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We present a joint experimental and theoretical study of parametric resonance of spin wave eigen-
modes in Ni80Fe20/Pt bilayer nanowires. Using electrically detected magnetic resonance, we measure
the spectrum of spin wave eigenmodes in transversely magnetized nanowires and study parametric
excitation of these eigenmodes by a microwave magnetic field. We also develop an analytical theory
of spin wave eigenmodes and their parametric excitation in the nanowire geometry that takes into
account magnetic dilution at the nanowire edges. We measure tuning of the parametric resonance
threshold by antidamping spin Hall torque from a direct current for the edge and bulk eigenmodes,
which allows us to independently evaluate frequency, damping and ellipticity of the modes. We
find good agreement between theory and experiment for parametric resonance of the bulk eigen-
modes but significant discrepancies arise for the edge modes. The data reveals that ellipticity of the
edge modes is significantly lower than expected, which can be attributed to strong modification of
magnetism at the nanowire edges. Our work demonstrates that parametric resonance of spin wave
eigenmodes is a sensitive probe of magnetic properties at edges of thin-film nanomagnets.

I. INTRODUCTION

Magnetization dynamics in thin-film nanoscale ferro-
magnets is of fundamental and practical importance in
the field of spintronics [1–7]. The spectrum of spin wave
excitations in such nanomagnets is quantized due to geo-
metric confinement [8, 9], which gives rise to a plethora of
interesting nonlinear magneto-dynamic effects not found
in bulk ferromagnets [10–16]. However, calculations of
the spin wave spectrum in such structures are challeng-
ing due to the importance of nonlocal dipolar interac-
tions [17, 18] and poor understanding of boundary con-
ditions for dynamic magnetization at the nanomagnet
edges [19–22]. Despite these challenges, a quantitative
description of magnetization dynamics in nanomagnets is
critically needed for design and optimization of nanoscale
spintronic devices [23–26] such as spin torque memory
(STT-MRAM) [27–29], spin torque nano-oscillators [30–
36] and ultrasensitive spintronic sensors [37]. Operation
of all these practical spintronic devices critically depends
on details of linear and nonlinear [38] magnetization dy-
namics in nanomagnets [39].

A significant body of prior experimental [40–54] and
theoretical [55–58] work has been dedicated to studies of
spin waves in nanostructures and their interactions with
spin currents [59–74]. These studies typically focus on
the frequencies and spatial profiles of the eigenmodes.
At present, a good quantitative understanding of many
types of spin waves in nanomagnets has been achieved
with a notable exception of the eigenmodes localized near
the nanomagnet edge, the so-called edge modes [75, 76].
This is not surprising because magnetic properties of the
edge of a thin magnetic film can differ from those of the
rest of the film [75, 77, 78], and also from sample to

sample. Many magnetic properties such as magnetiza-
tion, exchange interactions and magnetic anisotropy can
become strongly spatially dependent near the magnetic
film edge [79–81], and details of the magnetic edge pro-
file are not well known [82]. Measurements of the edge
mode frequencies alone do not provide sufficient informa-
tion to reconstruct the edge-induced modifications of the
film magnetic properties. Therefore, characterization of
the edge eigenmode properties going beyond the mode
spectrum are needed. The relatively poor understanding
of the edge eigenmodes is a challenging problem of sig-
nificant practical importance because lateral dimensions
of spintronic nanodevices such as STT-MRAM are pro-
jected to decrease down to a few nanometers [28, 83],
which implies that static and dynamic magnetic proper-
ties of such devices will be dominated by the magnetic
film edge.

In this paper, we study spin wave eigenmodes in fer-
romagnetic thin-films nanowires [84–88] focusing on the
edge eigenmodes [89]. The translational symmetry of
the nanowire geometry significantly simplifies theoret-
ical description of the spin wave spectrum and allows
us to compare our measurements to an analytical the-
ory of nanowire spin wave eigenmodes we develop here.
In order to understand the eigenmode properties beyond
the typically measured frequency and damping, we study
parametric excitation of spin waves and its tuning by an-
tidamping spin-orbit torque [90–113]. Our experiment
is the first measurement of parametric excitation of the
edge spin wave eigenmodes in the nanowire geometry.
Measurements of the parametric resonance threshold and
its tuning by the antidamping spin Hall torque allows us
to probe ellipticity of the edge modes via a comparison of
our analytical theory of the edge-mode parametric reso-
nance to the data. This new information on the proper-
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ties of the edge modes allows us to test a popular model
of the edge-induced modifications of thin film magnetic
properties [20]. Our work places new constraints on the
models of magnetic film edge and suggests a pathway for
improving these models. The first detection of paramet-
ric resonance of the edge mode in ferromagnetic thin-film
microstructures was made in Ref. [91] for microdisk sam-
ples. This experiment demonstrated parametric excita-
tion of the edge mode but the mode ellipticity was not
reported.

II. SAMPLES AND MEASUREMENTS

The nanowire devices studied in this work are pat-
terned from GaAs(substrate)/AlOx(4 nm)/Py(5 nm)/
Pt(5 nm) multilayers deposited by magnetron sputter-
ing, where Permalloy (Py) is a Ni80Fe20 alloy. The
films are polycrystalline and show continuous growth,
as was confirmed in our previous work [85]. Multilayer
nanowires that are 6µm long and 190 nm wide are defined
via e-beam lithography and Ar plasma etching. Two
Cr(7 nm)/Au(35 nm) leads are attached to each nanowire
with a 1.8µm gap between the leads, which defines the
active region of the device as shown in Fig. 1(a).

We employ an electrically detected ferromagnetic reso-
nance (FMR) technique, also known as spin-torque FMR
(ST-FMR) [84, 114–119], to characterize spin waves in
the nanowire. Figure 1(a) shows the schematics of the
ST-FMR setup, which allows us to measure both di-
rect (linear) and parametric (nonlinear) excitation of spin
waves in the Py nanowire. In these measurements, we
apply an amplitude-modulated microwave current Iac to
the nanowire through the RF port of a bias tee, where
Iac represents the root mean square (rms) amplitude of
the microwave current. This current applies periodic spin
Hall torque and Oersted field Hac, both arising from mi-
crowave current in the Pt layer, to drive forced oscilla-
tions of the Py magnetization and thereby excite spin
wave modes in the Py nanowire.

We then measure voltage V induced in the nanowire
at the modulation frequency fmod using a lock-in ampli-
fier [115]. The measured voltage V has two contributions
[120]: (i) photovoltage signal arising from mixing of the
microwave current Iac and Py resistance oscillations Rac

at the microwave drive frequency f and (ii) photoresis-
tance signal arising from modulation of the time-averaged
sample resistance at fmod due to excitation of spin waves.
Both the photovoltage and the photoresistance signals
are due to anisotropic magneto-resistance (AMR) of the
Py layer. As shown in Fig. 1(b), when f coincides with
the resonance frequency of a spin wave eigenmode, a peak
is observed in the FMR spectrum V (f) or V (H). These
measurements were made for magnetic field H applied in
the sample plane at the angle θ = 85◦ with respect to
the electric current direction as illustrated in Fig. 1(a).
Similar to the FMR spectra in our previous work [84],
we observed two groups of modes: bulk and edge modes.

These modes have different profiles along the wire width
with reduced amplitude near the wire edges for the bulk
modes, and enhanced amplitude for the edge modes. Sev-
eral closely spaced bulk and edge modes are observed due
to quantization induced by the geometric confinement of
the modes along the wire length to the 1.8µm active
region [84, 88]. These ST-FMR data are reproducible
and thus the mode eigenfrequencies can be reliably de-
termined from the data. Measurements in this work are
performed at the bath temperature T = 4.2 K unless in-
dicated otherwise.

In order to measure the Gilbert damping parameter of
the nanowire, we apply an external magnetic field along
the nanowire axis [θ = 0◦ in Fig. 1(a)] and measure reso-
nance field (green dashed line in Fig. 2(a)) and linewidth
(half-width at half maximum) of the lowest-frequency
(quasi-uniform) bulk mode, as shown in Fig. 2(b). The
slope of the linewidth versus frequency in the inset of
Fig. 2(b) gives the effective damping of the quasi-uniform
(bulk) mode: α = 0.031, a value exceeding that of
a thin Py films, and Py/Pt bilayers reported in Refs.
[121, 122]. This relatively high value of the damping pa-
rameter likely arises from two factors: (i) spin pumping
into the proximate Pt layer and (ii) atomic inter-diffusion
between Py and adjacent layers induced by heating in
the device nanofabrication process. The measurements
in Fig. 2(b) were made at Idc = 0, where Idc is direct
bias current applied to the nanowire, and T = 94 K –
the temperature the wire reaches due to ohmic heating
at bath temperature T = 4.2 K and Idc = 2.2 mA in
Fig. 1(a).

To study parametric excitation of spin waves in the
nanowire and tuning of this process by spin Hall current,
we apply a magnetic field H > 450 Oe in the plane of the
sample at the direction perpendicular to the nanowire
axis (θ = 90◦ ± 0.1◦). This field saturates Py magneti-
zation perpendicular to the wire axis everywhere except
very near the wire edges where demagnetizing field is
enhanced by the edge magnetic charges [86]. In this con-
figuration, polarization of spin Hall current from Pt is
nearly parallel to magnetization of Py, and modification
of the effective damping of Py by spin Hall current is
maximized [84]. We apply a direct current Idc to the
nanowire in order to tune the effective damping of spin
wave modes in Py by spin Hall torque arising from cur-
rent in the Pt layer. In this paper, we use Idc from 0 mA
to 2.2 mA, which is smaller than the critical current Ic
for excitation of magnetization auto-oscillations by the
antidamping spin Hall torque [85]. For the bulk mode at
10 GHz, Ic = 2.37 mA and for the edge mode at 10 GHz,
Ic = 2.57 mA. We used the following ranges of currents
and fields for the measurements reported in this paper:
Idc from 0 mA to 2.2 mA, Iac from 0 mA to 3.1 mA and
H from 0 to 1.6 kOe.

