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We study theoretically effects of an anisotropic elastic strain on the exciton energy spectrum fine
structure and optical selection rules in atom-thin crystals based on transition-metal dichalcogenides.
The presence of strain breaks the chiral selection rules at the K-points of the Brillouin zone and
makes optical transitions linearly polarized. The orientation of the induced linear polarization is
related to the main axes of the strain tensor. Elastic strain provides an additive contribution to the
exciton fine structure splitting in agreement with experimental evidence obtained from uniaxially
strained WSe2 monolayer. The applied strain also induces momentum-dependent Zeeman splitting.
Depending on the strain orientation and magnitude, Dirac points with a linear dispersion can be
formed in the exciton energy spectrum. We provide a symmetry analysis of the strain effects and
develop a microscopic theory for all relevant strain-induced contributions to the exciton fine structure
Hamiltonian.

I. INTRODUCTION

Elastic deformations and strain strongly affect elec-
tronic, excitonic and optical properties of solids [1]. De-
formation effects turn out to be especially important for
two-dimensional (2D) materials where strain can be ap-
plied locally [2] providing significant tunability of the
band parameters and optical response of semiconduct-
ing transition-metal dichalcogenide monolayers (TMDC
MLs) [3, 4]. Such systems with MoS2, MoSe2, WS2, and
WSe2 being their most prominent representatives are ac-
tively studied nowadays owing to their exceptional opti-
cal properties, intriguing fundamental physics, and wide

prospects of applications [5–7]. Deformations can be used
to control exciton transition energy and linewidths [8–
15], scattering and diffusion [16]. Inhomogeneous strain
allows one to confine [17, 18] and steer excitons owing to
the funneling effect [19–24].

In atom-thin TMDCs bright excitons occupy two val-
leys K+ and K− and emit circularly polarized light.
Valley-tagged excitons can be considered as a proto-
typical two-level system with the valley polarization
and coherence being mapped to the exciton pseudospin-
1/2 [25, 26]. Valley orientation of excitons by circu-
larly polarized light and formation of valley coherence
under linearly polarized excitation [26–36] is among the
most promising effects for applications of TMDC MLs
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in quantum technologies. Electron-hole exchange inter-
action mixes excitons in the K± valleys and acts as
an effective magnetic field – synthetic spin-orbit cou-
pling – making it possible to manipulate valley polariza-
tion [25, 26, 37, 38] akin to the manipulation of electron
spins via spin-orbit coupling. [39–44]. Electron-hole ex-
change interaction governs the fine structure of excitonic
states [7, 45, 46] and also causes valley depolarization
of excitons [25, 26, 37, 38, 47, 48] similarly to the spin
depolarization of excitons in quantum wells [49–51].

Here we demonstrate theoretically and confirm exper-
imentally that the strain strongly affects the bright exci-
ton fine structure in TMDC MLs. It breaks the three-fold
rotational symmetry of a monolayer and gives rise to a
splitting of a radiative doublet into the states linearly
polarized along the main axes of the strain tensor. The
strain results in overall linear polarization of the emission
of 2D TMDC. We also predict a combined effect of the
strain and exciton motion which leads to the linear-in-
wavevector splitting of the circularly polarized exciton
states. We present symmetry analysis of the strain ef-
fects in Sec. II and microscopic mechanisms of the effects
in Sec. III. An experimental demonstration of the inter-
dependence of exciton energy shifts and fine structure
splitting under strain is provided in Sec. IV. Section V
contains the conclusion and outlook.

II. SYMMETRY ANALYSIS

In this section we employ symmetry arguments to de-
rive an effective Hamiltonian of the exciton radiative
doublet in TMDC monolayers in the presence of elas-
tic strain, Sec. II A. Further, in Sec. II B we analyze the
energy spectrum and discuss the formation of the Dirac
points with conical dispersion.

A. Effective Hamiltonian

We consider the fine structure of the radiative dou-
blet of exciton states in the presence of strain in the 2D
TMDC. Let u(r) be the local displacement vector of the
atoms in the monolayer. For small deformations consid-
ered hereafter the strain tensor reads (i, j = x, y, z denote
the Cartesian components)

uij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= uji. (1)

To obtain an effective Hamiltonian of the exciton in the
presence of strain, we use the method of invariants [1, 52].
We consider a class of TMDC monolayers with D3h point
symmetry that includes MoS2, MoSe2, MoTe2, WS2 and
WSe2 as the most prominent examples, our analysis ap-
plies to all these systems. In the D3h point group of the
monolayer the following strain tensor components corre-
spond to the irreducible representations:

