ps and 1 ps after optical pump. A shift in both rings
is observed by eye. The first-order ring radius shifts by
0.0018 nm−1 ± 0.0001 nm−1. The third-order ring shifts by
0.0054 nm−1±0.0003 nm−1 , 3× larger than that of the first-
order ring.

5th order. We indeed concede that the fact that our
model actually fits our data so well, as we will show,
does not necessarily mean the model is correct in an exact
sense, but the ability to interpret the diffraction inten-
sities in a quantitative manner does add confidence to
any qualitative interpretation of the data that involves
time-dependence of the domain wall profile.

The domain-wall width is calculated following the Lil-
ley interpretation that considers the slope of the domain-
wall profile at the origin[25]. Therefore, we define the
domain-wall width w as

w = πa(t). (5)

To extract the parameter a(t) from the experimental
data, one must be conscious that Eq (4) is a 1D pro-
file whereas the sample is stabilized in a 3D labyrinth
domain pattern. By micromagnetic simulations using
mumax3 [35], we find that the domains have negligible
variation through the thickness (see Appendix D) and
so the static labyrinth domain pattern can be assumed
to be 2D. In order to map this pattern to a 1D equiva-
lent, we must consider that the labyrinth domain network
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FIG. 6. Effective amplitudes at selected time instances fitted
with the Bloch-wall model of Eq. (7). The amplitudes (circles)
and fits (crosses) are shown in logarithmic scale and vertically
shifted for clarity.

distributes the diffracted photons uniformly along the az-
imuthal coordinate. To account for this, we consider that
the domain-wall is part of a periodic array of domains of
width d = πq0 and the effective amplitudes An(q0, t) are
related to the fitted diffraction ring amplitudes via

An(t) = Mn(t)
√

2πnq0. (6)

This relationship means that we map the 2D diffraction
data to the diffraction expected from a perfectly peri-
odic 1D stripe domain pattern, which is the underlying
assumption implied in azimuthal integration of scattered
intensities and any derived analysis. We stress that, while
we initially perform numerical azimuthal averaging of the
diffraction signal to determine the time-dependent scat-
tering amplitude of the nth order ring, e.g. Mn(t), we
subsequently perform fits with the square root of the
azimuthally integrated intensity, e.g. An(t). This is
equivalent to the statement that the diffraction from the
labyrinth domain pattern, when azimuthally integrated,
is equivalent to the diffraction from 1D periodic domains,
albeit with the diffracted photons spread out uniformly in
the azimuthal coordinate. This allows us to connect the
simplified 1D model to the actual 2D diffraction pattern
so that our analysis is consistent throughout.

To connect the effective amplitudes to the Bloch-wall
model, we compute the Fourier transform of Eq. (4) by
convolving the spectrum of a square wave of periodicity
2d = 2π/q0 with the spectrum of the derivative of Eq. (4).
The resulting discrete spectrum has harmonic amplitudes
given by

An(t) =
πm(t)w(t)

2d(t)
csch

(
πnw(t)

2d(t)

)
, (7)

where we used the domain-wall-width definition of
Eq. (5) to explicitly include it in the expression. We
restate that m(t) is the asymptotic magnetization ampli-
tude in the infinite wavelength limit, i.e. when q0 → 0.
It is not to be confused with the maximum amplitude of
the magnetization between the domains for non-zero q0.

Fits to the effective amplitudes are shown in logarith-
mic scale by crosses in Fig. 6 for selected times. The

amplitudes obtained from Eq. (6) and the fitted ampli-
tudes of the azimuthally averaged scattering are shown
by circles with errorbars denoting the standard deviation
of the fit. We note that the fifth-order ring amplitude
has little weight on the overall fit shown in Fig. 6 since
its amplitude after pumping is close to the noise level.
However, the nearly total quench of the fifth-order ring
is consistent with the quantitative degree of domain-wall
broadening extracted from the 1st and 3rd order diffrac-
tion rings.

The evolution of m(t) is shown in Fig. 7(a), exhibit-
ing a typical demagnetization behavior, but with a faster
remagnetization process than would otherwise be sur-
mised by inspection of the diffraction amplitude data
in Fig. 3(d). It is also distinct from the time-resolved
XMCD data, shown in Fig. 7(b). While the signal-to-
noise for the XMCD is significantly less than that of the
diffraction data fitting, it is clear that there is little to
no recovery of the magnetization after pumping, as also
apparent in the diffraction amplitude data.

The evolution of w(t) is shown in Fig. 7(c). The initial
domain-wall width is 39 nm, in good agreement with the
calculated value of 45 nm from Bloch-wall theory when
considering the reduced anisotropy π

√
Aex(K1 +K2).