For magnetization nearly saturated in the plane of the
sample perpendicular to the nanowire axis, spin current
polarization and the Oersted field are both parallel to
magnetization and thus both spin torque and Oersted
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FIG. 1. ST-FMR measurement schematic and an ST-
FMR spectrum. (a) ST-FMR measurement setup and
the coordinate system used in this work. An amplitude-
modulated microwave current Iac from a microwave generator
is applied to the Py/Pt nanowire device, and voltage V in-
duced at the modulation frequency is measured by a lock-in
amplifier as a function of external field H applied in the plane
of the sample (xz -plane) at an angle θ with respect to the wire
axis. A direct current Idc can be applied to the nanowire to
tune its effective magnetic damping by spin Hall torque. (b)
ST-FMR spectrum of the nanowire device measured at the
microwave drive frequency of 6 GHz, θ = 85◦, Iac = 0.3 mA,
and Idc = 2.2 mA.

field torque are nearly zero. Therefore, direct excitation
of spin waves by Iac in this configuration is very ineffi-
cient. This, for example, can be seen in Fig. 4, where the
maximum ST-FMR signal from the directly excited edge
mode (0.115 mV) is significantly smaller than the max-
imum signal from the parametrically excited edge mode
(0.7 mV). In addition, oscillations of magnetization at the
ac current frequency f give rise to resistance oscillations
at 2f in this configuration due to the R = R0 +RA cos2 ϕ
angular dependence of AMR, with ϕ the angle between
magnetization and electric current. Therefore, mixing
of resistance and current oscillation does not generate a
rectified photovoltage (see Appendix VIII A for details).
Thus spin waves are both difficult to excite and detect
electrically via application of Iac at the spin wave reso-

FIG. 2. ST-FMR measurements at θ = 0◦, longitudi-
nal magnetization. (a) ST-FMR spectrum of the nanowire
device measured at the microwave drive frequency of 7 GHz.
The black line is the Lorentzian function fit. The green dashed
line shows the position of the resonance field and the length of
the blue line indicates the full width at half maximum. (b)
Resonance frequency of the quasi-uniform spin wave mode
versus magnetic field applied parallel to the nanowire axis at
the bath temperature T = 94 K. Inset shows linewidth of the
mode (half width at half maximum) versus frequency. Cir-
cles are experimental data while lines are fits described in the
text. Error bars for the experimental data points in (b) are
smaller than the symbol size.

nance frequency for a magnetic field applied at θ = 90◦.

In contrast, θ = 90◦ is the optimum field direction for
parametric excitation of spin waves in the nanowire. For
efficient parametric excitation, either the external mag-
netic field parallel to the equilibrium magnetization di-
rection or the effective damping of a spin wave mode (or
both) should be modulated at twice the mode resonance
frequency [123]. For θ = 90◦, both the component of the
Oersted field parallel to magnetization and the modula-
tion of the effective damping by spin Hall current from Pt
are maximized. Therefore, application of Iac at 2f can ef-
ficiently excite parametric resonance of spin waves in the
Py nanowire for θ = 90◦. At the same time, spin wave ex-
citations generate resistance oscillations at 2f , which mix
with Iac at 2f to produce a non-zero rectified photovolt-
age. Therefore, the efficiency of parametric excitation
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FIG. 3. ST-FMR spectra at θ = 90◦, transverse mag-
netization. ST-FMR signal V (f,H) measured as a function
of ac frequency and magnetic field applied at θ = 90◦ for Iac =
0.3 mA and Idc = 2.2 mA. E, B, EP, and BP label directly ex-
cited edge mode, directly excited bulk mode, parametrically
driven edge mode, and parametrically driven bulk mode, re-
spectively. Dotted white lines highlight data at 6 GHz and
10 GHz employed for detailed analysis described in the text.

and electrical detection of spin waves is maximized at
θ = 90◦. Parametric excitation is a threshold effect and
thus Iac exceeding a threshold value Ith is required for
excitation of spin waves at zero temperature. At a finite
temperature, parametric drive amplifies the amplitude of
thermal spin waves below the threshold current. Analyti-
cal expressions for the dependence of the direct voltage V
on the drive current Iac are derived in Appendix VIII A
for the Iac � Ith and Iac � Ith limits:

V ∼

{(
2Idc +

√
2Iac

)
/(Ith − Iac)2 Iac � Ith(

2Idc +
√

2Iac

)√
I2
ac − I2

th Iac � Ith.
(1)

Spin pumping combined with inverse SHE in the Pt
layer can also give rise to an additional dc voltage term
[68, 121]. However, due to its second order in spin Hall
angle θSH, as well as the strong ellipticity of the oscil-
lation, this contribution is orders of magnitude smaller
than the signal given by Eq. (1) and is negligible [121].

III. EXPERIMENTAL RESULTS AND
ANALYSIS

Figure 3 shows ST-FMR spectra measured as a func-
tion of frequency and magnetic field applied at θ = 90◦,
with Iac = 0.3 mA and Idc = 2.2 mA. This Idc value is
just below the critical current for the excitation of auto-
oscillations of magnetization Ic, which means that the
effective damping is positive but close to zero. Multiple
peaks are observed in the spectra. A comparison to ST-
FMR data from a similar sample [85] lets us identify the

two lowest frequency peaks as directly excited edge and
bulk spin wave modes (marked as E and B, respectively)
[20]. The bulk mode amplitude rapidly decreases with
increasing hard-axis magnetic field H, as expected for a
direct mode excitation by an ac drive parallel to magne-
tization. In contrast, ST-FMR signal amplitude of the
directly excited edge mode is not small (0.02 mV) even
for the largest field of 1.5 kOe used in the measurement.
The direct drive can efficiently excite the edge mode be-
cause magnetization at the edge of the nanowire is not
fully saturated along the applied field due to the high
demagnetization field near the wire edges [20].

Two additional ST-FMR peaks are observed in Fig. 3
at frequencies close to twice the edge and bulk mode fre-
quencies. These peaks marked as EP and BP arise from
parametric excitation of the edge and bulk modes, re-
spectively. Figure 3 reveals that the parametrically ex-
cited bulk peak has a higher amplitude compared to the
directly excited bulk peak due to the high efficiency of
parametric excitation for magnetization parallel to the
magnetic field. This trend is not observed for the edge
mode because edge magnetization is not fully aligned
with the applied field direction.

Figure 4(a) illustrates the dependence of ST-FMR
spectra on the amplitude of the drive Iac at fixed dc cur-
rent, Idc = 1.8 mA, and fixed frequency, 6 GHz. Compar-
ing to Fig. 3, we identify the peak at 0.5 kOe as the para-
metrically excited edge mode, and the peak at 1.1 kOe
as the directly excited edge mode. Figures 4(b) and
4(c) show the magnitude of the peaks in Fig. 4(a) as
a function of Iac. As expected [11], the magnitude of
the ST-FMR peak for the directly excited edge mode
increases quadratically with the amplitude of the eigen-
mode, which is proportional to Iac, as shown in Fig. 4(b):

V ∝ I2
ac. (2)

In contrast, the parametrically excited edge mode
shows a threshold behavior in Iac with rapid growth of
the mode amplitude above a threshold drive value Ith, as
shown Fig. 4(c). We determine the value of Ith via fitting
the data in Fig. 4(c) to Eq. (1). The best fit in this figure
is shown by lines in both the Iac � Ith and Ith � Iac

regimes with the common Ith fitting parameter.
Figure 4(a) also shows that the linewidth of the ST-

FMR peak increases with increasing amplitude for the
parametrically excited mode. The half width at half max-
imum of the parametrically driven edge peak is 29.5 Oe
at the peak amplitude of 25 mΩ while it reaches 36.0 Oe
at the peak amplitude of 333 mΩ. This increase hap-
pens via peak broadening towards lower resonance field
(higher resonance frequency), which indicates that spin
waves with shorter wavelength along the wire are ex-
cited at higher drive power. Specifically, Fig. 4(a) re-
veals a series of peaks that appear at lower resonance
fields (higher frequencies) with increasing drive power.
These peaks result from confinement of the edge mode
to the active region along the wire length by the Oer-
sted field [85]. The threshold current for parametric ex-
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FIG. 4. Dependence of ST-FMR spectra on ac current. (a) ST-FMR spectra measured at five values of Iac, f = 6 GHz
and Idc = 1.8 mA (vertically offset for clarity). EP labels the parametrically exited edge mode while E labels the directly excited
mode. (b) Directly excited edge mode amplitude as a function of Iac and (c) parametrically excited edge mode amplitude as a
function of Iac. Lines are fits to Eq. (2) and Eq. (1), respectively.

citation of these higher frequency edge modes is higher
for higher mode frequency due to smaller ellipticity of
modes with shorter wavelengths [123]. Indeed, at the
highest ac current of excitation in Fig. 4(a) we observe
two smaller side peaks at magnetic fields below the main
peak at approximately at 500 Oe. These side peaks arise
from spin wave quantization along the wire length due
to confinement to the La = 1.8µm active region. We
assume pinning of these modes at the ends of the ac-
tive region due to the confining potential of the Oersted
field from direct bias current in the Pt layer [84, 85].
The pinning boundary conditions at the ends of the ac-
tive region give longitudinal wavelengths of the three
lowest frequency modes of 3.6µm, 1.8µm and 1.2µm
respectively. The magnetostatic Damon-Eshbach char-
acter of these modes with wave vectors along the wire
gives rise to a linear frequency-wavevector dispersion
[124]. Given this linear dispersion, we expect frequency-
equidistant mode separation δf , which is broadly con-
sistent with the data in Fig. 4(a). Indeed, δf in this
case may be estimated from the low wavevector form
of the magnetostatic Damon-Eshbach frequencies of a
film, i.e. f = G(

√
h(h+ 1) + (kb)/2

√
h(h+ 1)), with

G = 21.7 GHz and h = H/4πMs, where Ms is saturation
magnetization of our Py film. This gives a frequency sep-
aration between the neighboring length modes of δf ≈
0.18 GHz, which corresponds to a magnetic field separa-
tion between the length modes of δH ≈ 30 Oe: see Ap-
pendix VIII B for details. The experimentally observed
separation of these length modes is approximately δH ≈
28 and 41 Oe. Thus, given this quite close agreement,
and the approximate nature of our theoretical explana-
tion (the formula is valid for an infinite film, the effective
magnetic field is lowered close to the edges of the stripe
due to demagnetizing effects), we may say that the phys-
ical explanation of these different peaks is quantization
of modes along the longitudinal direction.

Figure 5 shows the dependence of ST-FMR signal on
Iac at 10 GHz and H applied at θ = 90◦. Four panels

FIG. 5. Effect of direct bias current on parametric ex-
citation of bulk and edge modes. ST-FMR signal mea-
sured at f = 10 GHz and four values of Idc : 1.3, 1.5, 1.7, and
2.2 mA as a function of Iac and H applied at θ = 90◦.

of this figure show the data taken at four values of Idc.
Parametrically excited bulk and edge mode signals are
observed near 0.7 kOe and 1 kOe, respectively. This fig-
ure clearly illustrates the threshold character of the para-
metric spin wave excitation and shows the dependence of
Ith on the magnetic field.