1. A′1 (invariant): uzz; uxx + uyy.

2. E′: (2uxy, uxx − uyy,).

3. E′′: (uxz, uyz).

The bright excitonic states – the radiative doublet –
transform as the in-plane coordinates, i.e., according to
the E′ irreducible representation. Taking into account
that E′ ⊗ E′ = A′1 + A′2 + E′, we obtain the following
expression for the effective Hamiltonian of the radiative
doublet in the presence of strain:

H = Ξ(uxx + uyy)Î + Ξ′uzz Î +
~2K2

2M
Î +

~
2

(σ̂ ·Ω). (2)

Here Î is the 2×2 unit matrix, and the contributions with
∝ uxx +uyy and uzz describe the overal shift of the exci-
ton energy, Ξ and Ξ′ are the corresponding deformation
potentials. These contributions are responsible for the
exciton energy tuning by elastic strain [9–11], electron-
and exciton-acoustic phonon scattering [53–59], and exci-
ton funneling [19, 20, 24]. The kinetic energy ~2K2/2M
is presented disregading the strain with K = (Kx,Ky)
being the two-dimensional exciton wavevector; gener-
ally, in the presence of strain the kinetic energy acquires
the terms ∝ KiKjuij which describe the strain-induced
renormalization of the effective mass and its anisotropy.
The last term in Eq. (2) describes the exciton fine struc-
ture. Here σ̂ = (σ̂x, σ̂y, σ̂z) is the vector composed of the
Pauli matrices describing the exciton pseudospin, with σ̂z
describing the splitting of exciton states in circular polar-
izations and σ̂x, σ̂y the splitting into the linearly polar-
ized components [25, 51], and Ω is the effective magnetic
field acting on the exciton pseudospin:

Ωx = A(K)(K2
x −K2

y) + B(uxx − uyy), (3a)

Ωy = 2A(K)KxKy + 2Buxy, (3b)

Ωz = C[(uxx − uyy)Kx − 2uxyKy]. (3c)

Note that the exciton pseudospin Pauli matrices σ̂x and
σ̂y are even at the time reversal, while the matrix σ̂z is
odd at the time-reversal.

The product A(K)K2 describes the longitudinal-
transversal splitting of the excitonic states [25, 37, 38,
48, 60]. The parameter B describes the effect of strain,
and the parameter C describes an effective magnetic field
arising due to the exciton propagation in the presence of
strain. The parameter C 6= 0 appears due to the lack of
the inversion symmetry in the system. Here we use the
same set of axes as in Ref. [61] where one of the three
vertical reflection planes on D3h point group σv ‖ (yz),
see Fig. 1, and the components (Kx,Ky) transform as
(2uxy, uxx − uyy).

Note that the mixed components of the strain, uxz =
uzx and uyz = uzy, mix spin-forbidden dark (also called
gray) z-polarized exciton [45] with the in-plane polarized
optically active states. Such effects are beyond the scope
of the present work.
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Figure 1. Schematic top view of a TMDC ML in the absence (a) and in the presence (b) of strain, uxx 6= uyy, uxy = 0.

B. Analysis of the energy spectrum

The strain breaks the three-fold rotation symmetry of
the 2D TMDC, see Fig. 1. In the absence of strain the
axes x and y are equivalent from the viewpoint of linear
optics and the eigenpolarizations can be selected to be
circular, σ+ and σ−, Fig. 1(a). In the presence of strain,
the in-plane axes of the structure are no longer equiva-
lent, Fig. 1(b), and the eigenpolarizations are linear ones
along the main axes of the strain. The eigenstates of the
exciton at rest (K = 0) are linearly polarized along the
main axes of the strain tensor x′ and y′, and the splitting
is given by ~B(ux′x′ − uy′y′). Note that in the main axes
the off-diagonal components of the strain tensor are ab-
sent, ux′y′ = uy′x′ ≡ 0; in Fig. 1(b) the main axes are x
and y (generally the main axes x′ and y′ do not have to
match x and y axes of the lattice in Fig. 1). The splitting
is linear in the strain for small deformations.

The pseudomagnetic field Ω as function of the
wavevector K is schematically shown in Fig. 2. Three
panels show the case without strain (a) and with strain
of opposite sign (b,c): Here we took

uxy = 0, and uxx − uyy 6= 0. (4)

In the case (a), no strain is present, the field Ω lies in
the (xy) plane and its components are described by the
second angular harmonics [25, 26]. The magnitude of Ω
depends only on the absolute value of K. Strain breaks
the axial symmetry of the system making the magnitude
Ω dependent on both the magnitude and direction of K,
as shown in panels (b) and (c). Also, a z-component of
Ω appears. The reversal of the sign of the strain changes
the distribution of the field Ω, cf. (b) and (c).