We find a significant broadening of the domain-walls from
39 nm to 51 nm (31%) within 1.6 ps, followed by par-
tial recovery towards its original equilibrium value in the
first 13 ps after pumping. From 13 ps to 20 ps, the
domain-walls resume broadening by approximately 38%
more than the original equilibrium value, likely because
of a reduction in the effective magnetic anisotropy of the
sample due to delayed thermal diffusion through the sam-
ple thickness, see Appendix E.

Ultrafast domain-wall broadening was indeed previ-
ously inferred from 1st order diffracting ring measure-
ments [17]. However, the method used in Ref. 17 was
purely inferential insofar as it was not possible to truly
determine the smoothing of the domain walls from the
width of the diffraction rings, see Appendix F. As shown
here, we precisely determine the broadening from an en-
tirely different perspective: we take advantage of the sub-
stantial dynamic range of our measurement system, then
apply a Fourier series decomposition method that relies
on the simple fact that the domain-wall profile is actu-
ally encoded in the relative amplitudes of the diffraction
orders. In other words, we do not infer the domain-wall
widths, but rather we directly measure them.

A slow increase in the domain wall size ≈ 4 ps after
pumping was observed by Hennes, et al., where optical
pumping of a CoTb alloy with a stripe domain pattern
resulted in a gradual shift in the ratio of the 3rd and
1st order X-ray diffraction features [20]. However, an
ultrafast increase in the domain wall size was not ob-
served. Regardless, they similarly conclude that such a
relatively slow increase in the domain wall size is the re-
sult of reduced magnetic anisotropy with increased lattice
temperature.

Our analysis method for determining domain wall
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FIG. 7. Evolution of the (a) asymptotic magnetization, m(t),
and (b) XMCD data obtained when the sample is magnetized
with the external field. In panel (b), the error is shown as
gray shadow and it is computed from the standard deviation
of the pre-pump data. (c) The domain-wall width, w(t). The
color-coded vertical lines represent the time instances shown
in Fig. 6. The domain walls broaden by 31% within the first
2 ps after pumping.

width via Eq. (7) does begin with the assumption that
the magnetization pattern is effectively 2D for all times,
i.e. the 2D projection of the magnetization distri-
bution through the sample thickness, as detected by
transmission-mode scattering, is indicative of the true
magnetization distribution during dynamics. However,
one should not presume that the spin dynamics induced
by pumping are uniform through the sample thickness.
(see Appendix E). We instead expect the case to be oth-
erwise, with stronger dynamics near the top surface, and
weaker dynamics below the surface. At the very least,
we understand that the time-dependence of the fitted pa-
rameters presented here is actually averaged through the
sample thickness. As such, while our approach for ex-
tracting the domain wall width is direct, it is also still
approximate.

VII. ULTRAFAST DOMAIN
REARRANGEMENT

Having established and definitively quantified ultra-
fast domain-wall broadening from the time dependence
of diffraction ring amplitudes, we now focus on the ultra-
fast dynamics manifest in both the diffraction ring radii
and linewidths. The diffraction rings’ linewidths exhibit

an ultrafast time dependence, as shown in Fig. 8(a). The
linewidth broadens 15% within 1.6 ps and exhibit a par-
tial recovery until 13 ps where it then remains relatively
constant. Interpreting the linewidth Γ as a reciprocal
measure of the correlation length, 2πΓ, this quantity de-
creases from the equilibrium value of 844.8 nm±5.7 nm
to 711.6 nm±8.4 nm at 1.6 ps after optical pumping. We
understand such correlation lengths to be the distances
over which the phase of the periodic domain structure is
no longer predictable. As such, a rapid reduction in the
correlation length is a clear indication that the domain
pattern is subject to some sort of ultrafast rearrange-
ment, whereby the phase coherence of the domains is fur-
ther reduced under far-from-equilibrium conditions. We
stress that the fits are obtained by the use of Lorentzian
functions that are symmetric with respect to the ring
radii. As such, the small error bars in Fig. 8(a) are clear
evidence that there is minimal ultrafast distortion of the
ring shapes beyond position and width.