Figure 5 also reveals the effect of Idc on Ith. Anti-
damping spin Hall torque from Idc decreases the effec-
tive damping of the modes with increasing Idc, which
leads to a linear decrease of Ith with Idc. Figure 5 also
clearly shows that up to four bulk modes are excited
parametrically. Similar to the case of the edge modes in
Fig. 4(a), multiple bulk modes arise from spin wave con-
finement along the wire length within the active region
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FIG. 6. Tuning of parametric excitation by direct current. Parametric resonance peak voltage as a function of Iac
measured at 10 GHz for Idc ranging from 1.3 mA to 2.2 mA: (a) bulk mode and (b) edge mode. Lines are guides to the eye. (c)
Ith as a function of Idc measured for the bulk mode (circles) and edge mode (triangles). Lines are linear fits to the data.

of the nanowire as was demonstrated in Refs. [85, 88].
The threshold current for parametric excitation increases
with increasing wavelength of the bulk mode along the
wire length primarily due to decrease of the mode ellip-
ticity with increasing wavelength [123].

Figures 6(a), 6(b) and 6(c) reveal further details of the
dependence of Ith of the edge and bulk modes on Idc.
Figures 6(a) and 6(b) show the ST-FMR peak amplitude
for parametrically excited bulk and edge modes as a func-
tion of Iac for different values of Idc. We fit each trace to
Eq. (1) in order to extract quantitative values of Ith as a
function of Idc. Symbols in Fig. 6(c) show Ith versus Idc

for the lowest-frequency bulk and edge modes obtained
via this fitting procedure. The data in Fig. 6(c) reveal
that Ith(Idc) is a linear function with a negative slope,
as expected due to the linear dependence of the effective
damping on antidamping spin Hall torque.

A linear fit to the data in Fig. 6(c) allows us to precisely
determine the critical current Ic for excitation of auto-
oscillations of magnetization of the bulk and edge modes.
This critical current is obtained as an intercept of the lin-
ear fit with abscissa of the plot. We note that this method
of evaluation of Ic gives a fitting error of approximately
2.5% and thus is significantly more precise than meth-
ods based on fitting of the microwave power emitted by
the mode versus Idc to theoretical values [125], as is usu-
ally done for spin torque oscillators. This conventional
method lacks precision due to thermally-activated exci-
tation of the mode that smears out the auto-oscillation
threshold and may lead to errors in Ic as high as 15% [11].
Thus our measurements of parametric excitation of spin
wave modes demonstrate a precise method for measur-
ing the threshold current for auto-oscillatory dynamics
driven by anti-damping spin torques.

Extrapolation of the data in Fig. 6(c) to Idc = 0 yields
the values of Ith for the bulk and edge modes in the ab-
sence of spin Hall torque. The measured values of Ith
for the bulk and edge modes allow us to test models of
spin wave eigenmodes in the nanowire geometry. Indeed,
in the parallel pumping geometry studied here (Hac is
parallel to the nanowire magnetization) [123], Ith is di-
rectly proportional to the mode damping and inversely

proportional to the mode ellipticity [126]. Thus Ith di-
verges for vanishing mode ellipticity. In contrast, Ic,
which is also directly proportional to the mode damping,
decreases with decreasing mode ellipticity and remains
finite for vanishing ellipticity [127, 128]. Therefore, mea-
surements of Ith and Ic for a given mode allow one to
simultaneously determine both the mode ellipticity and
the mode damping. This information puts stringent con-
straints on spin wave eigenmode models, and thus our
measurements serve as sensitive tests of spin wave dy-
namics in the ferromagnetic nanowire geometry. As we
show in subsequent sections, our measurements of Ith
and Ic prove that the currently used model of bulk spin
wave modes provides adequate description of the exper-
iment while the edge mode models must be improved to
quantitatively describe the experimentally observed edge
eigenmodes.

IV. THEORETICAL METHODS

In this section, we derive an approximate theory of
spin wave eigenmodes in the nanowire geometry and cal-
culate the threshold drive values for parametric excita-
tion of these modes. We consider the nanowire geome-
try shown in Fig. 1(a), i.e. vertically stacked Py and Pt
wires of rectangular cross section, each 5 nm = 2b thick
and 190 nm = 2c wide. A cartesian coordinate system
used in our calculations is shown in Fig. 1(a). An in-
plane magnetic field H is applied along the x̂ direction
perpendicular to the nanowire axis, and ac and dc elec-
tric currents are applied in the ẑ direction along the wire
axis.

Our theory takes into account magnetic dilution at the
nanowire edges. In this model first proposed in Ref. [20],
the magnitude of the magnetization near the wire edge
depends on the distance from the edge, |M(x)| = Ms(x).
Specifically, Ms(x) is assumed to grow linearly from zero
at the edge to its maximum value M0 (saturation magne-
tization) over the edge dilution length L [85]. The model
assumes that the exchange constant of the ferromagnet
is proportional to M2

s (x). Details of a theoretical treat-
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ment of the dilution region within a continuum model
can be found in Ref. [129].

The dilution model was used in Ref. [85] to fit exper-
imentally measured in-plane and out-of-plane saturation
fields as well as the bulk mode eigenfrequency for the
Py/Pt nanowires studied here. This fitting procedure
gave M0 = 608 emu/cm3, L = 10 nm and Ks = 0.237

erg/cm2 [85], where Ks describes interfacial perpendic-
ular magnetic anisotropy in this system. We did not
consider in plane anisotropy, since Py is an isotropic low
anisotropy ferromagnet [130, 131] .

We determine the spin wave dynamics in our nanowire
system via solving the Landau-Lifshitz-Gilbert (LLG)
equation:

dM

dt
= −|γ|M ×Heff + |γ|4πJM × (M × x̂) + α

M

Ms
× dM

dt
. (3)

The first term in Eq. (3) describes precession of the mag-
netization around an effective magnetic field Heff , the
second term describes spin Hall torque, and the third
term describes magnetic damping parametrized by the
Gilbert damping constant α. We assume uniform mag-

netization over the 5 nm thickness of Py because it is sim-
ilar to the Py exchange length. The effective magnetic
field is a sum of several terms: a dc applied magnetic field
(H0x̂), the Oersted field produced by the electric current
in the Pt layer, the demagnetizing field Hdem(M), the
perpendicular anisotropy field, and the exchange field:

Heff = [H0 −H0
Oe −

√
2Hac

Oe cos(ωt)]x̂ + Hdem(M) +
2Ks

M0b
ms(x)myŷ +

D

ms(x)

∂

∂x
(m2

s(x)
∂m

∂x
) , (4)

where m = M/Ms(x) is the magnetization normalized
to its local magnitude Ms(x), ms(x) ≡ Ms(x)/M0, i.e.
with these definitions M = M0ms(x)m, |m| = 1. The

Oersted field [−H0
Oe −

√
2Hac

Oe cos(ωt)]x̂ is modeled as
uniform over the Py wire volume and it is generated by an
electric current in Pt: IPt(t) = Idc

Pt+
√

2Iac
Pt cos(ωt), where

Idc
Pt is direct current in Pt and Iac

Pt is rms ac current in
Pt. Details of the Oersted field model are discussed in the
Appendix (section VIII C). The perpendicular anisotropy
constant Ks includes contributions from both the top and
bottom interfaces of the Py film [85, 132]. D = 2A/M0 is
the exchange stiffness constant, and A = 5×10−7 erg/cm
is the exchange constant [85].

The magnetization dynamics is described by m(x, t)
through a complex field a(x, t) and its complex conjugate
a(x, t)∗ via:

mx = 1− aa∗,
my = −(i/2)(a− a∗)

√
2− aa∗,

mz = (1/2)(a+ a∗)
√

2− aa∗,
(5)

a representation that guarantees m2(x, t) = 1 every-
where. The Landau-Lifshitz equations of motion, includ-
ing damping and spin transfer, take a nearly Hamiltonian
form in these variables:

i
da

dτ
= (1− iα)

1

ms(x)

δU

δa∗
, (6)

i
da∗

dτ
= −(1 + iα)

1

ms(x)

δU∗

δa
. (7)

These equations are written in scaled variables U =
E/4πM2

0 = UC + iUSTT and τ = 4πM0|γ|t, where
E = EC + iESTT is the free energy of the system that
includes a conservative real part and an imaginary part
that describes the action of spin transfer torque.

The conservative part of the free energy EC consists of
a Zeeman term (including the Oersted field), the surface
anisotropy term, the exchange term, and the demagnetiz-
ing energy terms. The scaled energy terms approximated
to quadratic order in the amplitudes a, a∗ are given by
the following expressions:

UZ = −hx(τ)

∫
dV ms(x)(1− aa∗), (8)

UA = −ks
∫
dV m2

s(x)m2
y, (9)

UX ' d
∫
dV m2

s(x)∇a · ∇a∗, (10)

UD = −(1/8πM2
0 )

∫
dVHD(M) ·M , (11)

USTT = J

∫
dV m2

s(x)aa∗. (12)

In these expressions, hx(τ) = [H0 − H0
Oe −√

2Hac
Oe cos(Ωτ)]/4πM0, Ω = ω/4πM0|γ|, ks =

Ks/(4πM
2
0 b), and d = l2ex = D/4πM0 = A/2πM2

0 , where
the exchange length is lex = 4.6 nm. Expressions for the
exchange and dipolar energies expressed via a and a∗ are
derived in the Appendix (section VIII).

We choose the following boundary conditions at the
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nanowire edges:

a|x=±c = 0 . (13)

Also, notice that in our dilution model the magnetization
drops to zero at the edges. Then one can show that
Eq. (13) leads to:

∂My

∂x
|x=±c =

∂Mz

∂x
|x=±c = 0 , (14)

with Mx,y = Ms(x)mx,y.
A solution of the LLG equations for the complex spin

wave amplitude a(X, τ) that satisfies these boundary
conditions can be written as:

a(X, τ) =

N∑
l=1

[al(τ) cos(klX) + fl(τ) sin(qlX)], (15)

where X ≡ x/c, kl = (2l − 1)π/2, and ql = lπ.
Linearizing the equations of motion Eqs. (6,7) in the

absence of ac currents and using the ansatz Eq. (15), we
derive the following equations for the time evolution of
the coefficients al(t):

i

(
ȧ
ȧ∗

)
= M̃

(
a
a∗

)
, (16)

where the expression for the matrix M̃ is given by
Eq. (72) in the Appendix. In Eq. (16), a is a vector
(a0, . . . , aN )T . The equations for (f0, . . . , fN )T are sim-
ilar. Notice that due to the symmetry of the system, in
the linear approximation the equations of motion (6,7)
separate between even and odd modes, i.e. ȧl depends
only on aj ’s and a∗i ’s, and similarly for ḟl, i.e. it depends
only on fj ’s and f∗i ’s.

