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We study spin pumping into an anisotropic Dirac electron system induced by microwave irra-
diation to an adjacent ferromagnetic insulator theoretically. We formulate the Gilbert damping
enhancement due to the spin current flowing into the Dirac electron system using second-order
perturbation with respect to the interfacial exchange coupling. As an illustration, we consider the
anisotropic Dirac system realized in bismuth to show that the Gilbert damping varies according to
the magnetization direction in the ferromagnetic insulator. Our results indicate that this setup can
provide helpful information on the anisotropy of the Dirac electron system.

I. INTRODUCTION

In spintronics, spin currents are crucial in using elec-
trons’ charge and spin. Spin pumping, the spin current
generation of conduction electrons from nonequilibrium
magnetization dynamics at magnetic interfaces, is a pop-
ular method for generating and manipulating spin cur-
rents. In previous experimental reports on spin pumping,
the enhancement of Gilbert damping in ferromagnetic
resonance (FMR) was observed due to the loss of angu-
lar momentum associated with the spin current injection
into the nonmagnetic layer adjacent to the ferromagnetic
layer1–9. Mizukami et al. measured the enhancement of
the Gilbert damping associated with the adjacent non-
magnetic metal. They reported that the strong spin-orbit
coupling in the nonmagnetic layer strictly affected the
enhancement of the Gilbert damping3–5. Consequently,
electric detection by inverse spin Hall effect, in which the
charge current is converted from the spin current, led to
spin pumping being used as an essential technique for
studying spin-related phenomena in nonmagnetic mate-
rials10–24. Saitoh et al. measured electric voltage in a
bilayer of Py and Pt under microwave application. They
observed that charge current converted because of inverse
spin Hall effect from spin current injected by spin pump-
ing11.

In the first theoretical report on spin pumping, Berger
predicted an increase in Gilbert damping due to the spin
current flowing across the interface between the ferro-
magnetic and nonmagnetic layers25,26. Tserkovnyak et
al. calculated the spin current flowing through the inter-
face27–29 based on the scattering-matrix theory and the
picture of adiabatic spin pumping30–32. They introduced
a complex spin-mixing conductance that characterizes
spin transport at the interfaces based on spin conserva-
tion and no spin loss. The spin mixing conductance can
represent the spin pumping-associated phenomena and
is quantitatively evaluated using the first principle calcu-
lation33. Nevertheless, microscopic analysis is necessary

to understand the detailed mechanism of spin transport
at the interface34–44. It was clarified that spin pumping
depends on the anisotropy of the electron band structure
and spin texture. Spin pumping is expected to be one of
the probes of the electron states41–44.

Bismuth has been extensively studied because of its at-
tractive physical properties, such as large diamagnetism,
large g-factor, high efficient Seebeck effect, Shubnikov-
de Haas effect, and de Haas-van Alphen effect45,46. The
electrons in the conduction and valence bands near the
L-point in bismuth, which contribute mainly to the vari-
ous physical phenomena, are expressed as effective Dirac
electrons. Thus, electrons in bismuth are called Dirac
electrons45–47. Doping of antimony to bismuth is known
to close the gap and makes it a topological insulator48,49.
Because of its strong spin-orbit interaction, bismuth has
attracted broad attention in spintronics as a high efficient
charge-to-spin conversion material50–55. The spin current
generation at the interface between the bismuth oxide
and metal has been studied since a significant Rashba
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FIG. 1. Schematic illustration of a bilayer system composed
of the Dirac electron system and ferromagnetic insulator. The
applied microwave excited precession of the localized spin in
the ferromagnetic insulator and spin current is injected into
the Dirac electron system.
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spin-orbit interaction appears at the interface56. The
spin injection into bismuth was observed due to spin
pumping from yttrium iron garnet or permalloy57–59.
Nevertheless, microscopic analysis of spin pumping into
bismuth has not been performed. The dependence of the
spin pumping on the crystal and band structure of bis-
muth remains unclear.

This study aims at a microscopic analysis of spin in-
jection due to spin pumping into an anisotropic Dirac
electron system, such as bismuth, and investigates the
dependence of spin pumping on the band structure. We
consider a bilayer system comprising an anisotropic Dirac
electron system and a ferromagnetic insulator where a
microwave is applied (see Fig. 1). The effect of the inter-
face is treated by proximity exchange coupling between
the Dirac electron spins and the localized spins of the
ferromagnetic insulator34–44. We calculate the Gilbert
damping enhancement due to spin pumping from the fer-
romagnetic insulator into the Dirac electron system up to
the second perturbation of the interfacial exchange cou-
pling. For illustration, we calculate the enhancement of
the Gilbert damping for an anisotropic Dirac system in
bismuth.

This paper is organized as follows: Sec. II describes
the model. Sec. III shows the formulation of the Gilbert
damping enhancement and discuss the effect of the inter-
facial randomness on spin pumping. Sec. IV summarizes
the results and demonstration of the Gilbert damping
enhancement in bismuth. Sec. V presents the conclu-
sion. The Appendices show the details of the calcula-
tion. Appendix A defines the magnetic moment of elec-
trons in a Dirac electron system. Appendix B provides
the detailed formulation of the Gilbert damping modu-
lation, and Appendix C presents the detailed derivation
of Gilbert damping modulation.