The broadening of the diffraction rings due to atten-
uated phase coherence can also result in a reduction of
the diffraction ring amplitudes, assuming the total scat-
tering power of the domain structure is conserved. This
can be misinterpreted as additional quenching when it is
in reality a distortion in the domain pattern. Since the
diffraction ring broadening is significant (15 percent as
determined in Section VIII), this could be a substantial
effect. Such an effect could very well explain the approx-
imately 10 percent difference in the quenching observed
via the asymptotic magnetization determined from the
diffraction ring amplitudes and the quenching determined
by XMCD seen in Fig. 7. However the percentage re-
duction in the diffraction rings by this mechanism would
be constant for all 3 diffraction rings. Since the frac-
tional change would be equal for all the diffraction rings,
this does not contribute to the determination of the wall
width, as broadening of walls more strongly affects the
higher order diffraction rings.

The decrease in the spatial coherence of the domain
structure implies that some degree of domain-wall motion
is occurring, albeit such motion must be both stochastic
and zero-mean. The need for the motion to be stochastic
is obvious given the broadening of the linewidth. The re-
quirement that the domain wall motion be a zero-mean
effect is necessary if there is no net overall change in the
average domain wall density. Instead, we conjecture that
ultrafast optical pumping simply causes increased vari-
ability in the size of the domains across the probe spot.
Because the scattering is fitted well with a symmetric
Lorentzian lineshape, we can rely on standard Fourier
analysis of a Langevin-type equation subject to a Wiener
random process [36] to quantify a domain-wall “jitter”
δλ(t) given by

δλ(t) =

√
2Γ

q3
0

, (8)

that depends on the measured linewidth and ring radius.
Using Eq. (8), we obtain δλ(t) = 15.7 nm ±0.1 nm at
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FIG. 8. Time evolution of the fitted (a) linewidth Γ and (b)
ring radius q0. Both quantities exhibit ultrafast changes. The
ring radius shrinks by 6% and the linewidth broadens by 15%.

equilibrium. δλ(t) jumps to 18.8 nm ±0.2 nm in a time
1.6 ps after pumping. The average domain-wall speed re-
quired to accommodate such a rapid change in positional
jitter is approximately 2 km/s, well within the range of
plausibility. [37]

The evolution of ring radii is shown in Fig. 8(b). We
detect a 6% shift in both the first- and third-order ring
radii at 1.6 ps after optical pumping, followed by a partial
recovery. This confirms the similar shift from labyrinth
domain patterns observed in Refs. 17 (a 4-5% shift) and
19 (a 2-6% shift). Here, we extend our observation to
the higher-order diffraction rings. After 13 ps, the rings
continue to shrink for the remainder of the measurement
time. The very slight continued shrinking of the ring
radius shift past 13 ps might be attributed at least in
part to thermal expansion of the lattice.

The simultaneous observation of both a reduction of
the correlation length and a contraction of the diffraction
rings’ radii are strong evidence in support for the spa-
tial rearrangement of the domain pattern at picosecond
timescales. These results indicate that domain-walls are
mobile upon optical excitation, though the exact details
of the spatial modifications are not directly accessible via
scalar diffraction measurements nor by the required av-
eraging of single-shot measurements.

The hypothesis of global domain dilation stemming
from the ring radius shift is unphysical due to the ex-
ceedingly large domain-wall speeds at the edges of the
x-ray probe spot implied by a fractional expansion in
the average domain width. In our experiments, a 6%
domain dilation would imply domain-wall speeds at the
outer radius of our probe spot to be on the order of
(0.06×10µm)1.6 ps ≈ 375 km/s. Such an extreme speed
is many orders of magnitude faster than what is capable
by any known mechanisms to drive isolated domain-walls
in equilibrium, e.g. Refs. 38 and 39, and even one order

of magnitude faster than a recent prediction of femtosec-
ond domain-wall motion due to superdiffusive spin cur-
rents [37]. As such, the physical interpretation of the
observed contraction in the ring radii remains a mystery.

VIII. CONCLUSION

In this paper, we have measured the time-dependent
scattering of a labyrinth domain pattern subject to ultra-
fast optical pumping up to the fifth-order diffraction ring.
This large range of wavevectors allowed us to use Fourier
series concepts to unambiguously and simultaneously re-
cover information on the average domain-wall width and
domain size. Our main observation is that, contrary to
what has been posited to date, domain-walls are mobile
when subjected to ultrafast optical pumping, suggesting
the appearance of a net torque on the domain-walls and
the ultrafast rearrangement of the domain pattern.

Our results are consistent with the recent observation
that a much larger shift in the radii of the diffraction rings
occurs in the case of labyrinth domains as opposed to that
for parallel stripe domains [19]. This indicates that lower
symmetry spin textures, e.g. labyrinths with randomly
dispersed domain junctions, termini, and bubbles, are
more susceptible to ultrafast rearrangement than higher
symmetry spin textures, e.g. periodic stripe domains.