We seek solutions of Eq. (16) in the following form:

al(τ) = cl exp(−iΩτ − ντ) + dl exp(iΩτ − ντ) . (17)

Substitution of the ansatz Eq. (17) into Eq. (16) leads to
the following eigenvalue problem:

M̃ · v = δ̃v , (18)

where δ̃ = Ω − iν and vT = (cT , (d∗)T ). The eigen-
modes of this problem, including damping and spin trans-
fer torque, are the right eigenvectors of M̃ . A matrix W
is constructed with these eigenvectors as its columns, and
defines a change of variables to the amplitudes bn, b

∗
n of

the eigenmodes as follows:(
a
a∗

)
= W ·

(
b
b∗

)
. (19)

Thus, we obtain the following diagonal equations of mo-
tion for the amplitudes of each eigenmode:

i

(
ḃ

ḃ∗

)
= D̃ ·

(
b
b∗

)
, (20)

with D̃ = W−1M̃W being a diagonal matrix, whose
elements are the frequencies of the modes with associ-
ated imaginary parts as decay/growth rates, i.e. δ̃n =
Ωn − iνn. At a critical value of the direct current Ic,
the imaginary part of an eigenvalue may go to zero sig-
naling transition of the mode into the regime of auto-
oscillations.

For a non-zero ac current generating ac Oersted field
and ac spin transfer torque, the equations of motion (20)
are modified into:

i

(
ḃ

ḃ∗

)
= D̃ ·

(
b
b∗

)
+ Ñac(τ) ·

(
b
b∗

)
, (21)

where

Ñac(τ) = W−1

(
(1− iα)Hac(τ) 0

0 −(1 + iα)H∗ac(τ)

)
W,

(22)

Hac(τ) = −hac(τ)I + iJac(τ)Ã, (23)

hac(τ) = hac(ei2Ωpτ + e−i2Ωpτ )/
√

2, (24)

Jac(τ) = Jac(ei2Ωpτ + e−i2Ωpτ )/
√

2, (25)

where hac(τ) is the ac Oersted field normalized by 4πMs,
Jac(τ) the ac component of the spin transfer coefficient
J , which is proportional to the current, I is a unitary ma-
trix, Ã a matrix given by Eq. (60) of the Appendix. The
frequency of the ac current is written as Ω = 2Ωp with
application of these equations to the analysis of paramet-
ric spin wave excitation in mind.

A. Eigenmodes

The spin wave eigenmodes and corresponding eigen-
frequencies of the Py nanowire are solutions of Eq. (18)
with the dissipation and spin transfer torque terms set
to zero. Lines in Fig. 7 show the lowest-energy edge and
bulk mode frequencies given by Eq. (18) versus magnetic
field applied in the sample plane perpendicular to the
nanowire axis. Note that the edge dilution model is in-
cluded in our theory. Solid symbols in Fig. 7 show the de-
pendence of the lowest-energy bulk and edge modes mea-
sured by ST-FMR technique. Opens symbols in Fig. 7
show experimentally measured parametric resonance fre-
quencies of the lowest-energy edge and bulk modes.

Figure 7 reveals good agreement between the measured
and calculated values of eigenfrequencies for the lowest-
frequency bulk mode. The agreement for the edge mode
is substantially worse, indicating that the edge dilution
model does not fully capture magnetic properties of the
nanowire at the edges. Indeed, since the amplitude of the
edge mode is maximized near the wire edge, its frequency
is much more sensitive to the magnetic edge properties
than the bulk mode. Figure 7 shows that improvements
to the edge dilution model used are needed for quanti-
tative description of spin wave eigenmodes in thin-film
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nanomagnetic elements. We also note that calculations
without any edge dilution show much worse agreement
with the experiment for the edge eigenmodes, and to a
much lesser extent for the bulk eigenmodes.

Now we turn attention to the spatial profiles of the
lowest-energy modes. In the linear approximation, the
My,Mz components of the modes are given by:

My(X, τ) = Ms(X)
√

2Im(a) = Ms(X)[CI(X) cos(Ωτ)− SR(X) sin(Ωτ)], (26)

Mz(X, τ) = Ms(X)
√

2Re(a) = Ms(X)[CR(X) cos(Ωτ) + SI(X) sin(Ωτ)], (27)

where CR,I(X) and SR,I(X) represent the real (R) and
imaginary (I) parts of:

C(X) =
√

2

N∑
l=0

(cl + dl) cos((2l − 1)πX/2), (28)

S(X) =
√

2

N∑
l=0

(cl − dl) cos((2l − 1)πX/2). (29)

FIG. 7. Measured (solid symbols) and theoretically calcu-
lated (lines) frequencies of the lowest-energy edge (blue) and
bulk (red) eigenmodes. Open symbols show measured drive
frequencies for parametric excitation of the bulk and edge
eigenmodes.

Figure 8 shows spatial profiles of the lowest-
energy bulk and edge modes at an applied magnetic
field H0 = 642.5 Oe. We find CI(X) = 0 =
SI(X) for both types of modes, which means that
My(X, τ) = −Ms(X)SR(X) sin(Ωτ) and Mz(X, τ) =
Ms(X)CR(X) cos(Ωτ), i.e. they represent counter-
clockwise elliptic precession for both bulk and edge
modes. Figures 8(a) and 8(b) show the spatial pro-
files of the z component of the magnetization (i.e.

Ms(X)CR(X)) of the bulk and edge modes respectively.
As expected, the bulk mode shows amplitude maximum
in the center of the nanowire (X = 0) while the edge
mode has minimum amplitude at X = 0. The peak am-
plitude of the edge mode is not located exactly at the
wire edge due to the dilution. The small-amplitude wavi-
ness is due to the oscillating terms of the discrete spatial
Fourier series. In the case of abrupt spatial variations, as
for the edge modes, this effect is more pronounced. Fur-
thermore, the ellipticity of these oscillations is defined as
[123] ε = 1−|mmin|2/|mmax|2 (|mmin,max| corresponding
to minimum and maximum values at the elliptical axis),
which in our case becomes ε = 1 − |SR(X)|2/|CR(X)|2.
The ellipticity is approximately 0.75 close to the edges of
the stripe and 0.84 in the central part for the bulk mode,
while these values are approximately 0.88 and 0.98 re-
spectively for the edge mode, thus the edge mode theoret-
ically shows higher ellipticity than the bulk mode (these
values correspond to the modes of Fig. 8).

B. Parametric resonance

Here we present a simple model describing paramet-
ric excitation of spin wave eigenmodes in our nanowire
samples by a microwave current at approximately twice
the mode frequency. In our model, the frequency of the
microwave current is written as Ω = 2Ωp, where Ωp is
similar to the eigenmode frequency Ωn. In the equations
of motion Eq. (21), we focus on a single mode of index n
and neglect all non-resonant terms:

iḃn = δ̃nbn +Nnn∗b
∗
ne
−i2Ωpτ/

√
2 , (30)

where δ̃n = Ωn − iνn. A similar equation is written for
b∗n. We seek a solution of these equations in the following
form:

bn ' b0ne−iΩpτ−ντ . (31)

Inserting Eq. (31) and its complex conjugate into Eq. (30)
and a similar equation for b∗n leads to the following set of
homogeneous linear algebraic equations:

(
(Ωp − Ωn)− i(ν − νn) −Nnn∗/

√
2

−(Nnn∗)
∗/
√

2 (Ωp − Ωn) + i(ν − νn)

)(
b0n
b0∗n

)
= 0. (32)



10

FIG. 8. Spatial profiles of the dynamic magnetization component amplitude Mz(X) for the lowest-energy bulk (a) and edge
(b) modes calculated at H0 = 642.5 Oe.

The non-trivial solution of Eq. (32) is found from the zero
determinant condition, i.e.:

|ν − νn| =
√
|Nnn∗ |2/2− (Ωp − Ωn)2. (33)

A steady state oscillatory solution of Eq. (32), i.e. ν = 0,
is given by the following condition for |Nnn∗ |:

|νn| =
√
|Nnn∗ |2/2− (Ωp − Ωn)2. (34)

Since Nnn∗ is proportional to the ac current Iac, we can
write it as Nnn∗ = IacN̂nn∗ , where N̂nn∗ is a current-
independent coefficient. It is clear that the minimum ac
current that satisfies Eq. (34) is achieved for Ωp = Ωn,

when |νn| = |Nnn∗ |/
√

2. This gives us an expression
for the threshold ac current for excitation of parametric
resonance for a given mode:

Ith =
√

2|νn|/|N̂nn∗ |. (35)

The matrix element N̂nn∗ can be obtained from
Eq. (22). The ac current is given by Iac(τ) = Iac(ei2Ωpτ +

e−i2Ωpτ )/
√

2, and Eq. (22) can be rewritten to explicitly
factor out Iac(τ):

Ñac(τ) = Iac(τ)N̂ = Iac(τ)
[
W−1YW

]
= Iac(τ)

[
W−1

(
(1− iα)(−kI + iβÃ) 0

0 (1 + iα)(kI + iβÃ)

)
W

]
,

(36)

where we have used the fact that both the ac Oersted
field hac and ac spin transfer torque described by Jac are
proportional to Iac, and have written them as hac = kIac

and Jac = βIac (I is the unit matrix). The coefficient

N̂nn∗ determining the value of Ith is then the element
(nn∗) of the matrix N̂ in Eq. (36).

Thus, the expression of Eq. (35) for the threshold rms
ac current for parametric excitation Ith depends on two
quantities, |νn| and |N̂nn∗ |, that exhibit different depen-
dence on Idc: |νn| dependence on Idc is approximately

linear, while |N̂nn∗ | dependence on Idc is weak. This
explains the linear dependence of Ith on Idc observed ex-

perimentally in Fig. 6.
Indeed, using Eq. (72) from the Appendix for M̃ of

Eq. (16), we can write:

M̃ = M + iJ

(
Ã 0

0 Ã

)
'M + iJ1 , (37)

where M does not depend on spin torque, and 1 is a unit
matrix (of a double size compared to I). The last approxi-

mation in Eq. (37), that assumes a diagonal form of Ã and
that is valid for zero edge dilution, is a better approxima-
tion for the bulk modes than for the edge modes. Within
the latter approximation, an eigenvector of the matrix M
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with eigenvalue δn = Ωn − iν0
n is an eigenvector of the

matrix M̃ with eigenvalue δ̃n = Ωn−i(ν0
n−J). Here ν0

n is
the decay constant of mode n at zero spin transfer torque;
ν0
n is approximately independent of current (it depends

slightly on dc current through the effective applied mag-
netic field modified by the Oersted contribution). The

approximate expression δ̃n = Ωn − i(ν0
n − J) validates

linear behavior of νn ' ν0
n − J on Idc ∼ J . Furthermore,

from Eq. (36) we can show that |N̂nn∗ | is approximately
independent of Idc: the matrix Y depends on parame-
ters independent of Idc and the eigenvectors that form
the matrix W only weakly depend on Idc.

We note that the matrix Y in Eq. (36) depends on a
linear combination of the parameters defining the effi-
ciencies of the Oersted field (k) and antidamping spin

torque (β): (∓kI + iβÃ). This means that both the
Oersted field and spin torque contribute to the excita-
tion of parametric resonance on qualitatively equal foot-
ing. However, our theoretical analysis below reveals that
for the materials and geometry considered in this paper,
the contribution of the Oersted field to the excitation of
parametric resonance is dominant over that of spin Hall
torque. For example, if we artificially turn off the ac
Oersted field (k = 0) for the bulk mode at Idc = 0, we

calculate |N̂nn∗| = 0.0002, while if we artificially turn off

the ac spin transfer term (β = 0), |N̂nn∗| = 0.0040. This
implies via Eq. (35) that the ac Oersted field comprises
approximately 95% of the parametric resonance drive.