Depending on the strain the energy spectrum of ex-
citons can possess Dirac points where the polarization
eigenstates are degenerate and the energy spectrum is
conical. For illustrative properties let us assume that the
main axes of the strain correspond to the (xy) axes of the
structure, namely, Eq. (4) is fulfilled. In the centrosym-

Figure 2. Illustration of vector field Ω (arrows) as function of
the exciton wavevector K. (a) Strain is absent, the effective
magnetic field results solely from the exciton longitudinal-
transverse splitting. (b,c) Strain is present: uxy = 0, uxx−uyy

has different signs for the panels (b) and (c).

metric approximation where C = 0 the effective magnetic
field Ω vanishes at

Kx = 0, Ky = ±
√
K2
∗ , K2

∗ > 0, (5a)
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Figure 3. Illustration of the exciton dispersion found by diago-
nalization of the Hamiltonian (2) as function of Kx at Ky = 0
for K2

∗ < 0 (B(uxx−uyy)/A < 0) at C = 0 (a) and C 6= 0 (b).
Insets show three-dimensional plots of the dispersion in the
vicinity of the Dirac point Kx = −

√
|K2

∗ |, Ky = 0, Eq. (5b).
The light cone is shown by the shaded area.

or at

Kx = ±
√
−K2

∗ , Ky = 0 K2
∗ < 0, (5b)

where the parameter K∗ is determined from the equation.

K2
∗ =
B(uxx − uyy)

A(|K∗|)
. (6)

The points (5a) and (5b) in the K-space correspond to a
vanishing exciton polarization splitting, and the effective
Hamiltonian in the vicinity of each point takes the form

H(K̃) ≈ ~2|K∗|2

2M
± ~V∗(σyK̃x − σxK̃y), (7a)

or

H(K̃) ≈ ~2|K∗|2

2M
± ~V∗(σxK̃x + σyK̃y), (7b)

depending on whether Eq. (5a) or (5b) is fulfilled. Here

K̃ is the wavevector reckoned from the corresponding
Dirac point, Eq. (5), and the effective velocity is given
by

V∗ = ~|K∗|A(|K∗|). (8)

In Eqs. (7) we have omitted σx,y independent K̃-linear

terms ±~2K̃x,y|K∗|/M stemming from the parabolic ex-
citon dispersion, which result in a tilt of the Dirac cones.
The dispersion calculated using the total Hamiltonian (2)
at C = 0 for K2

∗ < 0 is shown in Fig. 3(a). It clearly shows
the Dirac points with tilted conical dispersion.

For vanishing strain |K∗| → 0 and Dirac points enter
the light cone (|K∗| < ω0/c, where ω0 is the exciton emis-
sion frequency shown by the gray shading in Fig. 3) where
excitons radiatively decay and A(K) becomes imaginary,
see Eq. (23) and Ref. [25] for details. For the same rea-
son, the dispersion in Fig. 3 demonstrates non-analytical
features at Kx = 0. In such a case, there is no sense to

discuss Dirac cones due to significant radiative damping
of the excitons.

Interestingly, the linear dispersion in Eqs. (7) can be
strongly modified if the lack of the inversion symmetry
is taken into account, i.e., where C 6= 0. If the parame-
ters of the strain are such that K2

∗ > 0 and Eq. (5a) is
fulfilled, then Ωz vanishes at Kx = 0, Ky = ±K∗, and

the dispersion acquires an additional K̃x-linear contribu-
tion ∝ σzC(uxx − uyy)K̃x that simply results in a ‘tilt’
of the eigenstates and anisotropy of the Dirac cone. By
contrast, if K2

∗ < 0 such that Eq. (5b) is fulfilled, then
a gap opens in the spectrum: Indeed, the additional C-
linear contribution to the effective Hamiltonian (7b) is
given by

δH = ±σz
~
2
C(uxx − uyy)

√
−K2

∗ , (9)

and it does not depend on the wavevector to the lowest
order. Thus, the gap is given by

EG =
~
2
|C(uxx − uyy)|

√
−K2

∗ .

Such situation is illustrated in Fig. 3(b) where the gap
is seen. Note that for arbitrary orientation of the strain
with respect to the crystalline axes x and y the gap is
generally non-zero, it closes for specific orientations of
the strain only.