II. MODEL

We consider a bilayer system composed of an
anisotropic Dirac electron system and a ferromagnetic
insulator under a static magnetic field. We evaluate a
microscopic model whose Hamiltonian is given as

ĤT = ĤD + ĤFI + Ĥex, (1)

where ĤD, ĤFI, and Ĥex represent an anisotropic Dirac
electron system, a ferromagnetic insulator, and an inter-
facial exchange interaction, respectively.

A. Anisotropic Dirac system

The following Wolff Hamiltonian models the
anisotropic Dirac electron system46,47,50:

ĤD =
∑
k

c†k(−~k · vρ2 + ∆ρ3)ck, (2)

FIG. 2. Schematic illustration of the band structure of the
anisotropic Dirac electron system. The red band represents
the conduction band with λ = +, and the blue band repre-
sents the valence band with λ = −. The chemical potential
is in the conduction band.

where 2∆ (6= 0) is the band gap, c†k(ck) is the electrons’
four-component creation (annihilation) operator, and v
is the velocity operator given by vi =

∑
α wiασ

α with
wiα being the matrix element of the velocity operator.
σ = (σx, σy, σz) are the Pauli matrices in the spin space
and ρ = (ρ1, ρ2, ρ3) are the Pauli matrices specifying the
conduction and valence bands.

For this anisotropic Dirac system, the Matsubara
Green function of the electrons is given by

gk(iεn) =
iεn + µ− ~k̃ · σρ2 + ∆ρ3

(iεn + µ)2 − ε2k
, (3)

where εn = (2n + 1)π/β is the fermionic Matsubara
frequency with n being integers, µ (> ∆) is the chem-

ical potential in the conduction band k̃ is defined by
k̃ · σ = k̃ασ

α = k · v, and εk is the eigenenergy given
by

εk =
√

∆2 + (~kiwiα)2 =

√
∆2 + ~2k̃2. (4)

The density of state of the Dirac electrons per unit cell
per band and spin is given by

ν(ε) = n−1
D

∑
k,λ

δ(ε− λεk), (5)

=
|ε|

2π2~3

√
ε2 −∆2

∆3detαij
θ(|ε| −∆), (6)

where λ = ± is a band index (see Fig. 2), nD is the num-
ber of unit cells in the system, and αij is the inverse mass
tensor near the bottom of the band, which characterize
the band structure of the anisotropic Dirac electron sys-
tem:

αij =
1

~2

∂2εk
∂ki∂kj

∣∣∣∣
k=0

=
1

∆

∑
α

wiαwjα. (7)
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FIG. 3. Relation between the original coordinates (x, y, z) and
the magnetization-fixed coordinates (X,Y, Z). The direction
of the ordered localized spin 〈S〉0 is fixed to the X-axis. θ is
the polar angle and φ is the azimuthal angle.

The spin operator can be defined as

ŝq =
∑
k

c†k−q/2sck+q/2, (8)

si =
m

∆
Miαρ3σ

α, (i = x, y, z), (9)

whereMiα are the matrix elements of the spin magnetic
moment given as50,51

Miα = εαβγεijkwiβwjγ/2. (10)

The detailed derivation of the spin magnetic moment can
be found in Appendix A.

B. Ferromagnetic insulator

The bulk ferromagnetic insulator with simple cubic lat-
tice structure under a static magnetic field is described
by the quantum Heisenberg model as

ĤFI = −J
∑
〈i,j〉

Si · Sj − gµBhdc

∑
i

SXi , (11)

where J is an exchange interaction, g is g-factor of the
electrons, µB is the Bohr magnetization, and 〈i, j〉 rep-
resents the pair of nearest neighbor sites. Note that
the Zeeman energy in the Dirac electron systems is as-
sumed to be negligible compared to the band gap en-
ergy. Here, we have introduced a magnetization-fixed
coordinate (X,Y, Z), for which the direction of the or-
dered localized spin 〈S〉0 is fixed to the X-axis. The
localized spin operators for the magnetization-fixed coor-
dinates are related to the ones for the original coordinates

(x, y, z) as SxSy
Sz

 = R(θ, φ)

SXSY
SZ

 , (12)

where R(θ, φ) = Rz(φ)Ry(θ) is the rotation matrix com-
bining the polar angle θ rotation around the y-axis Ry(θ)
and the azimuthal angle φ rotation around the z-axis
Rz(φ), given by

R(θ, φ) =

cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

 . (13)

By applying the spin-wave approximation, the spin op-

erators are written as S±k = SYk ± iSZk =
√

2Sbk(b†k) and

SXk = S − b†kbk using magnon creation/annihilation op-

erators, b†k and bk. Then, the Hamiltonian is rewritten
as

ĤFI =
∑
k

~ωkb
†
kbk, (14)

where ~ωk = Dk2 + ~ω0 with D = JSa2 being the spin
stiffness, and ~ω0 = gµBhdc is the Zeeman energy.