A qualitative explanation of the dominant role of the
Oersted field is given in Appendix VIII H where we de-
rive analytical expressions for a simple case of the uni-
form mode of precession in the limit of infinite Py/Pt
bilayer. This example allows us to qualitatively under-
stand why the ac Oersted field is the dominant paramet-
ric drive for the more general case of the Py/Pt bilayer
nanowire. The matrix Y in Eq. (36) can be separated
into a term proportional to k and a term proportional to
β. In this case the dominant contribution to the term
proportional to β can be estimated by taking α = 0
(the low damping limit α � 1) and Ã = I (zero edge
dilution, as there are no edges for the infinite bilayer).
Under these approximations, the term proportional to
β becomes iβW−1W = iβ1. When this purely imag-
inary and uniform diagonal matrix is used in the equa-
tion of motion Eq. (21), it does not generate any coupling
between b and b*: this implies infinite threshold or no
parametric excitation under the purely spin torque drive
in this approximation. Another consequence of the the-
oretical model that points in the direction of explaining
the preponderance of the Oersted field in parametric res-
onance in this experiment is that without dilution the
spin transfer torque term does not produce a coupling
between bn and b∗n for all modes. The latter happens be-
cause the expression for the imaginary energy associated
to spin transfer of Eq. (12) is proportional to

∑
l ala

∗
l , and

this “diagonal” property persists in terms of the variables
bn, b

∗
n, meaning that spin transfer does not couple bn with

b∗n, i.e. it does not contribute to parametric resonance ex-
citation.

V. DISCUSSION

In this section we compare the experimental results to
our theoretical predictions. In particular, we analyze the
experimentally measured linear dependence of Ith on Idc

for the lowest-frequency bulk and edge modes shown in
Fig. 6(c). Since both Ith and Ic are linear in the mode
damping constant α, the slope of Ith versus Idc is inde-
pendent of α and primarily characterizes ellipticity of the
mode. Indeed, at a fixed mode frequency, Ith decreases
with increasing mode ellipticity [126] while Ic increases
with increasing mode ellipticity [127, 128], which makes
the slope of the Ith(Idc) function a sensitive probe of the
mode ellipticity. We use this probe to test the theoretical
description of the bulk and edge spin wave eigenmodes.

We fit our theory to the experimentally measured in-
tercept points of the Ith(Idc) function with the abscissa
and ordinate: Ith(0) ≡ I0

th and Ith(Ic) = 0. The absolute
value of the slope of Ith(Idc) is then given by I0

th/Ic. The
fit is done via numerically solving Eqs. (18), (35) and (36)
with two fitting parameters: the mode damping α and
the spin Hall torque efficiency parameter β. In this nu-
merical solution we use the constant k = 0.00324 mA−1

characterizing the Oersted field strength (see Appendix
VIII C for the derivation of k). The fit is done for the ap-
plied magnetic field value H0 appropriate for the mode
frequency of 10 GHz in Fig. 6(c). The measured values of
H0 at 10 GHz are shown in Fig. 3: H0 = 642.5 Oe for the
bulk mode and H0 = 930 Oe for the edge mode.

We first fit our theory to the measured values of Ic =
2.37 mA and I0

th = 4.57 mA for the bulk mode (the slope
I0
th/Ic = 1.93). This fitting procedure gives α = 0.0353

and β = 0.0050 mA−1. This value of α is close to α =
0.031 directly measured by ST-FMR using the data in
Fig. 2(b). The value of β corresponds to the spin Hall
angle θSH = 0.045, which is consistent with previously
reported values in similar devices [133] (see Appendix
VIII I). The agreement between α and β obtained from
the fit and their measured/expected values validates our
theoretical model of the bulk spin wave modes and their
excitation by the parametric drive.

Using the same value of the damping parameter as for
the bulk mode, i.e. α = 0.0353, we fit our theory to the
experimentally measured value of Ic = 2.57 mA for the
edge mode using β as a single fitting parameter, which
gives β = 0.0043 mA−1. Using these values of α and β,
we then apply our theory to calculate the expected values
of I0

th = 4.21 mA and the slope I0
th/Ic = 1.64. A compari-

son to the data in Fig. 6(c) shows that these theoretically
predicted values are significantly smaller than those ob-
served experimentally: I0

th = 5.9 mA and I0
th/Ic = 2.3.

This discrepancy between theory and experiment can-
not be explained by a difference in α between the bulk
and the edge modes because the slope I0

th/Ic is indepen-
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dent of α. Our analysis thus shows that ellipticity of the
edge mode predicted by the theory is approximately 40%
higher than that inferred from the experimental data.

Our experimental observation of the lower than ex-
pected edge mode ellipticity points to deficiencies of the
edge dilution model we use. While the model is a sig-
nificant improvement over the spatially uniform magne-
tization model, it does not fully capture the edge mag-
netization dynamics. We thus conclude that further im-
provements of the edge dilution model are needed to ad-
equately describe magnetization at the edges of thin-film
nanomagnetic structures. We note that this problem is of
significant technological relevance because spin transfer
torque memory (STT-MRAM) cells are projected to scale
down to lateral dimensions below 10 nm in the near fu-
ture [28], which implies that its switching properties will
be dominated by the state and dynamics of magnetiza-
tion at the element edges. The majority of the free layer
volume of the 10 nm STT-MRAM will be affected by the
modified magnetic properties at the free layer edge and
thus strong effects of the edge modification are expected.

It is important to understand whether the discrepancy
between theory and experiment is a result of mathemati-
cal approximations employed in the model or has its roots
in the physical properties of the magnetic material at the
magnetic film edge. For example, can the observed dis-
crepancy be a result of the boundary conditions for dy-
namic magnetization chosen in the model? In the model,
we use the boundary conditions given by Eq. (13) so that
the dynamic field a(x, t) is zero at the edges, which leads
to free boundary conditions for My and Mz [Eq. (14)].
To understand the impact of these boundary conditions,
we repeated the calculations assuming that the dynamic
field a(x, t) has zero derivative at the edges. These cal-
culations show negligible impact on I0

th/Ic for the bulk
mode, and the change in I0

th/Ic for the edge mode is much
too small to explain the discrepancy between theory and
experiment. The smallness of the impact of the boundary
conditions for a(x, t) on the simulation results is reason-
able because the edge dilution model used imposes the
magnetization to be zero exactly at the edge, and thus
boundary condition for the field a(x, t) have little impact
on the magnetization dynamics.

We also note that complete saturation of magnetiza-
tion in a transversely magnetized nanowire of a rectan-
gular crossection is not achievable at any field due to
spatially inhomogeneous character of the demagnetizing
field near the wire edges. This incomplete saturation can
increase both I0

th and Ic and its impact on the conclusions
of this paper should be discussed. Indeed, both I0

th and
Ic vary approximately as cos(δ)−1, where δ is an average
deviation angle of magnetization from the x-axis over the
mode volume. This implies that the ratio I0

th/Ic, sensi-
tive to the mode ellipticity, is nearly independent on the
degree of magnetization saturation. We thus conclude
that the incomplete saturation of magnetization at the
wire edges has minimal impact on I0

th/Ic – our probe of

the edge mode ellipticity.

The unexpectedly low ellipticity of the edge mode seen
in the experiment is likely to have a physical origin. For
example, it can be explained by magnetic anisotropy at
the wire edges. Two types of edge magnetic anisotropy
can result in decreased ellipticity of the edge mode. First,
the perpendicular magnetic anisotropy Ks at the edge
can be enhanced due to Py oxidation at the wire edges
[81] or may be a result of intermixing of Py and Pt in-
duced by ion milling in the nanowire fabrication process.
This type of anisotropy would indeed decrease the edge
mode ellipticity but it would also decrease the mode fre-
quency, bringing it farther away from that seen in the
experiment.

Alternatively, a surface magnetic anisotropy with an
easy axis perpendicular to the nanowire edge (along the
x-axis in Fig. 1(a)) [132] can reduce the edge mode el-
lipticity. Indeed, a positive x-axis uniaxial anisotropy in-
creases the frequency of magnetization precession around
the x axis. Furthermore, a pure uniaxial anisotropy
collinear with the magnetization precession axis pro-
motes circular precession and thereby decreases the mode
ellipticity. Therefore, such anisotropy can both reduce
the mode ellipticity and increase the mode frequency
in agreement with our experimental data. This type of
anisotropy can only be non-zero in a modified edge di-
lution model where magnetization is not reduced to zero
at the wire edge.

Another possible explanation of the observed reduced
edge mode ellipticity is nanowire edge roughness. It has
been previously shown [19] that edge roughness signifi-
cantly reduces the edge saturation field due to dipolar
interactions via the so-called lateral magnetic anisotropy
[19], and thus edge roughness is expected to increase the
edge mode frequency. Dipolar interactions arising from
edge roughness are also expected to decrease the edge
mode ellipticity and thus the edge roughness model can
potentially explain all our data. Therefore, development
of a mathematical model of edge mode dynamics in the
presence of edge roughness is a promising future direction
of research.

We believe that definitive understanding of magnetic
properties at the edge of magnetic thin-film elements re-
quires direct imaging of structural and magnetic proper-
ties of the edge with atomic resolution, which presents a
significant technical challenge. Until such full quantita-
tive characterization is achieved, our results on elliptic-
ity of the edge mode via studies of parametric resonance
controlled by antidamping spin Hall torque can serve as
a test for future improved models of magnetic edge mod-
ification [134, 135]. The novelty of our work compared to
prior studies of parametric resonance in magnetic nanos-
tructures [91, 98, 99, 125, 126, 136, 137] can be summa-
rized as: (i) first measurement and quantitative theoret-
ical understanding of parametric resonance of the edge
mode in the nanowire geometry, (ii) development of an-
alytical theory of parametric resonance of spin waves in
ferromagnetic nanowires and (iii) probing ellipticity of
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the edge modes via comparison of our theory to our ex-
perimental measurements of the edge-mode parametric
excitation.

VI. CONCLUSIONS

In summary, we have demonstrated parametric exci-
tation of bulk and edge spin wave modes in transversely
magnetized Pt/Py bilayer nanowires by a microwave cur-
rent. The threshold current for the parametric excitation
is tunable by direct current bias via the antidamping spin
Hall torque, and analysis of the threshold current depen-
dence on spin Hall torque allows us to probe ellipticity
of the spin wave modes.