III. MICROSCOPIC MECHANISMS

Here we present the microscopic model of the strain-
induced contributions to the effective magnetic field Ω
acting on the exciton pseudospin. We start the analy-
sis with the strain induced effects on the single-particle
states and optical selection rules, Sec. III A, then address
the excitonic effects demonstrating the role of the long-
range, Sec. III B, and short-range, Sec. III C, exchange
interaction. In Sec. III D we address the effects related
to the lack of the inversion center. It is noteworthy that
all common TMDC MLs have similar bandstructure. Ac-
cordingly, the mechanisms described below are rather
general and not limited to any specific combination of
transition metal and chalcogen.

A. Strain-induced band mixing and optical
selection rules

In order to describe the strain effects on the single-
particle Bloch functions, we resort to the 4-band k · p-
model of the TMDC ML bandstructure and, in addition
to the conduction c and valence v bands, also include the
remote bands c+ 2 and v − 3 into the consideration (see
Refs. [46, 61, 62] for details) whose Bloch functions at
the K+ point of the Brillouin zone can be chosen as

|c+ 2〉+ =
X ′−iY ′√

2
, |c〉+ =

X +iY√
2

, (10)
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|v〉+ = S, |v − 3〉+ =
X ′′−iY ′′√

2
.

In the K− valley the functions are obtained by the time-
reversal transformation and can be chosen, e.g., as com-
plex conjugates of Eq. (10); Bloch functions X , Y, Z
transform as the corresponding Cartesian coordinate, S
is the invariant function; we use primes to denote differ-
ent orbital composition of the Bloch functions in differ-
ent bands. Since we are interested in the fine structure of
the bright excitonic states, we consider the Bloch states
with the fixed spin component, i.e, ↑ in the K+ valley
and ↓ in the K− one. We recall that the bands c + 1,
v − 1, v − 2 are odd at z → −z reflection and provide
no contribution to the parameter B. Such a model ade-
quately describes the band structure and symmetry of the
transition metal dichalcogenide monolayers in the vicin-
ity of the K± points [62]. The k · p Hamiltonian of the
K+ valley reads [46, 61, 62]

H+ =

Ec+2 γ6k− γ4k+ 0
γ∗6k+ Ec γ3k− γ5k+
γ∗4k− γ∗3k+ Ev γ2k−

0 γ∗5k− γ∗2k+ Ev−3

 , (11)

where k± = kx ± iky, En (n = v − 3, v, c, c + 2) are
the energies of the band edges and γ2,...,6 are the param-
eters proportional to the interband momentum matrix

elements. The Hamiltonian in the K− valley, H−, is ob-
tained by the conjugation of H+.

The strain mixes the bands in Eq. (10). In what follows
we disregard the contributions uzz, uxz, uyz that involve
the z-component of atomic displacements and assume
that only uij with i, j = x, y are non-zero. Following
the general approach of Ref. [1] we derive the following
strain-induced contribution to the k · p-Hamiltonian in
the K+ valley:

H(s)
+ =

 Ξc+2u0 Ξc+2,cu+2 Ξc+2,cu−2 Ξc+2,v−3u0
Ξc,c+2u−2 Ξcu0 Ξc,vu+2 Ξc,v−3u−2
Ξc+2,vu+2 Ξv,cu−2 Ξvu0 Ξv,v−3u+2

Ξv−3,c+2u0 Ξv−3,cu+2 Ξv−3,vu−2 Ξv−3u0

 ,

(12)
where we introduced the notations

u±2 = uxx − uyy ± 2iuxy, u0 = uxx + uyy, (13)

and the interband deformation potential matrix elements
Ξn,n′ = Ξ∗n′,n (n, n′ = c, v, c + 2, v − 3) and also used a
short-hand notation Ξn for Ξn,n. The parameters Ξn,n′

should be found from atomistic calculations similar to
those in Ref. [4]. Typically, Ξn,n′ are in the range from
units to tens of eV.

In the first order in uij we obtain at k = 0

|c̃〉+ = |c〉+ + u+2

(
Ξc+2,c

Ec − Ec+2
|c+ 2〉+ +

Ξv−3,c

Ec − Ev−3
|v − 3〉+

)
+ u−2

Ξv,c

Ec − Ev
|v〉+, (14a)

|ṽ〉+ = |v〉+ + u−2

(
Ξc+2,v

Ev − Ec+2
|c+ 2〉+ +

Ξv−3,v

Ev − Ev−3
|v − 3〉+

)
+ u+2

Ξc,v

Ec − Ev
|v〉+. (14b)

The expressions for the Bloch states in theK− valley can
be obtained from Eqs. (14) by the complex conjugation.
The ratios Ξn,n′/(En−En′) can be estimated as 1 . . . 10.