C. Interfacial exchange interaction

The proximity exchange coupling between the electron
spin in the anisotropic Dirac system and the localized
spin in the ferromagnetic insulator is modeled by

Ĥex =
∑
q,k

(Tq,kŝ+
q S
−
k + h.c.), (15)

where Tq,k is a matrix element for spin transfer through
the interface and ŝ±q = ŝYq ± iŝZq are the spin ladder
operators of the Dirac electrons. According to the re-
lation between the original coordinate (x, y, z) and the
magnetization-fixed coordinate (X,Y, Z), the spin oper-
ators of the Dirac electrons are expressed assXsY

sZ

 = R−1(θ, φ)

sxsy
sz

 , (16)

where R−1(θ, φ) = Ry(θ)Rz(−φ) is given by

R−1(θ, φ) =

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 . (17)

The spin ladder operators are given by

s+ =
m

∆
aiMiασ

α, s− =
m

∆
a∗iMiασ

α, (18)

where ai (i = x, y, z) are defined byaxay
az

 =

− sinφ+ i sin θ cosφ
cosφ+ i sin θ sinφ

i cos θ

 . (19)
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III. FORMULATION

Applying a microwave to the ferromagnetic insulator
includes the localized spin’s precession. The Gilbert
damping constant can be read from the retarded magnon
Green function defined by

GRk (ω) = − i
~

∫ ∞
0

dtei(ω+iδ)t〈[S+
k (t), S−k ]〉, (20)

with S+
k (t) = eiĤT /~S+

k e
−iĤT /~ being the Heisenberg

representation of the localized spin, since one can prove
that the absorption rate of the microwave is proportional
to ImGRk=0(ω) (see also Appendix B). By considering
the second-order perturbation with respect to the ma-
trix element for the spin transfer Tq,k, the magnon Green
function is given by34–44

GR0 (ω) =
2S/~

(ω − ω0) + i(α+ δα)ω
. (21)

Here, we introduced a term, iαω, in the denominator
to express the spin relaxation within a bulk FI, where
α indicates the strength of the Gilbert damping. The
enhancement of the damping, δα, is due to the adjacent
Dirac electron system, calculated by

δα =
2S

~ω
∑
q

|Tq,0|2ImχRq (ω), (22)

where χRq (ω) is the retarded component of the spin sus-
ceptibility (defined below). We assume that the FMR
peak described by ImGRk=0(ω) is sufficiently sharp, i.e.,
α+δα� 1. Then, the enhancement of the Gilbert damp-
ing can be regarded as almost constant around the peak
(ω ' ω0), allowing us to replace ω in δα with ω0.

The retarded component of the spin susceptibility for
the Dirac electrons:

χRq (ω) =
i

~

∫ ∞
−∞0

dtei(ω+iδ)t〈[s+
q (t), s−−q]〉. (23)

The retarded component of the spin susceptibility is
derived from the following Matsubara Green function
through analytic continuation iωl → ~ω + iδ:

χq(iωl) =

∫ β

0

dτeiωlτ 〈ŝ+
q (τ)ŝ−−q〉, (24)

where ωl = 2πl/β is the bosonic Matsubara frequency
with l being integers. According to Wick’s theorem,
the Matsubara representation of the spin susceptibility
is given by

χq(iωl)

= −β−1
∑
k,iεn

tr[s+gk+q(iεn + iωl)s
−gk(iεn)], (25)

where
∑
iεn

indicates the sum with respect to the

fermionic Matsubara frequency, εn = (2π + 1)n/β. The
imaginary part of the spin susceptibility is given by

ImχRq (ω) = −πF(θ, φ)
∑
k

∑
λ,λ′=±

[
1

2
+
λλ′

6

2∆2 + ε2k
εkεk+q

]
×
[
f(λ′εk+q)− f(λεk)

]
δ(~ω − λ′εk+q + λεk), (26)

where f(ε) = (eβ(ε−µ) + 1)−1 is the Fermi distribution
function, and F(θ, φ) is the dimensionless function which
depends on the direction of the ordered localized spin,
defined by

F(θ, φ) =

(
2m

∆

)2∑
α

aiMiαa
∗
jMjα. (27)

For detailed derivation, see Appendix C.
In this paper, we model the interfacial spin transfer as a

combination of the clean and dirty processes. The former
corresponds to the momentum-conserved spin transfer
and the latter to the momentum-nonconserved one41,44.
By averaging over the position of the localized spin at
the interface, we can derive the matrix elements of the
interfacial spin-transfer process as

|Tq,0|2 = T 2
1 δq,0 + T 2

2 , (28)

where T1 and T2 are the averaged matrix elements con-
tributing to the clean and dirty processes, respectively.
Then, the enhancement of the Gilbert damping is given
by

δα =
2S

~ω
F(θ, φ)

{
T1 Im χ̃Runi(ω0) + T2 Im χ̃Rloc(ω0)

}
,

(29)

where χ̃Runi(ω) and χ̃Rloc(ω) are the local and uniform spin
susceptibilities defined by

χ̃Rloc(ω0) = F−1(θ, φ)
∑
q

χRq (ω0), (30)