We have developed an analytical theory of the spin
wave mode spectrum in the nanowire geometry and para-
metric excitation of these spin waves by microwave cur-
rent. Our theory takes into account a model describ-
ing dilution of magnetization of Py near the wide edges.
Comparison between this theory and experiment shows
that our theory provides accurate quantitative descrip-
tion of the bulk spin wave mode properties, including
their frequency and ellipticity.

In contrast, the theory significantly underestimates the
frequency of the edge spin wave modes and overesti-
mates their ellipticity. This suggest that the edge di-
lution model used here does not completely capture the
magnetic properties of the edge and further refinements
of the model are needed to achieve a quantitative descrip-
tion of magnetization dynamics at edges of thin magnetic
elements. We have identified inclusion of edge roughness
effects as a promising direction for future improvements
of the model describing magnetization dynamics at edges
of thin magnetic elements. Indeed, edge roughness is ex-
pected to increase the edge mode frequency and decrease
its ellipticity via the lateral magnetic anisotropy [19],
bringing both of these quantities closer to the experimen-
tally observed values. Further quantitative studies are
needed to test if lateral magnetic anisotropy completely
describes magnetization dynamics at the nanowire edges.
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VIII. APPENDIX

A. ST-FMR signal:

FIG. 9. Elliptical magnetization precession cone around in-
plane magnetic field H applied at angle θ with respect to the
wire axis (z-axis). The precession cone is characterized by the
major and minor axis cone angles α1 and β1.

The direct voltage V across the sample subjected to a
microwave and a direct current consists of three terms:

V = Idc ·Rdc + Idc∆Rac + Umix. (38)

The first term proportional to Idc is independent of mag-
netization dynamics and is simply given by the equi-
librium sample resistance Rdc. The second term is
the photo-resistance contribution [120], which is pro-
portional to Idc and time-averaged change in sample
resistance ∆Rac induced by magnetization precession.
The third term called photo-voltage [120] is the rec-
tified voltage arising from mixing of resistance oscil-
lations and microwave current. The direct voltage V
can be calculated as the time-averaged 〈...〉 total volt-
age: V = 〈U(t)〉 = 〈R(t) · I(t)〉, where U(t), R(t), and

I(t) = Idc +
√

2Iac cos(ωt) are the time dependent volt-
age, resistance, and current.

Here we derive the direct voltage signal in the config-
uration of a Py nanowire for both direct excitation and
parametric excitation following the approach outlined in
Ref. [120]. The time-dependent resistance is given by
R(t) = R0 +RA cos2 φ(t), where RA is the magnitude of
AMR, φ(t) is the instantaneous angle between M and



14

the current direction ẑ, as shown in Fig. 9:

cos φ(t) = cos α(t) cos β(t), (39)

where α(t) = θ+α1 cos(ωt−ψ), is the angle between the
projection of magnetization onto the xz plane and z axis
and β(t) = −β1 sin(ωt−ψ) is the tilt angle of magnetiza-
tion out of the xz plane, as illustrated in Fig. 9. In these
expressions, ψ is the phase shift between the microwave
drive and magnetization oscillations, α1 is the in-plane
magnetization oscillation amplitude while β1 is the out-
of-plane oscillation amplitude. Using these expressions
in Eq. (39), we expand cos2 φ(t) to second order in α1

and β1 [120]:

cos2 φ(t) = cos2 θ − α1 sin 2θ cos(ωt− ψ)

− α2
1 cos 2θ cos2(ωt− ψ)

− β2
1 cos2 θ sin2(ωt− ψ). (40)

For direct (linear) excitation of a spin wave eigenmode
by a microwave current at the eigenmode frequency ω,
the time-dependent voltage across the sample Ulin(t) is:

Ulin(t) = [R0 +RA cos2 φ(t)][Idc +
√

2Iac cos(ωt)].

(41)

Using Eq. (40) in this latter expression and calculating
the time average of Ulin(t), we obtain the direct voltage
Vlin across the sample:

Vlin = Idc(R0 +RA cos2 θ) (42)

−1

2
IdcRA(α2

1 cos 2θ + β2
1 cos2 θ)

−
√

2

2
IacRAα1 sin 2θ cos(ψ),

where the first term Idc(R0 + RA cos2 θ) is the equi-
librium direct voltage independent of spin wave excita-
tion, the second term − 1

2IdcRA(α2
1 cos 2θ + β2

1 cos2 θ) is
the photo-resistance term proportional to Idc, and the

last term −
√

2
2 IacRAα1 sin 2θ cos(ψ) is the photo-voltage

term proportional to Iac.
For parametric excitation of a spin wave eigenmode,

we use a microwave current at twice the eigenmode fre-
quency: I(t) = Idc +

√
2Iac cos(2ωt). Therefore, the

time-dependent voltage across the sample Upar(t) is

Upar(t) = [R0 +RA cos2 φ(t)][Idc +
√

2Iac cos(2ωt)].

Using Eq. (40) in this expression and calculating the
time average of Upar(t), we obtain the direct voltage Vpar

across the sample:

Vpar = Idc(R0 +RA cos2 θ) (43)

−1

2
IdcRA(α2

1 cos 2θ + β2
1 cos2 θ)

−
√

2

4
IacRA(α2

1 cos 2θ + β2
1 cos2 θ) cos(2ψ).

In the experimental configuration used in this work
θ = π/2, and thus Vlin and Vpar can be further simplified:

Vlin = IdcR0 +
1

2
IdcRAα

2
1, (44)

Vpar = IdcR0 +
1

2
IdcRAα

2
1 +

√
2

4
IacRAα

2
1 cos(2ψ). (45)

For our device geometry, the phase shift ψ ≈ 0. There-
fore, we can simplify Eq. (45) by setting ψ = 0.

We can further use results of Ref. [126], where expres-
sions for current-driven parametric resonance amplitude
∝ α1 and power ∝ α2

1 were derived in the limits of the mi-
crowave drive amplitude (Iac) well below and well above
the threshold drive for parametric excitation (Ith):

α2
1 =

{
A/(Iac − Ith)2 Iac � Ith
B
√
I2
ac − I2

th Iac � Ith,
(46)

where A and B are constants. In Eq. (46), the ampli-
tude of precession below Ith is not zero due to thermally
assisted excitation of the spin wave eigenmode [126].

Using Eq. (46) in Eq. (45), we calculate the expression
for direct voltage arising from parametric excitation of a
spin wave eigenmode:

Vpar ∼

{(
2Idc +

√
2Iac

)
/(Ith − Iac)2 Iac � Ith(

2Idc +
√

2Iac

)√
I2
ac − I2

th Iac � Ith.
(47)

B. Longitudinal modes:

Here we estimate the differences in frequencies, and as-
sociated differences in applied magnetic field for measure-
ments at constant frequency, of edge modes which would
have different longitudinal wavelengths, in reference to
the experimental results of Figure 4(a). These estimates
are based on the differences in frequencies of magneto-
static Damon-Eshbach surface modes [124] of ferromag-
netic films of thickness 2b, whose direction of propagation
is perpendicular to the applied magnetic field (as is the
case of our Py stripe). In our notation, the frequencies of
the Damon-Eshbach surface modes in the limit of small
longitudinal wavevector k are given by (ω = 2πf):

f ' G[
√
h(h+ 1) + kb/2

√
h(h+ 1)] , (48)

with h = H0/4πMs representing the applied mag-
netic field (in our following estimates we take H0 =
500 Oe, corresponding to Figure 4(a)), and G =
(|γPy|/2π)4πMs = 21.7 GHz [85]. As discussed in
the main text, due to pinning at the edges of the
active region, the smallest wavevectors correspond to
kj = 2π/[3.6, 1.8, 1.2]µm−1, j = 1, 2, 3. The corre-
sponding frequencies are (except for the constant term

G
√
h(h+ 1)) f1 = 0.18 GHz, f2 = 0.36 GHz and f3 =
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0.54 GHz. Thus, the differences in frequencies of these
longitudinal modes are f2 − f1 = 0.18 GHz = f3 − f2,
at a fixed applied magnetic field. Approximating the
slope of the experimental frequency vs. magnetic field of
Fig. 3 as ∆f/∆H ' 3 GHz/500 Oe, then the associated
magnetic field differences between these modes (at fixed
frequency as in Fig. 4) are H1 −H2 ' 30 Oe' H2 −H3.

C. Oersted field calculation:

If I is the total current applied to the Py/Pt bi-
layer, then the current flowing in the Pt layer IPt can
be calculated using the parallel resistance model: 1/R =
1/RPt + 1/RPy, which gives:

IPt = I/(1 +RPt/RPy). (49)

Using the measured resistivity of Pt and Py films [84]:
ρPt = 21.9µΩ cm and ρPy = 65.2µΩ cm, we estimate
RPt ' RPy/3, i.e. IPt ' (3/4)I. The Oersted field in
Py is generated by the current in Pt (the current in Py
produces magnetic fields in Py that have null average over
the Py layer thickness). We approximate the Oersted
field applied to Py as due to an infinite sheet of current
corresponding to the net current flowing through the Pt
layer thickness in our experiment. In this approximation,
Ampere’s law (MKS units) gives:

HOe = jPt∆/2 = IPt/(2w) A m−1, (50)

with ∆ the thickness of Pt and w the width of the
nanowire (in Gaussian units HOe = 2πIPt/(103 w) Oe,
with w = 2c). Then, the Oersted field due to Pt in Py is
given byHOe = IPt/(2w) = IPt(A)/(2×190 nm) = 2.63×
103IPt(mA) A m−1 = 2.63 × 103(4π/103)IPt(mA) Oe =
33 IPt(mA) Oe. This leads to hOe = HOe/4πMs =

k̃IPt = kI, thus k = 33(3/4)/(4πMs) = 3.24 ×
10−3 mA−1.

D. Magnetization dynamics:

The following terms contribute to the linear magneti-
zation dynamics of Eq. (6):

1

ms(x)

δUZ
δa∗

= hx(τ)a(x), (51)

1

ms(x)

δUA
δa∗

= −ksms(x)(a(x)− a∗(x)), (52)

1

ms(x)

δUX
δa∗

= − d

ms(x)
∇ · [m2

s(x)∇a(x)], (53)

1

ms(x)

δUD
δa∗

= −
∫ 1

−1

dX ′ms(X
′)(a(X ′)− a∗(X ′))

× ln

(
|X −X ′|√

(X −X ′)2 + (2p)2

)
/4πp

−HV (X)a(x), (54)

1

ms(x)

δUSTT
δa∗

= Jms(x)a(x), (55)

with p = b/c, and 〈HD(Ms(x)x̂)〉 = −4πM0HV (x)x̂
(〈...〉 means average over the thickness).