Equations (14) demonstrate that the selection rules for
the optical transitions at the K± points change and the
strict (chiral) selection rules no longer hold in the pres-
ence of the in-plane strain. Making use of the 4-band
k ·p-Hamiltonian (11), we calculate the interband veloc-
ity matrix element for the transitions in σ± polarizations,
ṽ+cv = 〈c̃|~−1∇kH+|ṽ〉, to be

ṽ+cv(σ+) =
γ3
~
, ṽ+cv(σ−) = u−2η

γ3
~
, (15)

where the parameter η equals to

η =
1

γ3

(
Ξc,c+2

Ec − Ec+2
γ4 +

Ξc,v−3

Ec − Ev−3
γ∗2+

Ξc+2,v

Ev − Ec+2
γ∗6 +

Ξv−3,v

Ev − Ev−3
γ5

)
. (16)

Similarly, transition matrix elements in the opposite
(K−) valley take the form

ṽ−cv(σ+) = u2η
γ∗3
~
, ṽ−cv(σ−) =

γ∗3
~
. (17)

One can check that for a consistent choice of the phases
of the Bloch functions in Eq. (10) the parameter η is real.

Equations (15) and (17) demonstrate that the op-
tical transitions are, in the presence of strain, ellipti-
cally polarized. The strain-induced linear polarization
is along the main axes of the strain tensor uij and the
same in both valleys. In what follows we assume that
uxy = uyx = 0, i.e., the axes (xy) are the main axes,
Fig. 1(b), and obtain from Eqs. (15) and (17)

Pl =
|ṽ±cv,x|2 − |ṽ±cv,y|2

|ṽ±cv,x|2 + |ṽ±cv,y|2
= 2(uxx − uyy)η. (18)

Thus, interband emission of strained ML becomes lin-
early polarized with the overal (spectrally integrated)
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polarization degree given by Eq. (18). For rough esti-
mates one can take η ∼ 1 . . . 10 yielding Pl in the range
of several to tens of percent per % strain.

Note that the strain itself, at k = 0, cannot result
in the splitting of the non-interacting electron and hole
valley-degenerate states. This is because of the Kramers
theorem resulting from the time-reversal symmetry: The
single-particle valley splitting is provided only by the
time-reversal non-invariant perturbations (e.g., magnetic
field), while the strain does not change its sign at the time
reversal as clearly seen from the definition (1). Thus, in
order to derive B 6= 0, one has to take into account both
the strain-induced modification of the band structure and
the electron-hole interaction. Since the exchange inter-
action contains both the long- and short-range contribu-
tions the parameter B = Blr + Bsr, where the subscripts
lr and sr denote, respectively, the long-range and short-
range effects. We discuss these effects in the following
subsections.

B. Long-range exchange interaction

The long-range contribution to the electron-hole ex-
change interaction can be interpreted as a process of
(virtual) recombination and generation process of the
electron-hole pair [25, 48, 50, 63–67]. It allows us to
consider the long-range exchange within the purely elec-
trodynamical approach taking into account the coupling
of exciton with induced radiation, see Ref. [25, 48] for
detailed analysis of the effect for TMDC MLs.

The modification of selection rules provides, via the
long-range exchange interaction, the coupling between
σ+ and σ− excitons already at K = 0. For a
free-standing monolayer this coupling is dissipative (cf.
Ref. [61]) and results in the renormalization of the oscil-
lator strengths in x and y polarizations with

Γ̃0,x = Γ0(1 + Pl), Γ̃0,y = Γ0(1− Pl), (19)

where Γ0 is the exciton decay rate in the free space of
unstrained ML [25, 68]:

Γ0 =
2πq

~

∣∣∣∣e~γ3Φ(0)

ω0

∣∣∣∣2 (20)

with q = ω0/c being the wave vector of exciton-induced
radiation, ω0 is the exciton resonance frequency, Φ(0)
is the electron-hole envelope function at the coinciding
coordinates. In the presence of a substrate with the am-
plitude reflection coefficient rb (cf. Refs. [48, 68]), the
splitting between x- and y-polarized excitons due to the
long-range exchange interaction reads

∆ =~Blr(uxx − uyy) = ~Γ0Pl Im{rb}. (21)

Since |rb| 6 1 and Pl 6 1 by definition, the splitting
is smaller than the exciton radiative decay rate to the
vacuum, ~Γ0. The ratio of the splitting and the radiative

linewidth in the structure with the substrate ~Γ0(1 +
Re{rb}) [68] can be evaluated as∣∣∣∣ ~Blr(uxx − uyy)

~Γ0(1 + Re{rb})

∣∣∣∣ =

∣∣∣∣Pl
sinφ

|rb|−1 + cosφ

∣∣∣∣ , (22)

where φ is the phase of the substrate reflection coeffi-
cient, rb = |rb| exp (iφ). Interestingly, this ratio can be
sufficiently large if the substrate reflection coefficient rb is
close to −1 (φ ≈ π). In this case the radiative linewidth
of the exciton is strongly suppressed making the ratio of
the splitting to the radiative linewidth in Eq. (22) arbi-
trarly large.