χ̃Runi(ω0) = F−1(θ, φ)χR0 (ω0), (31)

respectively. From Eq. (26), their imaginary parts are
calculated as

Im χ̃Rloc(ω0) = −πn2
D

∫
dεν(ε)ν(ε+ ~ω0)

×
[

1

2
+

2∆2 + ε2

6ε(ε+ ~ω0)

] [
f(ε+ ~ω0)− f(ε)

]
,

(32)

Im χ̃R
uni(ω0) = −πnDν

(~ω0

2

) ~2ω2
0 − 4∆2

3~2ω2
0

×
[
f(~ω0

2 )− f(−~ω0

2 )
]
. (33)

The enhancement of the Gilbert damping, δα, depends
on the direction of the ordered localized spin through the
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FIG. 4. FMR frequency dependence of the (a) local and
(b) uniform spin susceptibilities. The local spin susceptibil-
ity is normalized by πn2

Dν
2
0 and scaled by 106, and the uni-

form spin susceptibility is normalized by πnDν0 with ν0 ≡
1/2π2~3

√
detαij . Note that kB is the Boltzmann constant.

The line with kBT/∆ = 0.001 is absent in (a) because the
local spin susceptibility approaches zero at low temperature.

dimensionless function F(θ, φ) regardless of the interfa-
cial condition.

By contrast, the FMR frequency dependence of δα re-
flects the interfacial condition; for a clean interface, it is
determined mainly by ImχRuni(ω0), whereas for a dirty
interface, it is determined by ImχRloc(ω0). The FMR fre-
quency dependence of the local and uniform spin sus-
ceptibilities, ImχRloc(ω0) and ImχRuni(ω0), are plotted in
Figs. 4 (a) and (b), respectively. The local and uniform
spin susceptibilities are normalized by πn2

Dν
2
0 and πnDν0,

respectively, where ν0 ≡ 1/2π2~3
√

detαij is defined. In
the calculation, the ratio of the chemical potential to the
energy gap was set to µ/∆ ' 4.61, which is the value in
the bismuth46. According to Fig. 4 (a), the local spin sus-
ceptibility increases linearly with the frequency ω in the
low-frequency region. This ω-linear behavior can be re-
produced analytically for low temperatures and ~ω � µ:

Im χ̃loc(ω0) ' ~ω0
π

2
n2
D[ν(µ)]2

[
1 +

2∆2 + µ2

3µ2

]
. (34)

Fig. 4 (b) indicates a strong suppression of the uniform
spin susceptibility below a spin-excitation gap (ω0 < 2µ).
This feature can be checked by its analytic form at zero
temperature:

Im χ̃R
uni(ω0) = πnDν

(~ω0

2

) ~2ω2
0 − 4∆2

3~2ω2
0

θ(~ω0 − 2µ).

(35)

Thus, the FMR frequency dependence of the enhance-
ment of the Gilbert damping depends on the interfacial
condition. This indicates that the measurement of the
FMR frequency dependence may provide helpful infor-
mation on the randomness of the junction.

IV. RESULT

We consider bismuth, which is one of the anisotropic
Dirac electron systems45,46,52,60,61. The crystalline struc-
ture of pure bismuth is a rhombohedral lattice with the
space group of R3̄m symmetry, see Figs. 5 (a) and (b).
It is reasonable to determine the Cartesian coordinate
system in the rhombohedral structure using the trigonal
axis with C3 symmetry, the binary axis with C2 symme-
try, and the bisectrix axis, which is perpendicular to the
trigonal and binary axes. Hereafter, we choose the x-axis
as the binary axis, the y-axis as the bisectrix axis, and
the z-axis as the trigonal axis. Note that the trigonal, bi-
nary, and bisectrix axes are denoted as [0001], [12̄10], and
[101̄0], respectively, where the Miller-Bravais indices are
used. The bismuth’s band structure around the Fermi
surface consists of three electron ellipsoids at L-points
and one hole ellipsoid at the T -point. It is well known
that the electron ellipsoids are the dominant contribu-
tion to the transport phenomena since electron’s mass
is much smaller than that of the hole, see Fig. 5 (c).
Therefore, the present study considers only the electron
systems at the L-points. The electron ellipsoids are sig-
nificantly elongated, with the ratio of the major to minor
axes being approximately 15 : 1. Each of the three elec-
tron ellipsoids can be converted to one another with 2π/3
rotation around the trigonal axis. The electron ellipsoid
along the bisectrix axis is labeled as e1, and the other
two-electron ellipsoids are labeled e2 and e3. The in-
verse mass tensor for the e1 electron ellipsoids is given
by

α↔e1 =

α1 0 0

0 α2 α4

0 α4 α3

 . (36)

The inverse mass tensor of the electron ellipsoids e2 and
e3 are obtained by rotating that of e1 by 2π/3 rotation



6

as below:

α↔e2,e3 =
1

4


α1 + 3α2 ±

√
3(α1 − α2) ±2

√
3α4

±
√

3(α1 − α2) 3α1 + α2 −2α4

±2
√

3α4 −2α4 4α3

 .