Now, the coefficients of the expansion Eq. (15) for the
dynamic variable a(X, τ), that satisfy the boundary con-
dition a(X, τ) = 0, at the edges are given by:

al(τ) =
2

V

∫
dV cos((2l − 1)πX/2)a(X, τ),

fl(τ) =
2

V

∫
dV sin(lπX)a(X, τ). (56)

According to Eqs. (6), (15), (56), one has the following
equations of motion for the time evolution of the coeffi-
cients al(τ), bl(τ):

i
dal
dτ

=
2

V
(1− iα)

∫
dV

cos((2l − 1)πX/2)

ms(X)

δU

δa∗
, (57)

i
dfl
dτ

=
2

V
(1− iα)

∫
dV

sin(lπX)

ms(X)

δU

δa∗
. (58)

Due to symmetry considerations the previous equations
separate, i.e. ȧl depends only on aj ’s and a∗i ’s, and sim-

ilarly for ḟl, i.e. it depends only on fj ’s and f∗i ’s.

1. Conservative equations of motion:

In the conservative case Eq. (57) for ȧl becomes:

iȧl = hx(τ)al − ks
∑
n

Ãln(an − a∗n)

+
d

c2

∑
n

Blnan

−
∑
n

Cln
4πp

(an − a∗n)−
∑
n

Dlnan, (59)
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with

Ãln =

∫ 1

−1

dXms(X) cos(klX) cos(knX), (60)

Bln = kn

∫ 1

−1

dX
cos(klX)

ms(X)

d

dX
[m2

s(X) sin(knX)], (61)

Cln =

∫ 1

−1

dX

∫ 1

−1

dX ′ms(X
′) cos(klX) cos(knX

′)

× ln

(
|X −X ′|√

(X −X ′)2 + (2p)2

)
, (62)

Dln =

∫ 1

−1

dXHV (X) cos(klX) cos(knX), (63)

with kl = (2l − 1)π/2, and similarly for kn.
Expressions for these coefficients are given in the sec-

tion VIII G of this Appendix for the case in which dilution
is assumed to occur linearly at a scale L from each of the
edges of the sample.

If one looks for solutions of Eq. (59) of the type:

al(τ) = cl exp(−iΩτ) + dl exp(iΩτ) (64)

i.e.

a∗l (τ) = d∗l exp(−iΩτ) + c∗l exp(iΩτ), (65)

then the equations of motion (59) lead to the eigenvalue
problem Mv = Ωv (assuming hx independent of time),
with the eigenvector vT = (c, d∗) = (cn, d

∗
n) (shorthand

notation for an extended vector), and the matrix M given
as:

M =

(
R S
−S∗ −R∗

)
=

(
R S
−S −R

)
, (66)

with

Rln = hxδln − ksÃln +
d

c2
Bln

−Dln −
Cln
4πp

, (67)

Sln = ksÃln +
Cln
4πp

. (68)

E. Linear dynamics including spin transfer torque
and damping, dc current:

In the presence of damping and spin transfer torque the
equations of motion (57) take the following form (U =
UC + iUSTT is imaginary in this case):

iȧl = (1− iα)
∑
n

[(Rln + iJÃln)an + Slna
∗
n] , (69)

with Ãln, Rln, Sln the matrices given in Eqs. (60,67,68).
Searching for solutions of the type:

al(τ) = cl exp(−iΩτ − ντ) + dl exp(iΩτ − ντ) (70)

i.e.

a∗l (τ) = d∗l exp(−iΩτ − ντ) + c∗l exp(iΩτ − ντ) , (71)

the equations of motion (69) and their complex conju-

gates, become the eigenvalue problem M̃v = δ̃v, with

M̃ =

(
(1− iα)R̃ (1− iα)S

−(1 + iα)S∗ −(1 + iα)R̃∗

)
, (72)

with R̃ = R + iJÃ, δ̃ = Ω − iν, and vT = (cT , (d∗)T ).
The eigenmodes of this problem that includes damping
and spin transfer torque, may be found by finding the
right eigenvectors of M̃ . These eigenvectors will be the
columns of a matrix W that defines a change of variables
to the amplitudes of the eigenmodes bl, b

∗
l , as follows:(

a
a∗

)
= W

(
b
b∗

)
. (73)

The equations of motion (69) (and their complex conju-
gates) may be written as:

i

(
ȧ
ȧ∗

)
= M̃

(
a
a∗

)
. (74)

Multiplying this equation on the left by W−1 (the left

eigenvectors of M̃) one gets the diagonal equation of mo-
tion for the amplitudes of the eigenmodes:

i

(
ḃ

ḃ∗

)
= D̃

(
b
b∗

)
, (75)

with D̃ = W−1M̃W a diagonal matrix, whose elements
are the frequencies of the modes with associated imagi-
nary parts as decay/growth rates.

F. Dipolar energy of a transversely magnetized
stripe:

The scaled dipolar energy is given by:

UD = − 1

8πM2
0

∫
dVHD(M) ·M

= − 1

8πM2
0

∫
dV 〈HD(M)〉 ·M , (76)

where 〈...〉 represents average over the thickness: the sec-
ond equality follows since in our model the magnetization
does not vary over the thickness. Now HD(Mzẑ) = 0
since Mzẑ does not have surface or volume charges asso-
ciated. According to Ref. [86] (p = b/c):

〈HD(Myŷ)〉y(X) =

−1

p

∫ 1

−1

dX ′My(X ′) ln(1 + (2p/(X −X ′))2) , (77)
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with X ≡ x/c. Also,

〈HD(Mxx̂)〉 = 〈HD(Ms(X)x̂)〉
−〈HD(Ms(X)aa∗x̂)〉 , (78)

with 〈HD(Ms(X)x̂)〉(X) ≡ −4πM0HV (X)x̂, and only
due to magnetic volume charges (it is assumed that at
the edges of the stripe the magnetization goes to zero).

Using the reciprocity theorem (
∫
V
m1 · HD(m2) =∫

V
m2 ·HD(m1) for any two magnetization configura-

tions), and using the nonzero components of the average
demagnetizing field, one obtains the following expression
for the demagnetizing energy:

UD = − V

8πp

∫ 1

−1

dX

∫ 1

−1

dX ′ms(X)ms(X
′)

×my(X)my(X ′) ln(
|X −X ′|√

(X −X ′)2 + (2p)2
)

−V
2

∫ 1

−1

dXHV (X)ms(X)aa∗

− 1

8π

∫
dV ms(X)〈Hx

D(ms(X)aa∗x̂)〉aa∗ .

(79)

Using that my = −(i/2)(a − a∗)
√

2− aa∗, to quadratic
order in a, a∗ the previous expression for the demagne-
tizing energy is approximated as:

U
(2)
D =

V

16πp

∫ 1

−1

dX

∫ 1

−1

dX ′ms(X)ms(X
′)

× (a(X)− a∗(X))(a(X ′)− a∗(X ′))

× ln

(
|X −X ′|√

(X −X ′)2 + (2p)2

)

−V
2

∫ 1

−1

dXHV (X)ms(X)a(X)a∗(X) , (80)

meaning that

δU
(2)
D

δa∗
= −ms(X)

4πp

∫ 1

−1

dX ′ms(X
′)

× (a(X ′)− a∗(X ′)) ln

(
|X −X ′|√

(X −X ′)2 + (2p)2

)
−HV (X)ms(X)a(X) . (81)

Going back to HV (x), to simplify the analysis we take
first only the right edge region, and its contribution to
HV (x)x̂ would be given by (origin taken at the right edge
(r), and L is taken as the length of dilution):

Hr
V (x) = − 1

4πM0b

∫ 0

−L
dx′(−∂Ms(x

′)

∂x′
)

×
∫ b

−b
dy

∫ b

−b
dy′

(x− x′)
(y − y′)2 + (x− x′)2

.

(82)

The volume magnetic charge density at the right edge
would be (−M ′s(x)) = ν, with ν = M0/L a constant,
then:

Hr
V (X) = − cν

4πM0

∫ L/c

0

dX ′

×
∫ 1

−1

dY

∫ 1

−1

dY ′
(X +X ′)/p

(Y − Y ′)2 + ((X +X ′)/p)2

= − bν

8πM0

∫ 1

−1

dY

∫ 1

−1

dY ′

× ln[(Y − Y ′)2 + ((X +X ′)/p)2]
L/c
0 .

(83)

Introducing q = L/b, and with the change of variables
V = Y − Y ′ and U = Y + Y ′, one obtains:

Hr
V (X) = − 1

4πq

∫ 2

0

dV (2− V )

× [ln(V 2 + ((L/c+X)/p)2)− ln(V 2 + (X/p)2)].

(84)

and∫ 2

0

dV (2− V ) ln(V 2 + w2)

= w2 ln |w| − 6 + (4− w2) ln
√

4 + w2 + 4w tan−1(2/w).

(85)

Putting all this together in the experimental geometry,
with an origin at the center of the stripe:

−4πqHV (X) = (q + (X − 1)/p)2 ln |q + (X − 1)/p|

+ (4− (q +
(X − 1)

p
)2) ln

√
4 + (q +

(X − 1)

p
)2

+ 4(q + (X − 1)/p) tan−1(
2

q + (X − 1)/p
)

− ((X − 1)/p)2 ln |(X − 1)/p|

− (4− ((X − 1)/p)2) ln
√

4 + ((X − 1)/p)2

− 4((X − 1)/p) tan−1(
2p

(X − 1)
)

+ (q − (X + 1)/p)2 ln |q − (X + 1)/p|

+ (4− (q − (X + 1)

p
)2) ln

√
4 + (q − (X + 1)

p
)2

+ 4(q − (X + 1)/p) tan−1(
2

q − (X + 1)/p
)

− ((X + 1)/p)2 ln |(X + 1)/p|

− (4− ((X + 1)/p)2) ln
√

4 + ((X + 1)/p)2

− 4((X + 1)/p) tan−1(
2p

(X + 1)
). (86)
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G. Coefficients of equations of motion:

In this section we present in more detail the determi-
nation of the coefficients (60-63) appearing in the equa-
tions of motion (59). Taking that the region of dilution
occurs within a distance L from each edge, and that it
corresponds to a linear growth of the material from the
edge, we define r = (c−L)/c. Also kl = (2l− 1)π/2 and
similarly for kn. Then,

Ãln =

∫ 1

−1

dXms(X) cos(klX) cos(knX)

=
1

(1− r)
{cos((kl + kn)r)− cos((kl + kn)

(kl + kn)2

+
cos((kl − kn)r)− cos(kl − kn)

(kl − kn)2
}, (87)

Ãnn =
1

4
{2(1 + r) +

1

(1− r)k2
n

[cos(2knr)− cos(2kn)]},

(88)

Bln = kn

∫ 1

−1

dX
cos(klX)

ms(X)

d

dX
[m2

s(X) sin(knX)]

= k2
nAln

− 2kn
(1− r)

{cos((kl + kn)r)− cos(kl + kn)

(kl + kn)

−cos((kl − kn)r)− cos(kl − kn)

(kl − kn)
}, (89)

Bnn = Annk
2
n +

cos(2kn)− cos(2knr)

(1− r)
, (90)

Cln =

∫ 1

−1

dX

∫ 1

−1

dX ′ms(X
′) cos(klX)

× cos(knX
′) ln(

|X −X ′|√
(X −X ′)2 + (2p)2

)

= 2

∫ 1

−1

dX

∫ 1

0

dX ′ms(X
′) cos(klX)

× cos(knX
′) ln(

|X −X ′|√
(X −X ′)2 + (2p)2

)

=

∫
dV

∫
dUms((U − V )/2) ln(

|V |√
V 2 + (2p)2

)

×{cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2)

+ cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2)

− sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2)

− sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)},
(91)

where

U = X +X ′ , V = X −X ′,
X = (U + V )/2 , X ′ = (U − V )/2,

(92)

ms(X
′) =

{
1 : 0 ≤ X ′ = U−V

2 ≤ r
1−X′
1−r = 2+V−U

2(1−r) : r ≤ X ′ ≤ 1.