A recent study has indicated that the nature of the
torque may be related to the hybridization of domain-
wall types in materials with Dzyaloshinskii-Moriya in-
teraction [40]. It would be interesting to generalize this
concept to domain-walls in material without well-defined
chirality.

The possibility of domain structure rearrangement by
ultrafast optical pumping raises the possibility that spin
textures can be optically controlled. The presented re-
sults greatly expand the parameter space in which to
further explore the rich nature of far-from-equilibrium
magnetization dynamics, including materials with more
exotic spin textures, such as chiral domain networks and
skyrmion lattices.
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Appendix A: Subtraction of charge contribution to
the scattering intensity

To separate the electronic and magnetic contributions,
we use the refractive index formalism to describe the in-
teraction of soft x-rays with the ferromagnetic multilayer
film. An equivalent description in terms of scattering
amplitudes is also possible [41].

Within the approach adopted here, spatial variations
of the refractive index n0 will cause the incident x-rays to
scatter. The variations could either be caused by inhomo-
geneities of the chemical composition or surface rough-
ness, collectively referred to as charge variations c(r),
where r = (x, y) is the spatial coordinate, or a spatially
dependent profile of the out-of-plane magnetization com-
ponent s(r) ≡Mz(r). We assume no spin-charge correla-
tion in our multilayered samples. While such correlations
exist for granular [42, 43] or patterned [44] media, we do
not expect such correlations in our samples because the
exchange interaction between adjacent grains is compa-
rable to that within the grains themselves. Indeed, such
strong intergranular exchange coupling is a prerequisite
for the formation of labyrinth domain patterns.

With the corrections to the refractive index δnc and
δns due to charge and spin variations, respectively, the
electric field of an electromagnetic wave transmitted
through the sample is

E = E0e
ikd[n0+δnss(r)+δcc(r)], (A1)

where E0 is the incident circularly polarized wave and is
assumed to be a plane wave (E0 = 1) due to the large
spot size of the incident beam of ≈ 100 µm relative to its
wavelength of 1.45 nm, d is the sample thickness, and k is
the wavenumber of the incident x-rays. E in Eq. (A1) is
referred to as the exit surface wave (ESW). We divide out
the term eikdn0 and, to make the notation more compact,
introduce substitutions C(r) = ikdδncc(r) and S(r) =
ikdδnss(r). A Taylor expansion of Eq. (A1) to first order
in C(r) and S(r) yields

E = 1 + C(r) + S(r). (A2)

The scattered intensity at the detector is obtained by
taking a Fourier transform of Eq. (A2) and multiplying
it by the conjugate

I(q) = |C(q)|2 + |S(q)|2 + 2Re{C(q)S(q)}, (A3)

where C(q) and S(q) are Fourier transforms of C(r) and
S(r), respectively. The Fourier transform of the first term
in Eq. (A2) is a delta function δ(q), which is non-zero
only when the scattering vector q = 0. Since we are
not interested in the unscattered signal, we neglected the
delta function in Eq. (A3).

Because the incident x-ray probe is circularly polar-
ized, the magnetically and electronically scattered x-rays
have the same polarization, and thus the third term in
Eq. (A3) is, in general, non-zero.

FIG. 9. Pre-pump (t < 0) charge scattering.

When a saturating perpendicular magnetic field Hz

is applied to the sample, it eliminates the magnetic
domains, and the complex magnetically scattered sig-
nal S(q) vanishes except at q = 0, in which case
I(q) ∝ |C(q)|2. However, the total transmission through
the sample still depends on its magnetization direction
due to the effect of x-ray magnetic circular dichroism
upon circularly polarized x-rays, which in turn affects
the charge scattering because of the non-zero sample
thickness. Thus, the magnitude of the scattered in-
tensity is essentially a product of the charge scatter-
ing and a field-dependent XMCD transmission factor
IXMCD(Hz)|C(q)|2. This variation can be accounted for
by including second order terms in the Taylor expansion
of Eq. (A2), as was done in Ref. 45. For that reason, the
pure charge scattering |C(q)|2 with circular polarized x-
rays and a non-negligible sample thickness is found from
the scattering intensities taken with positive and negative
applied saturating fields

Σ =
1

2
[I(q,+Hz) + I(q,−Hz)] = |C(q)|2. (A4)