For completeness, we present here the expression for
the K-dependent long-range exchange contribution for a
ML in a vacuum [25, 48]. The parameter A(K) in the
effective magnetic field (3) reads

A(K) =
Γ0

q
√
K2 − q2

. (23)

We note that for the states within the light cone, K < q,
A(K) is imaginary and the exchange interaction results
in the renormalization of the exciton radiative decay rates
(this part is shown in Fig. 3 by the shaded grey area),
while for K > q the long-range exchange interaction gives
rise to the splitting of the exciton states.

C. Short-range exchange interaction

The second contribution to the splitting results from
the short-range exchange interaction which describes the
Coulomb-induced mixing of Bloch functions within the
unit cell [1, 63].

We write the short-range exchange interaction Hamil-
tonian in the form

Hsr = δ(ρe − ρh)E0a20Û , (24)

where a0 is the lattice constant, E0 is the energy pa-
rameter related to the matrix element of the Coulomb
interaction calculated on the Bloch functions, and Û is
the dimensionless matrix with non-zero elements between
the excitonic Bloch functions of the same symmetry, but
belonging to the different valleys.

Following Ref. [61] we arrive at the following expression
for the splitting

∆ = ~Bsr(uxx − uyy) = (uxx − uyy)E0a20|Φ(0)|2U. (25)

Here, as above, Φ(ρ) is the envelope of the electron-hole
relative motion in the exciton, and the constant U can
be expressed via the matrix elements of Û multiplied by
the factors like Ξc,c+2/(Ec − Ec+2), . . . , cf. Eq. (17)
of Ref. [61]. Crude estimate for U is U ∼ 1 . . . 10. For
E0 = 1 eV, a0 = 3 Å, and exciton Bohr radius aB =
15 Å [within the hydrogenic model |Φ(0)|2 = 2/(πa2B)],
we obtain ~Bsr in the range of 10 . . . 100 meV.
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This mechanism of the mixing is quite analogous to
that considered in Refs. [69, 70] for conventional quan-
tum wells. In that case, elastic strain mixes the states
of heavy and light holes (similarly to Eqs. (14)), while
the short-range exchange interaction provides the split-
ting of exciton levels. On the one hand, for quantum
wells the splitting between the heavy and light holes is
considerably smaller (10 . . . 100 meV) as compared to the
interband splitting in TMDC MLs. On the other hand,
the exchange interaction is much larger in TMDC MLs
as compared to the quantum wells. That is why the over-
all effect of strain on the exciton levels is expected to be
comparable in the two systems.

D. Effects of non-centrosymmetricity

The parameters A and B in the effective magnetic field
Ω, Eq. (3), are non-zero in the centrosymmetric model.
Correspondingly, the mechanisms described above do not
require the lack of the inversion center. Indeed, these
parameters are non-zero in the centrosymmetric model
where γ5 and γ6 in the effective Hamiltonian (11) van-
ish, and Ξc,v, Ξc+2,v and Ξv−3,v in the strain-induced
Hamiltonian (12) vanish as well: In that case the k-linear
coupling between the Bloch states whose angular momen-
tum components differ by two, e.g., between c and c+ 2,
v − 3 is absent and the strain-induced coupling of the
Bloch states with angular momentum components differ
by one, e.g., between v and all other bands, is absent
as well. Additional contributions to the strain-induced
splitting characterized by the parameter B may arise,
beyond centrosymmetric approximation, e.g., due to the
piezoelectric effect [71, 72]. Indeed, an elastic strain gives
rise to a dielectric polarization [23] and, consequently, an
in-plane electric field E = (Ex, Ey), with Ex ∝ 2uxy,
Ey ∝ uxx − uyy that modifies an intrinsic mixing of s-
and p-shell excitons studied in Ref. [61]. We expect, how-
ever, that such mechanisms provide weaker contributions
as compared to those discussed above. Indeed, for such
mechanisms the lack of the inversion center should be
taken into account twice: firstly, in the piezo-effect and,
secondly, in the intrinsic s− p-exciton mixing.