(93)
Also,

2

∫ 1

−1

dX

∫ 1

0

dX ′

=

∫ −1−r

−2

dV

∫ V+2

−V−2

dU +

∫ 0

−1−r
dV

∫ V+2

V+2r

dU

+

∫ 1−r

0

dV

∫ −V+2

V+2r

dU +

∫ −1

−1−r
dV

∫ V+2r

−V−2

dU

+

∫ 1−r

−1

dV

∫ V+2r

V

dU +

∫ 1

1−r
dV

∫ −V+2

V

dU

, (94)

which has been separated according to the regions where
ms(X

′) is not equal to one (first three), or equal to one
(second one).

Also:∫
dU cos(lπU/2) cos(nπU/2) =

sin((kl + kn)U/2)

(kl + kn)
+

sin((kl − kn)U/2)

(kl − kn)
,∫

dU sin(klU/2) cos(knU/2) =

−cos((kl + kn)U/2)

(kl + kn)
− cos((kl − kn)U/2)

(kl − kn)
,∫

dU sin(klU/2) sin(knU/2) =

− sin((kl + kn)U/2)

(kl + kn)
+

sin((kl − kn)U/2)

(kl − kn)
,∫

dUU cos(klU/2) cos(knU/2) =

U{ sin((kl + kn)U/2)

(kl + kn)
+

sin((kl − kn)U/2)

(kl − kn)
}

+2
cos((kl + kn)U/2)

(kl + kn)2
+ 2

cos((kl − kn)U/2)

(kl − kn)2
,∫

dUU sin(klU/2) cos(knU/2) =

−U{cos((kl + kn)U/2)

(kl + kn)
+

cos((kl − kn)U/2)

(kl − kn)
}

+2
sin((kl + kn)U/2)

(kl + kn)2
+ 2

sin((kl − kn)U/2)

(kl − kn)2
,∫

dUU sin(klU/2) sin(knU/2) =

U{− sin((kl + kn)U/2)

(kl + kn)
+

sin((kl − kn)U/2)

(kl − kn)
}

−2
cos((kl + kn)U/2)

(kl + kn)2
+ 2

cos((kl − kn)U/2)

(kl − kn)2
.

(95)
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From these equations (95) one deduces:∫
dU{

cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2)

+ cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2)

− sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2)

− sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)} ,
= sin((kl + kn)U/2) cos((kl − kn)V/2)/(kl + kn)

+ sin((kl − kn)U/2) cos((kl + kn)V/2)/(kl − kn)

+ cos((kl + kn)U/2) sin((kl − kn)V/2)/(kl + kn)

+ cos((kl − kn)U/2) sin((kl + kn)V/2)/(kl − kn)}
= sin[(kl + kn)U/2 + (kl − kn)V/2]/(kl + kn)

+ sin[(kl − kn)U/2 + (kl + kn)V/2]/(kl − kn)

≡ au(U, V, kl, kn) . (96)

Also, for kl = kn = k:

au(U, V, k, k) ≡ aue(U, V, k) =
U

2
cos(kV ) +

sin(kU)

2k
.

(97)
Similarly,∫

dUU{

cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2)

+ cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2)

− sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2)

− sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)}
= Uau(U, V, kl, kn)

+2 cos((kl + kn)U/2) cos((kl − kn)V/2)/(kl + kn)2

+2 cos((kl − kn)U/2) cos((kl + kn)V/2)/(kl − kn)2

−2 sin((kl + kn)U/2) sin((kl − kn)V/2)/(kl + kn)2

−2 sin((kl − kn)U/2) sin((kl + kn)V/2)/(kl − kn)2

= Uau(U, V, kl, kn)

+2 cos[(kl + kn)U/2 + (kl − kn)V/2]/(kl + kn)2

+2 cos[(kl − kn)U/2 + (kl + kn)V/2]/(kl − kn)2

≡ bu(U, V, kl, kn) , (98)

and for kl = kn = k:

bu(U, V, k, k) ≡ bue(U, V, k) =
U2

4
cos(kV )

+
cos(kU)

2k2
+
U

2k
sin(kU) . (99)

Now, we define:

cd(U, V, kl, kn) ≡ ln(
|V |√

V 2 + (2p)2
)au(U, V, kl, kn),

(100)

cn(U, V, kl, kn) ≡ 1

2(1− r)
ln(

|V |√
V 2 + (2p)2

)

× [(2 + V )au(U, V, kl, kn)− bu(U, V, kl, kn)].

(101)

Then,

Cln =
nnnl

2
{
∫ −1

−1−r
dV cd(U, V, kl, kn)|V+2r

−V−2

+

∫ 1−r

−1

dV cd(U, V, kl, kn)|V+2r
V

+

∫ 1

1−r
dV cd(U, V, kl, kn)|−V+2

V

+

∫ −1−r

−2

dV cn(U, V, kl, kn)|V+2
−V−2

+

∫ 0

−1−r
dV cn(U, V, kl, kn)|V+2

V+2r

+

∫ 1−r

0

dV cn(U, V, kl, kn)|−V+2
V+2r }. (102)

H. Uniform mode, extended stripe or film limit:

In order to get analytic results in a simpler case, we
develop the case of parametric resonance of a uniform
mode in an extended film (effects of the edges of the
stripe neglected).

The matrix M̃ in this case is the following (no ac cur-
rent, J0 comes from the dc current spin transfer torque,
hx includes a dc Oersted field, no anisotropy):

M̃ =(
(1− iα)(hx + 1

2 + iJ0) −(1− iα)/2
(1 + iα)/2 −(1 + iα)(hx + 1

2 − iJ0)

)
.

(103)

The change of variables to the amplitudes b0, b
∗
0 of the

uniform eigenmode is as follows:

(
a0

a∗0

)
=

(
λ −µ
−µ∗ λ∗

)(
b0
b∗0

)
= W

(
b0
b∗0

)
. (104)

The eigenvalues of M̃ are given by:

γ± ' i(J0−α(hx+ 1/2))±
√

(hx + 1 + αJ0)(hx + αJ0) ,
(105)

i.e. one identifies the critical value of J0 as Jc0 = α(hx +
1/2), since the equation of motion for b0, b

∗
0 are:

i

(
ḃ0
ḃ∗0

)
=

(
γ+ 0
0 γ−

)(
b0
b∗0

)
= D

(
b0
b∗0

)
, (106)

thus b0 = b00e
−iγ+τ = b00e

−iΩ0τ−ν0τ , with Ω0 =√
(hx + 1 + αJ0)(hx + αJ0), ν0 = Jc0 − J0, and b∗0 =

b0∗0 e
−iγ−τ . The eigenvectors of M̃ may be calculated

(they are the columns of the matrix W in Eq. (104)),
and using the normalization |λ|2−|µ|2 = 1, they lead to:

µ = 1
(1+iα)

√
A−Ω0

2Ω0
, λ = −

√
A+Ω0

2Ω0
, (107)
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with A = hx + 1/2. In this case W−1 is given by:

W−1 =

(
λ∗ µ
µ∗ λ

)
. (108)

The equation of motion with an ac current takes the
form:

i

(
ḃ0
ḃ∗0

)
= D

(
b0
b∗0

)
+W−1

(
f(τ) 0

0 −f∗(τ)

)
W

(
b0
b∗0

)
(109)

with f(τ) = cos(2Ωpτ)f0, and f0 = (1 − iα)(−hac +

iJac)
√

2. And

W−1

(
f0 0
0 −f∗0

)
W =(

(|λ|2f0 + f∗0 |µ|2) −λ∗µ(f0 + f∗0 )
λµ∗(f0 + f∗0 ) −(|λ|2f∗0 + f0|µ|2)

)
.

(110)

Considering only the resonant terms of the previous first
equation, this equation becomes:

iḃ0 = (Ω0 − iν0)b0 − λ∗µ(f0 + f∗0 )e−i2Ωpτ b∗0/2 , (111)

with −λ∗µ(f0 + f∗0 ) ' −hac/
√

2Ω0. Thus, looking for
solutions of the type b0 = b00 exp(−iΩpτ − ντ), b∗0 =
b0∗0 exp(iΩpτ − ντ), one obtains the condition:

(
(Ωp − Ω0)− i(ν − ν0) hac/2

√
2Ω0

hac/2
√

2Ω0 (Ωp − Ω0) + i(ν − ν0)

)(
b00
b0∗0

)
= 0. (112)

Thus, N00∗ = hac/2Ω0 = IacN̂00∗, i.e. N̂00∗ is propor-
tional to the Oersted field in this model (proportional to
the real part of f0 that does not depend on β). Imposing
that the determinant of the previous equation to be zero
leads to the condition:

(ν − ν0)2 = h2
ac/(2

√
2Ω0)2 − (Ωp − Ω0)2. (113)

Thus, the lowest ac current for which a uniform auto-
oscillation occurs at a given dc current, corresponds to
ν = 0, Ωp = Ω0, and leads to the threshold ac current
condition:

|hth| = 2
√

2Ω0ν0 ↔ |Ith| =
√

2ν0
|N̂00∗|

= 2
√

2Ω0ν0/k,

(114)
which is the equivalent threshold condition as in Eq. (35)
for a general mode (n).

I. Spin Hall angle:

In our notation the prefactor magnitude of the spin
Hall torque is given by |γ|4πJ [see Eq. (3)]. We used J =
βI, with I the current through the bilayer. According to
Ref. [121], in our units:

J =
~

2edPy4πM2
s

IPt

dPtw
θH = βI , (115)

with e the charge of the electron, dPy,Pt the thicknesses
of Py and Pt, w the width of the wire, and IPt ' (3/4)I.
The latter expression allows to derive the spin Hall angle
θH from β.
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T. Rasing, J. Stöhr, R. F. L. Evans, T. Ostler, R. W.
Chantrell, M. A. Hoefer, T. J. Silva, and H. A. Dürr,
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