The two-dimensional image of charge scattering inten-
sity is shown in Fig. 9. The intensity varies from approx.
10−7 at low q to approx. 10−8 at q ≈ 0.2 nm−1. This
should be compared to the azimuthally averaged scat-
tering intensity shown in Fig. 2(a), which varies from
approx. 1 at low q ≈ 0.04 nm−1 to approx. 10−7 at
q ≈ 0.2 nm−1. The charge scattering intensity only
becomes comparable in magnitude with the magnetic
fifth-order diffraction ring at wavenumbers greater than
0.2 nm−1. As such, the effect of cross-terms in Eq. (A3)
is negligibly small on the magnetic first-order and third-
order diffraction rings. Further details can be found in
Ref. 45. We then extract the magnetic scattering inten-
sity as

|S(q)|2 = I(q, Hz = 0)− Σ. (A5)
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Appendix B: Fits of time averaged scattering data
after pumping

To test if the fifth-order ring can be fitted accurately
from the data, we time-average the already azimuthally
averaged scattering in the interval ti = [6 ps, 11 ps].
The equalized data, fits, and Lorentzians in the repre-
sentation of Eq. (3) are shown in Fig. 10 by solid black,
dashed red, and solid blue curves, respectively. After
time-averaging, the fifth-order ring, though significantly
quenched relative to what is detected prior to pumping,
e.g. Fig. 2(a), is more clearly distinguished, and is found
to be resolved in a manner that is consistent with the
fitting of the first- and third-order rings. Small errors
in the fit with increasing q are visibly enhanced in this
equalized representation. Regardless, the fit is extremely
sensitive to the exact positions of the diffraction rings
in the data, as captured with the Lorentzian model for
the ring profiles. In this particular fit, we obtained q0 =
0.0373 nm−1 ± 0.0001 nm−1. This represents a ≈ 0.26%
shift in the ring radius of 0.0374 nm−1 ± 0.0001 nm−1

calculated from time-average of the domain width shown
in Fig. 6(a) within the time interval ti.

Appendix C: Modeling the Ultrafast Distortion of
the Domain Configuration

An alternative interpretation of our data is that there
is an ultrafast distortion in the shape of the individual
diffraction rings due to a change in the statistical distri-
bution of domain sizes, shapes, and/or amplitudes. In
that case, the distortion in the spectral profile of each
diffraction ring is a function of the ring order. We con-
sider a simplified model for such an effect whereby the
distortion in the ring profile can be represented by a
Gaussian filter function that shifts the weight of each
diffraction ring to lower wavenumbers. To fit the ex-
perimental data with such a model, we multiply each
Lorentzian in the diffraction ring profile by a filter func-
tion that depends on the diffraction order of the ring to
be fitted, i.e. the position and width of the filter func-
tion are linear in the diffraction order n. Multiplication
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FIG. 10. Fits of time averaged scattering data after pumping.

FIG. 11. Data fitting using a fitted Gaussian filter func-
tion. The data is presented in the equalized representation
of Eq. (2). The experimental data are shown by solid black
curves, the empirical fits by dashed red curves, and the fits us-
ing a Gaussian filter function, Eq. (C1) by dashed blue curves.
Time instances at 0 ps, 1.6 ps, and 18.8 ps are shown and ver-
tically shifted for clarity.

of each diffraction ring by a different filter function is jus-
tified based on the fact that the domain-wall profile gives
rise to the multiple observed rings according to Fourier
series decomposition. The resulting empirical function
fG(q, t) has the following functional form

fG(q, t) = e−2q/Q(0)

M0(0) +
∑

n=1,3,5

M̃n(t)(
q−nq0(0)
nΓ(0)

)2

+ 1
e−q

2/2(nσ(t))2


2

(C1)

where the quantities M̃n(t) are fitting parameters and σ(t) is the Gaussian standard deviation. Note that only
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FIG. 12. (a) 3D rendering of the equilibrium magnetization. (b) Cross-section of the domain pattern along the red line shown
in (a) and the thin film’s height. The profile is uniform across the thickness.

the Gaussian filter function is time-dependent while the
remaining parameters can be estimated from the fit to
the equilibrium spectrum.

The resulting fits at selected times are shown in Fig. 11.
At equilibrium, the Gaussian reduces to a constant and
the scattering is accurately fitted as shown by the dashed
blue curve. However, the scattering at later times cannot
be fitted with this functional form as shown by the blue
curves. For comparison, we also plot the fits using our
empirical function in red dotted curves.

Appendix D: Micromagnetic simulations

The equilibrium domain pattern is estimated using
the micromagnetic package MuMax3 [35] and run on
an NVIDIA Tesla P100 GPU accelerator. We set a
5, 120 nm×5, 120 nm×40 nm simulation area discretized
in cells of 5 nm×5 nm×5 nm and imposing periodic
boundary conditions on the film’s plane. The cell size
is below the estimated exchange length of 7.3 nm. We
used experimentally measured magnetic parameters at

room temperature: Ms = 771 kA/m, K1 = 739 kJ/m3,
and K2 = −266 kJ/m3 and we assumed an exchange
constant of Aex = 20 pJ/m.