(37)

Let us express the dimensionless function F(θ, φ) rep-
resenting the localized spin direction dependence of the
damping enhancement on the inverse mass tensors.

F(θ, φ) =

(
2m

∆

)2∑
α

[
(sin2 φ+ sin2 θ cos2 φ)M2

xα

+(cos2 φ+ sin2 θ sin2 φ)M2
yα

+ cos2 θ(M2
zα − sin 2φMxαMyα)

+ sin 2θMzα(Mxα cosφ+Myα sinφ)
]
. (38)

Here, we use the following calculations:∑
α

M2
xα =

∆2

4
(αyyαzz − α2

yz)total =
∆2

4m2
κ̄⊥, (39)

∑
α

M2
yα =

∆2

4
(αzzαxx − α2

zx)total =
∆2

4m2
κ̄⊥, (40)

∑
α

M2
zα =

∆2

4
(αxxαyy − α2

xy)total =
∆2

4m2
κ̄‖, (41)

∑
α

MiαMjα =
∆2

4
(αikαjk − αijαkk)total = 0, (42)

where i, j, k are cyclic. (· · · )total represents the summa-
tion of the contributions of the three electron ellipsoids,
and κ̄‖, κ̄⊥ (> 0) are the total Gaussian curvature of the
three electron ellipsoids normalized by the electron mass
m, given by

κ̄‖ = 3m2α1α2, (43)

κ̄⊥ =
3

2
m2[(α1 + α2)α3 − α2

4]. (44)

Hence, the dimensionless function F is given by

F(θ) = (1 + sin2 θ)κ̄⊥ + cos2 θκ̄‖. (45)

The results suggest that the variation of the damping
enhancement depends only on the polar angle θ, which is
the angle between the direction of the ordered localized
spin 〈S〉0 and the trigonal axis. It is also found that the θ
dependence of the damping enhancement originates from
the anisotropy of the band structure. The dimensionless
function F(θ) is plotted in Fig. 6 by varying the ratio
of the total Gaussian curvatures x = κ̄⊥/κ̄‖, which cor-
responds to the anisotropy of the band structure. Fig-
ure 6 shows that the θ-dependence of the damping en-
hancement decreases with smaller x and the angular de-
pendence vanishes in an isotropic Dirac electron system

Binary

BisectrixTrigonal

e�
e�

e�
(c)

Binary(x)

(a)

Bisectrix(y)

Trigonal(z)

Binary

Bisectrix

Trigonal(b)

FIG. 5. (a) The rhombohedral lattice structure of bismuth.
The x-axis, y-axis, and z-axis are chosen as the binary axis
with C2 symmetry, the bisectrix axis, and the trigonal axis
with C3 symmetry, respectively. The yellow lines represents
the unit cell of the rhombohedral lattice. (b) The rhombohe-
dral structure viewed from the trigonal axis. (c) Schematic
illustration of the band structure at the Fermi surface. The
three electron ellispoids at L-points are dominant contribu-
tion to the spin transport.

x = 1. Bismuth is known to have a strongly anisotropic
band structure. The magnitude of the matrix elements of
the inverse mass α1-α4 was experimentally determined as
mα1 = 806, mα2 = 7.95, mα3 = 349, and mα4 = 37.6.
The total Gaussian curvatures are evaluated as46

κ̄‖ ' 1.92× 104, (46)

κ̄⊥ ' 4.24× 105. (47)

The ratio of the total Gaussian curvature is estimated
as x ' 22.1. Therefore, the damping enhancement is
expected to depend strongly on the polar angle θ in a bi-
layer system composed of single-crystalline bismuth and
ferromagnetic insulator. Conversely, the θ-dependence of
the damping enhancement is considered to be suppressed
for polycrystalline bismuth.

The damping enhancement is independent of the az-
imuthal angle φ. Therefore, it is invariant even on ro-
tating the spin orientation around the trigonal axis. The
reason is that the azimuthal angular dependence of the
damping enhancement cancels out when the contribu-
tions of the three electron ellipsoids are summed over,
although each contribution depends on the azimuthal an-
gle. The azimuthal angular dependence of the damping
enhancement is expected to remain when strain breaks
the in-plane symmetry. Additionally, suppose the spin
can be injected into each electron ellipsoid separately,
e.g., by interfacial manipulation of the bismuth atoms.
In that case, the damping enhancement depends on the
azimuthal angle of the spin orientation of the ferromag-
netic insulator39. This may be one of the probes of the
electron ellipsoidal selective transport phenomena.
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FIG. 6. The θ-dependence of the damping enhancement
for different x. The ratio of the total Gaussian curvatures
x = κ̄⊥/κ̄‖ represents the anisotropy of the band structure.
The blue line with x = 22.1 corresponds to the damping en-
hancement in single-crystalline bismuth, and the other lines
correspond to that in the weakly anisotropic band structure.
As can be seen from the graph, the θ-dependence of the damp-
ing enhancement decreases as the more weakly anisotropic
band structure, and the angular dependence turns out to van-
ish in an isotropic Dirac electron system with x = 1.