By contrast, the parameter C in Eq. (3) that describes
K-linear pseudomagnetic field appears only in the non-
centrosymmetric model. Evaluating the matrix elements
of the four-band Hamiltonian (11) on the Bloch func-
tions (14) we obtain the linear in the wavevector and
strain contributions to the conduction and valence band
dispersion in the K+ valley:

Ec
+(k) = 〈c̃|H+|c̃〉 = Ec + Ξc(uxx + uyy)

+ [(uxx − uyy)kx + 2uxyky]γ3ζc, (26a)

Ev
+(k) = 〈ṽ|H+|ṽ〉 = Ev + Ξv(uxx + uyy)

+ [(uxx − uyy)kx + 2uxyky]γ3ζv, (26b)

where

ζc =
2

γ3

(
γ∗6Ξc+2,c

Ec − Ec+2
+

2γ5Ξv−3,c

Ec − Ev−3

)
, (27a)

ζv =
2

γ3

(
γ∗4Ξc+2,v

Ev − Ec+2
+

2γ2Ξv−3,v

Ec − Ev−3

)
. (27b)

The factor γ3 is introduced in Eqs. (26) and (27) for
convenience to make ζc,v dimensionless. We note that
similarly to the parameter η in Eq. (16), the parameters
ζc,v are real for consistent choice of phases of Bloch func-
tions. In the K− valley the dispersions acquire similar
form, but, owing to the time-reversal, the k-linear terms
have opposite signs:

Ec
−(k) = Ec + Ξc(uxx + uyy)

− [(uxx − uyy)kx + 2uxyky]γ3ζc, (28a)

Ev
−(k) = Ev + Ξv(uxx + uyy)

− [(uxx − uyy)kx + 2uxyky]γ3ζv. (28b)

Equations (26) and (28) describe k-linear terms arising
on the electron and hole dispersion in the presence of
strain. Similarly to classical semiconductors such terms
are possible only in non-centrosymmetric media [73]. In-
deed, the parameters ζc, ζv contain γ5, γ6 and Ξc+2,v,
Ξv−3,v that vanish in the centrosymemtric model.

We can now combine Eqs. (26) and (28) to obtain the
Ωz in Eq. (3). Taking into account that the electron,
ke, and hole, kh, wavevectors are related to the exciton
center of mass, K, and relative motion, κ, wavevectors
by ke = (me/M)K − κ and kh = (mh/M)K + κ with
me,h being the electron and hole effective masses (M =
me +mh), and making use of the fact that the hole state
is obtained from the unoccupied state in the valence band
by the time reversal, we obtain

C = 2
γ3
~

(me

M
ζc +

mh

M
ζv

)
. (29)

For crude estimates the factor in parentheses can be
taken as unity making C ∼ γ3/~.

IV. EXPERIMENT

In this section, we illustrate the impact of the strain-
modified exciton dispersion shown in Fig. 3 and induced
linear polarization on the exciton emission in micro-
photoluminescence (µ-PL) experiments. The elastic de-
formations and local strains are created by transferring
hBN-encapsulated WSe2 monolayers onto SiO2/Si sub-
strates supporting semiconductor nanowires. A detailed
description of the sample fabrication process and the
characterization of the resulting uniaxial tensile strain is
presented in our previous study [24]. These heterostruc-
tures are studied by monitoring the emission of bright
X0 excitons in position- and polarization-resolved µ-PL
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Figure 4. (a) Schematic illustration of the studied hBN-
encapsulated WSe2 monolayer mechanically deformed by a
single nanowire. PL spectra from X0 excitons are recorded
at T=4 K across (b) unstrained and (c) uniaxially strained
regions. In the strained region, the PL is shifted to lower en-
ergies and linearly polarized in parallel (0◦) and perpendicular
(90◦) directions with respect to the nanowire. It exhibits a
splitting ∆ of the peak energy between the two polarizations.

scans, as schematically illustrated in Fig. 4(a). All mea-
surements are conducted at T=4 K to take advantage
of narrow spectral linewidths. We use a continuous-
wave laser with photon energy of 2.33 eV to excite WSe2
samples non-resonantly. These conditions are chosen to
avoid optically induced valley coherence for clean anal-
ysis of linear polarization of the PL. The laser beam is
focused onto a spot diameter of ∼ 1µm by a 100× micro-
scope objective. The PL spot being on the same spatial
scale as the deformation by the nanowire creates addi-
tional broadening due to the averaging areas with dif-
ferent strain. A combination of a half-wave plate and a
linear polarizer placed in front of the detector is used to
analyze the PL polarization.