The ground state is found by the use of the relax
routine in Mumax3 which estimates the energy minimum
by removing the conservative term of the Landau-Lifshitz
equation and using a Runge-Kutta 23 solver.

The simulation is initialized with a random magnetiza-
tion distribution. The resulting labyrinth domain pattern
is shown in Fig. 12(a). By Fourier analysis, we obtain an
average domain size of 78 nm ±13 nm, in good agree-
ment with the equilibrium domain size deduced from the
pre-pump scattering data. The cross section along the
red line shows that the domains are essentially constant
across the thickness, as shown in Fig. 12(b).

Appendix E: Time evolution of thermal profile in
thick metallic multilayers after optical pumping

The heat transport in the film was modeled by use
of the three-temperature model [1], which includes three
coupled equations to describe the dynamics of the elec-
tron, lattice, and spin temperature baths
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FIG. 13. Depth profile temperature results of three-temperature heat transport model for the electronic, lattice, and spin
temperatures.

Ce(Te)
∂Te

∂t
= ~∇ ·

(
κe(Te, Tl)~∇Te

)
+Gel(Te) (Tl − Te) +Ges (Ts − Te) + S(z, t), (E1a)

Cl(Tl)
∂Tl

∂t
= ~∇ ·

(
κl(Te, Tl)~∇Tl

)
+Gel(Te) (Te − Tl) +Gls (Ts − Tl) , (E1b)

Cs(Ts)
∂Ts

∂t
= Ges (Te − Ts) +Gls (Tl − Ts) . (E1c)

We used material-specific and temperature-dependent
values for the specific heat Cx, thermal conductivity κx,
the electron-lattice coupling constant Gel, the electron-
spin coupling constant Ges, and the lattice-spin coupling
constant Gls [45–48]. The subscript x stands for e, l, or
s to denote the electron, lattice, or spin system, respec-
tively. The laminate structure of the sample was taken
into account, and the spatial profile of the heat source
S(z, t) was found by computing the absorption of the
pump light with an incident fluence of 26.7 J/cm2 by the
film using the multilayer formalism of Ref. 49. More de-
tails on the material parameters used in the simulation
can be found in Ref. 45.

The calculated depth-dependent electron, lattice, and
spin temperatures are shown in Fig. 13. The magne-
tization profile was obtained from the calculated tem-
perature of the spin system using the experimentally
measured temperature dependence of the magnetization.
The electron-spin coupling parameter was chosen to be
Ges = 3 × 1017 W/m3K to obtain a good fit to the ex-
perimental XMCD signal. However, one must take the
calculated temperatures for the various thermal baths
in this model to be no more than rough estimates at
the short times over which substantial changes in the
magnetic scattering occurs. Given that Ges � Gls,
and an estimated Cs(Ts) ≈ 1.5 × 106 J/m3K at the el-
evated temperatures expected after pumping, the esti-
mated time constant for heat transfer between the elec-
tronic and spin system is 5 ps, which is much longer than
the measured domain dilation time and the domain-wall
broadening time of 1.6 ps. This highlights the fact that
the electron-spin scattering processes in the far-from-
equilibrium regime are strongly amplified for this system

when compared to those expected from highly simplified
models based on equilibrium dynamics.

Appendix F: Linear filter function analysis

We have conclusively shown that domain wall broad-
ening does indeed occur in our system, whereby we rigor-
ously measured the degree of broadening by use of Fourier
analysis. We can now test whether use of a linear fil-
ter function to extract wall broadening from the time-
resolved distortions of a single diffraction ring, as was
done in Ref. 17, is consistent with our rigorous quanti-
tative result.

Let us consider an azimuthally averaged spectrum that
has a simple functional shape, ft(q) given by the product
of a Lorentzian diffraction lineshape and a Gaussian filter
function

ft(q) =

 M(t)(
q−q0
Γ(t)

)2

+ 1

 e−q2/2σ(t)2 , (F1)

where M(t), q0, and Γ(t) are the Lorentzian’s amplitude,
peak position at equilibrium (t < 0), and linewidth, re-
spectively, and σ(t) is the Gaussian’s standard deviation.
This Gaussian filter function in reciprocal space is used
to model how the domain structure that gives rise to the
Lorentzian lineshape might be smoothed by convolution
with the same Gaussian, but in the form of its inverse
transform in real space.