It is also noteworthy that the damping enhancement
varies according to the ordered localized spin direction
with both clean and dirty interfaces; that is independent
of whether momentum is conserved in interfacial spin
transport. This property is a remarkable feature of spin
pumping in anisotropic Dirac electron systems, which has
not been found in previous studies, where the anisotropy
of the damping enhancement due to spin pumping turned
out to vanish by interfacial inhomogeneity41–43.

V. CONCLUSION

We theoretically studied spin pumping from a ferro-
magnetic insulator to an anisotropic Dirac electron sys-
tem. We calculated the enhancement of the Gilbert
damping in the second perturbation concerning the prox-
imity interfacial exchange interaction by considering
the interfacial randomness. For illustration, we calcu-
lated the enhancement of the Gilbert damping for an
anisotropic Dirac system realized in bismuth. We showed
that the Gilbert damping varies according to the polar
angle between the ordered spin 〈S〉0 and the trigonal axis
of the Dirac electron system, whereas it is invariant in
its rotation around the trigonal axis. This anisotropy of
spin pumping occurs regardless of whether momentum is
conserved in the interfacial spin transport, which differs
from previous studies. Our results indicate that the spin
pumping experiment can provide helpful information on
the anisotropic band structure of the Dirac electron sys-

tem.

The Gilbert damping is invariant in the rotation
around the trigonal axis because the contributions of each
electron ellipsoid depend on the in-plane direction of the
ordered spin 〈S〉0. Nevertheless, the total contribution
becomes independent of the rotation of the trigonal axis
after summing up the contributions from the three elec-
tron ellipsoids that are related to each other by the C3

symmetry of the bismuth crystalline structure. If the
spin could be injected into each electron ellipsoid sepa-
rately, it is expected that the in-plane direction of the
ordered localized spin would influence the damping en-
hancement. This may be one of the electron ellipsoid
selective spin injection probes. The in-plane direction’s
dependence will also appear when a static strain is ap-
plied. A detailed discussion of these effects is left as a
future problem. Our results may lead to the character-
istic spin pumping in other electron systems with Dirac
dispersion, e.g., Cd3As2 and Na3Bi, and their elucidation
is also future work62,63.
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Appendix A: Magnetic moment of electrons in Dirac
electron system

In this section, we define the spin operators in the
Dirac electron systems. The Wolff Hamiltonian around
the L point is given by HD = ρ3∆ − ρ2π · v, where
vi =

∑
α wiασ

α with wiα being the matrix component
of the velocity vectors and π = p + e

cA is the momen-
tum operator including the vector potential. It is rea-
sonable to determine the magnetic moment of electrons
in an effective Dirac system as the coefficient of the Zee-
man term. The Wolff Hamiltonian is diagonalized by the
Schrieffer-Wolff transformation up to v/∆ as below:

eiξHDe
−iξ '

[
∆ +

1

2∆
(π · v)2

]
ρ3, (A1)

where ξ = ρ1
2∆π · v is chosen to erase the off-diagonal

matrix for the particle-hole space. We can proceed cal-
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culation as follows:

(π · v)2 = πiπjwiαwjβ(δαβ + iεαβγσ
γ),

= (πiwiα)2 +
i

2
εαβγσ

γ [π × π]iεijkwjαwkβ ,

= ∆

(
π · α · π +

~e
c∆
Miασ

αBi

)
, (A2)

where we used (π×π) = e~
ci∇×A and Miα is defined as

Miα =
1

2
εαβγεijkwjβwkγ . (A3)

Finally, we obtain

eiξHDe
−iξ '

[
∆ +

π · α↔ · π
2

]
−Biµs,i, (A4)

where µs,i is a magnetic moment of the Dirac electrons
defined as

µs,i = − ~e
2c∆
Miαρ3σ

α = − ~e
2c∆
Miα

(
σα 0
0 −σα

)
.

(A5)

In the main text, we defined the spin operator s as the
magnetic moment µs divided by the Bohr magnetization
µB = ~e/2mc, i.e.,

si = −µs,i

µB
=
m

∆
Miα

(
σα 0
0 −σα

)
. (A6)

For an isotropic Dirac system, the matrix component is
given by wiα = vδiα and Eq. (A6) reproduces the well-

known form of the spin operator

s =
g∗

2

(
σ 0
0 −σ

)
, (A7)

where g∗ = 2m/m∗ is the effective g-factor with m∗ =
∆/v2 being effective mass.

Appendix B: Linear Response Theory

In this section, we briefly explain how the microwave
absorption rate is written in terms of the uniform spin
correlation function. The Hamiltonian of an external
circular-polarized microwave is written as

Ĥrf = −gµBhrf

2

∑
i

(S−i e
−iωt + S+

i e
iωt)

= −
gµBhrf

√
nF

2
(S−0 e

−iωt + S+
0 e

iωt), (B1)

where hrf is an amplitude of the magnetic field of the
microwave, S±k are the Fourier transformations defined
as

S±k =
1
√
nF

∑
i

S±i e
−ik·Ri , (B2)

andRi is the position of the locazed spin i. Using the lin-
ear response theory with respect to Ĥrf, the expectation
value of the local spin is calculated as

〈S+
0 〉ω = GR0 (ω)×

gµBhrf
√
nF

2
, (B3)

where GRk (ω) is the spin correlation function defined in
Eq. (20). Since the microwave absorption is determined
by the dissipative part of the response function, it is
proportional to ImGR0 (ω), that reproduces a Lorentzian-
type FMR lineshape. As explained in the main text, the
change of the linewidth of the microwave absorption, δα,
gives information on spin excitation in the Dirac system
via the spin susceptibility as shown in Eq. (22).