The maximum of Eq. (F1) can be analytically com-
puted from ∂ft(q)/∂q = 0. Introducing the peak shift
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FIG. 14. (a) Comparison of the third-order ring spectrum iso-
lated from experimental data (black curve) and predicted by
the use of a suitable Gaussian filter function (blue curve). (b)
Time-dependent filter function g(q, t) computed from exper-
imental data at t = 1.6 ps. The grey shaded area represents
the error in determining g(q, t) from shot noise.

∆q(t) = q0 − qmax(t) as a function of the measured peak
position qmax(t) and solving for σ, we obtain

2σ(t)2 =
Γ(t)2q0 + q0∆q(t)2 −∆q(t)3

∆q(t)
− Γ(t)2. (F2)

For a small shift, ∆q(t) � 1, we can approximate the
Gaussian standard deviation to

2σ(t)2 ≈ Γ(t)2

(
q0

∆q(t)
− 1

)
. (F3)

This powerful yet simple expression permits us to di-
rectly determine the degree of smoothing σ(t) as a func-
tion of the measured parameters, i.e. the original diffrac-
tion ring radius q0, the shift in the ring radius ∆q(t), and
the original width of the diffraction ring Γ(t). For exam-
ple, given the equilibrium ring radius q0 ≈ 0.0392 nm−1

and parameters at 1.6 ps after optical pumping ∆q ≈
2.7 µm−1, and Γ ≈ 8.8 µm−1, we obtain σ ≈ 0.023 nm−1.
This is a substantial degree of smoothing that implies an
almost total quench of all diffraction orders except for the
1st order ring. In the case of our measured distortions
in the 1st order diffraction ring, the amplitude ratio be-
tween the third and first-order rings would be expected
to be ≈ 8× 10−6, four orders of magnitude smaller than
the actual fitted ratio of 0.08. Clearly, the degree of
domain wall broadening extracted from the distortions
of the 1st order diffraction ring is inconsistent with that
directly measured by use of the 3rd and 5th order diffrac-
tion rings. We are forced to conclude that the ultrafast
shift of the diffraction ring radii cannot be ascribed to
domain-wall broadening.

In addition to being quantitatively erroneous with re-
gard to domain-wall broadening, the use of a filter func-
tion as a model for such broadening also induces a size-
able asymmetry in the q-dependent spectrum that is not

actually observed. In Fig. 14(a), we compare the isolated
azimuthally averaged third-order ring from the experi-
mental data (black curve) and computed by means of a
Gaussian filter function (blue curve). For this, we use
the pre-pump (t < 0) time-averaged data for the third-
order ring, multiply it by a Gaussian filter function with
a standard deviation computed from Eq. (F3), and scale
it so as to match the ring amplitude at all times. As
is easily seen by eye, the Gaussian filter results in sig-
nificant asymmetry in the spectrum that does not agree
with the experimental data. An even poorer agreement
is obtained by scaling the Gaussian filter function by the
measured XMCD data, as would be expected from the
fact that a filter function at q = 0 should be proportional
to the quenching for a uniformly magnetized sample.

A slightly different approach can be taken by assuming
distortions of the domain configurations. In this case, a
real-space distortion would imply a harmonic application
of the Gaussian filter function, as further discussed in Ap-
pendix C. This approach also results in a poor model for
our experimental data and is yet further evidence that
fitting of the data with a Gaussian filter is not an effec-
tive method for the extraction of domain wall broadening
from the measured diffraction.

It can be argued that the assumption of a Gaussian
smoothing function to model domain-wall broadening is
itself specious, and that a phenomenological smoothing
function would be more accurate at assessing the details
of domain wall dynamics. Based on linear response the-
ory, the dynamic evolution of the domain network can
always be analyzed in terms of a time-dependent spatial
filter kernel G(x, y, t) that is convolved with the equilib-
rium perpendicular-to-plane magnetization component

Because the scattering intensity is related to Mz via a
Fourier transform, |S(q, t)|2 = |F{Mz}|2, it is possible to
reinterpret the filtering kernel as a multiplicative factor in
Fourier space, g(q, t), that describes the time-dependent
evolution of the scattering, given by

g(q, t) =

√
|S(q, t)|2
|S(q, t = 0)|2

, (F4)

where g(q, t) = F{G(x, y, t)}. This kernel may be com-
puted from experimental data with good accuracy up to
the third-order peak. The associated error to the kernel
can be computed by standard error propagation to be

δg(q, t) =
1√
N(q

g(q, t)

2

√
1

q(q, t)2
+ 1, (F5)

where N(q) is the time-independent photon count per
q and we assume that the main source of noise in the
measurement is shot noise.

The resultant scalar filter function obtained from ex-
perimental data at t = 1.6 ps is shown in Fig. 14(b).
The shaded area represents the error computed from
Eq. (F5). We see that the spectral modulation of the
diffraction rings by such a time-dependent scalar filter
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function is qualitatively non-trivial, given the function’s
complex oscillatory form. We also see that the reciprocal-
space radii of maximal quenching are correlated with the
diffraction ring positions. If optically-induced quench-
ing is a simple function of wavelength, whereby shorter
wavelength features demagnetize more efficiently than
longer wavelengths, we would expect monotonically de-
creasing low-pass filter behavior. Instead, we find that
the experimentally determined filter function is unam-
biguously non-monotonic. Such a complex dependence
of quenching cannot be easily attributed to an uncompli-
cated reciprocal-space dependence of demagnetization, as
was originally proposed by Pfau, et al. 17.

Finally, the analysis presented in this section also clar-
ifies the impact that thermal fluctuations of the domain
wall spatial positions has on diffraction. When ther-
mal fluctuations affect atomic coordinates in the case
of Bragg diffraction, this is typically accounted for with
the Gaussian-like Debye-Waller factor (DWF). The DWF
accounts for the fact that the amplitudes of high-order
diffraction features [50] are strongly attenuated by ther-

mal fluctuations when q is greater than the wavenum-
ber of the scattering photons. If we apply by anal-
ogy the DWF to the case of magnetic diffraction from
domain wall patterns, and we assume thermal fluctua-
tions cause random fluctuations of domains walls from
their average position, the estimated σ ≈ 0.023 nm−1

from Eq. (F3) would imply a mean spatial displacement

of
√

2π/(2σ2) ≈ 77 nm. In other words, domain walls
would need to fluctuate approximately 77 nm to account
for the observed shift in the ring positions. Given that
the static domain width is 80 nm, such massive spatial
fluctuations in the domain wall positions are clearly un-
physical. In addition, such large random domain wall
motion would also fully extinguish the higher order scat-
tering from the domain structure by smearing out details
of the domain wall structure, which is clearly not the
case in the measurements presented here. As such, we
can also rule out any stochastic phenomena that can be
accounted for with the DWF as relevant explanations for
the phenomena we observed.
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V. López-Flores, J. Arabski, C. Boeglin, H. Merdji,
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[25] A. Hubert and R. Schäfer, Magnetic domains: the anal-
ysis of magnetic microstructures (Springer, 2009).

[26] W. F. Schlotter, J. J. Turner, M. Rowen, P. Heimann,
M. Holmes, O. Krupin, M. Messerschmidt, S. Moeller,
J. Krzywinski, R. Soufli, M. Fernández-Perea, N. Kelez,
S. Lee, R. Coffee, G. Hays, M. Beye, N. Gerken, F. Sor-
genfrei, S. Hau-Riege, L. Juha, J. Chalupsky, V. Ha-
jkova, A. P. Mancuso, A. Singer, O. Yefanov, I. A.
Vartanyants, G. Cadenazzi, B. Abbey, K. A. Nugent,
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[40] C. Léveilleé, E. Burgos-Parra, Y. Sassi, F. Ajejas,
V. Chardonnet, E. Pedersoli, F. Capotondi, G. De Ninno,
F. Maccherozzi, S. Dhesi, D. M. Burn, G. van der Laan,
O. S. Latcham, A. V. Shytov, V. V. Kruglyak, E. Jal,
V. Cros, J.-Y. Chauleau, N. Reyren, M. Viret, and
N. Jaouen, Ultrafast time-evolution of a chiral neél mag-
netic domain walls probed by circular dichroism in x-ray
resonant magnetic scattering, arXiv:2007.08583.

[41] M. F. Tesch, M. C. Gilbert, H.-C. Mertins, D. E. Bürgler,
U. Berges, and C. M. Schneider, X-ray magneto-optical
polarization spectroscopy: an analysis from the visible
region to the x-ray regime, Appl. Opt. 52, 4294 (2013).

[42] P. W. Granitzka, E. Jal, L. Le Guyader, M. Savoini, D. J.
Higley, T. Liu, Z. Chen, T. Chase, H. Ohldag, G. L.
Dakovski, W. F. Schlotter, S. Carron, M. C. Hoffman,
A. X. Gray, P. Shafer, E. Arenholz, O. Hellwig, V. Mehta,
Y. K. Takahashi, J. Want, E. E. Fullerton, J. Stöhr, A. H.
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