Appendix C: Spin susceptibility of Dirac electrons

In this section, we give detailed derivation of Eq. (26). The trace part in Eq. (25) is calculated as

tr[s+gk+q(iεn + iωl)s
−gk(iεn)] =

[(iεn + iωl + µ)(iεn + µ) + ∆2]tr[s+s−]− tr[s+~(k̃ + q̃) · σs−~k̃ · σ]

[(iεn + iωl + µ)2 − ε2k+q][(iεn + µ)2 − ε2k]
, (C1)

where (k̃ + q̃) · σ = (k + q) · v. Using the following relations

tr[s+s−] =

(
2m

∆

)2∑
α

aiMiαa
∗
jMjα, (C2)

tr[s+~(k̃ + q̃) · σs−~k̃ · σ] =

(
2m

∆

)2∑
α

(2aiMiα~k̃αa∗jMjβ~k̃β − ~2k̃2aiMiαa
∗
jMjα), (C3)
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the spin susceptibility is given by

χq(iωl) = −2F(θ, φ)
∑
k

β−1
∑
iεn

(iεn + iωl + µ)(iεn + µ) + ∆2 + ~2k̃2/3

[(iεn + iωl + µ)2 − ε2k+q][(iεn + µ)2 − ε2k]
, (C4)

where we dropped the terms proportional to k̃αk̃β (α 6= β) because they vanish after the summation with respect

to the wavenumber k. Here, we introduced a dimensionless function, F(θ, φ) = (2m/∆)
2∑

α aiMiαa
∗
jMjα, which

depends on the direction of the magnetization of the FI. Representing the Matsubara summation as the following
contour integral, we derive

χq(iωl) = −2F(θ, φ)
∑
k

∮
dz

4πi
tanh

(
β(z − µ)

2

)
z(z + iωl) + ∆2 + ~2k̃2/3

[(z + iωl)2 − ε2k+q][z2 − ε2k]
, (C5)

= 2F(θ, φ)
∑
k

∮
dz

2πi
f(z)

z(z + iωl) + ∆2 + ~2k̃2/3

[(z + iωl)2 − ε2k+q][z2 − ε2k]
, (C6)

We note that tanh(β(z − µ)/2) has poles at z = iεn + µ and is related to the Fermi distribution function f(z) as
tanh[β(z − µ)/2] = 1− 2f(z). Using the following identities

1

z2 − ε2k
=

1

2εk

∑
λ=±

λ

z − λεk
, (C7)

z

z2 − ε2k
=

1

2

∑
λ=±

1

z − λεk
, (C8)

the spin susceptibility is given by

χq(iωl) = F(θ, φ)
∑
k

∮
dz

2πi
f(z)

∑
λ,λ′=±

[
1

2
+

(∆2 + ~2k̃2/3)λλ′

2εkεk+q

]
1

z − λεk
1

z + iωl − λ′εk+q
, (C9)

= F(θ, φ)
∑
k

∑
λ,λ′=±

[
1

2
+
λλ′

6

2∆2 + ε2k
εkεk+q

]
f(λ′εk+q)− f(λεk)

iωl − λ′εk+q + λεk
. (C10)

By the analytic continuation iωl = ~ω + iδ, we derive the retarded spin susceptibility as below:

χRq (ω) = F(θ, φ)
∑
k

∑
λ,λ′=±

[
1

2
+
λλ′

6

2∆2 + ε2k
εkεk+q

]
f(λ′εk+q)− f(λεk)

~ω + iδ − λ′εk+q + λεk
. (C11)

The imaginary part of the spin susceptibility is given by

ImχRq (ω) = −πF(θ, φ)
∑
k

∑
λ,λ′=±

[
1

2
+
λλ′

6

2∆2 + ε2k
εkεk+q

] [
f(λ′εk+q)− f(λεk)

]
δ(~ω − λ′εk+q + λεk). (C12)

From this expression, Eqs. (32) and (33) for the imaginary parts of the uniform and local spin susceptibilities can be
obtained by replacing the sum with respect to k and λ with an integral over the energy ε as follows:

n−1
D

∑
k,λ

A(λεk)→
∫

d3k̃

(2π)3
√

∆3detαij
A(λεk) =

∫ ∞
−∞

dεν(ε)A(ε), (C13)

where A is an arbitrary function. Note that the Jacobian of the transformation from k to k̃ is given by det(dki/dk̃j) =

1/
√

∆3detαij .

1 B. Heinrich, K. B. Urquhart, A. S. Arrott, J. F. Cochran,
K. Myrtle, and S. T. Purcell, Phys. Rev. Lett. 59, 1756

(1987).



10

2 Z. Celinski and B. Heinrich, Journal of Applied Physics
70, 5935 (1991).

3 S. Mizukami, Y. Ando, and T. Miyazaki, Journal of Mag-
netism and Magnetic Materials , 3 (2001).

4 S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl.
Phys. 40, 580 (2001).

5 S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B
66, 104413 (2002).

6 S. Ingvarsson, L. Ritchie, X. Y. Liu, G. Xiao, J. C. Slon-
czewski, P. L. Trouilloud, and R. H. Koch, Phys. Rev. B
66, 214416 (2002).

7 P. Lubitz, S. F. Cheng, and F. J. Rachford, Journal of
Applied Physics 93, 8283 (2003).

8 S. D. Sarma, Rev. Mod. Phys. 76, 88 (2004).
9 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I.

Halperin, Rev. Mod. Phys. 77, 47 (2005).
10 A. Azevedo, L. H. Vilela Leão, R. L. Rodriguez-Suarez,

A. B. Oliveira, and S. M. Rezende, Journal of Applied
Physics 97, 10C715 (2005).

11 E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl.
Phys. Lett. 88, 182509 (2006).

12 K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda,
S. Maekawa, and E. Saitoh, Phys. Rev. Lett. 101, 036601
(2008).

13 K. Ando, J. Ieda, K. Sasage, S. Takahashi, S. Maekawa,
and E. Saitoh, Appl. Phys. Lett. 94, 262505 (2009).

14 K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Tryp-
iniotis, C. H. W. Barnes, S. Maekawa, and E. Saitoh,
Nature Mater 10, 655 (2011).

15 O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin,
G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys.
Rev. B 82, 214403 (2010).

16 O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer,
S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104,
046601 (2010).

17 F. D. Czeschka, L. Dreher, M. S. Brandt, M. Weiler, M. Al-
thammer, I.-M. Imort, G. Reiss, A. Thomas, W. Schoch,
W. Limmer, H. Huebl, R. Gross, and S. T. B. Goennen-
wein, Phys. Rev. Lett. 107, 046601 (2011).

18 I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V.
Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl,
and P. Gambardella, Nature 476, 189 (2011).

19 L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman,
Phys. Rev. Lett. 106, 036601 (2011).

20 L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and
R. A. Buhrman, Science 336, 555 (2012).

21 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida,
M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando,
K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464,
262 (2010).

22 L. Bai, P. Hyde, Y. S. Gui, C.-M. Hu, V. Vlaminck, J. E.
Pearson, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett.
111, 217602 (2013).

23 C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga,
V. I. Vasyuchka, M. B. Jungfleisch, E. Saitoh, and B. Hille-
brands, Phys. Rev. Lett. 106, 216601 (2011).

24 J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back,
and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

25 L. Berger, Phys. Rev. B 54, 9353 (1996).
26 F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach,

E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C.
Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier,
J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koop-
mans, I. N. Krivorotov, S. J. May, A. K. Petford-Long,

J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin,
M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L.
Zink, Rev. Mod. Phys. 89, 025006 (2017).

27 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys.
Rev. B 66, 224403 (2002).

28 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys.
Rev. Lett. 88, 117601 (2002).

29 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Journal
of Applied Physics 93, 7534 (2003).

30 E. R. Mucciolo, C. Chamon, and C. M. Marcus, Phys.
Rev. Lett. 89, 146802 (2002).

31 P. Sharma and C. Chamon, Phys. Rev. B 68, 035321
(2003).

32 S. K. Watson, R. M. Potok, C. M. Marcus, and V. Uman-
sky, Phys. Rev. Lett. 91, 258301 (2003).

33 K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and
I. Turek, Phys. Rev. B 65, 220401 (2002).

34 Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys.
Rev. B 89, 174417 (2014).

35 M. Matsuo, Y. Ohnuma, T. Kato, and S. Maekawa, Phys.
Rev. Lett. 120, 037201 (2018).

36 T. Kato, Y. Ohnuma, M. Matsuo, J. Rech, T. Jonckheere,
and T. Martin, Phys. Rev. B 99, 144411 (2019).

37 T. Kato, Y. Ohnuma, and M. Matsuo, Phys. Rev. B 102,
094437 (2020).

38 Y. Ominato and M. Matsuo, J. Phys. Soc. Jpn. 89, 053704
(2020).

39 Y. Ominato, J. Fujimoto, and M. Matsuo, Phys. Rev.
Lett. 124, 166803 (2020).

40 T. Yamamoto, T. Kato, and M. Matsuo, Phys. Rev. B
104, L121401 (2021), arXiv:2106.06102.

41 Y. Ominato, A. Yamakage, and M. Matsuo,
arXiv:2103.05871 [cond-mat] (2021).

42 M. Yama, M. Tatsuno, T. Kato, and M. Matsuo, Phys.
Rev. B 104, 054410 (2021).

43 M. Yama, M. Matsuo, and T. Kato, arXiv:2201.11498
[cond-mat] (2022)

44 Y. Ominato, A. Yamakage, T. Kato, and M. Matsuo,
Phys. Rev. B 105, 205406 (2022).
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