PL spectra of a WSe2 monolayer obtained from flat,
unstrained regions of the sample show an emission peak
from neutral, bright A-excitons (X0) at 1.725 eV. Since
bright X0 excitons in K± valleys emit circularly polar-
ized light in the absence of strain [cf. Fig. 1(a)], their
PL does not change when probed along two orthogonal
polarization axes [see Fig. 4(b)]. The same measurement
shows a very different result when we detect the X0 emis-
sion in a strained region on top of the nanowire. The
PL maximum shifts by ∼20 meV to lower energies due
to uniaxial tensile strain. Moreover, the X0 peak splits
into a doublet for linear polarization parallel (0◦) and
perpendicular (90◦) to the nanowire axis, i.e., along the
expected main axis of the strain tensor, in accordance
with the theoretical predictions, see Figs. 1 and 3. The
low energy shoulder visible in both polarizations shifts
accordingly for the two polarizations and is attributed to

0.0 0.1 0.2 0.3

-1.0

-0.5

0.0

 0.5

Strain (%)

Sample A  B  C      Fit

S
pl

itt
in

g 
(m

eV
)

∝ -3.4meV/%

1.725 1.720 1.715 1.710 1.705

X0 energy (eV)

Figure 5. Linear-polarization energy splitting ∆ extracted
from a polarization-resolved µ-PL line scan across the
nanowire-induced deformation is shown as a function of the
X0 energy (bottom axis) and the equivalent values of strain
(top axis). Uniaxial tensile strain is calibrated by −63.2 meV
per % strain. A line fit estimates the strain dependence of the
energy splitting ∆ to be −3.4 meV per % strain. Experimen-
tal observations in sample A are confirmed by polarization-
resolved measurements on two other nanowire-induced defor-
mations denoted sample B (orange triangle) and C (blue tri-
angle).

a region with slightly higher strain. The maximum split-
ting is on the order of 1 meV and the low-energy peak
emits at a higher intensity corresponding to a polariza-
tion degree of about 15 %.

Figure 5 presents the energy splitting ∆ obtained by
scanning the laser excitation spot across the elastically
deformed region and fitting the recorded X0 emission for
both polarization axes by Gaussian functions. While the
absolute values of the energy splittings are comparatively
small, we observe a consistent dependence of the splitting
on the position of the sample and on the energy of the
PL emission maximum. We note that the additional os-
cillatory behavior superimposed on ∆ is likely related to
a residual coupling between X0 excitons and the optical
modes of the nanowire waveguide-like structure, see be-
low. Other common sources of the exciton energy shift,
such as spatial fluctuations of the doping density or of the
dielectric environment, are unlikely to contribute since
neither the trion intensity nor the binding energy of the
ground state exciton changes significantly, as shown in
our previous study [24]. Measurements of ∆ in two other
samples quantitatively confirm the results presented in
Figs. 4 and 5. A linear fit to the data provides a scaling
factor of −3.4 meV per % uniaxial tensile strain com-
pared to −63.2 meV per % strain for the absolute shift
of the exciton peak with the latter value being consis-
tent with the exciton deformation potentials in WSe2
MLs [10, 24].

The observed strain induced linear-polarization split-
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ting of the exciton is in accord with the theory developed
in Sec. III. As we have shown, there are two contributions
to the strain-induced splitting: due to the long-range ex-
change interaction, Eq. (21), and due to the short-range
exchange interaction, Eq. (25). According to the estimate
using Eq. (25) one can expect the short-range contribu-
tion to ∆ ∼ 1 meV per % strain. Note that for ~Γ0 in
the range of several meV and Pl . 15% the long-range
exchange interaction provides by far smaller contribution
to the splitting ∆ as compared to the experimentally ob-
served one in Fig. 5. It can, however, at least in principle,
explain oscillations of the splitting superimposed over the
linear behavior: Indeed, in our sample the interference of
light reflected from the substrate and the nanowire can
result in position-dependent oscillations of the substrate
reflectivity rb [cf. Ref. [68]] which yield oscillations of
∆ in Eq. (21) as a function of coordinate and, conse-
quently, of the strain, see Fig. 4(a). The values of the
induced linear polarization are also consistent with theo-
retical prediction, Eq. (18) [74]. We abstain from a more
detailed quantitative comparison between the model and
experiment which requires (i) precise atomistic calcula-
tions of the interband deformation potentials and short-
range exchange interaction parameters, (ii) experimental
separation of the waveguide effects on the strain-induced
splitting ∆, and (iii) analysis of temperature effect on the
linear polarization degree to separate overall polarization
due to the variation of the optical selection rules and in-
duced polarization due to the exciton thermalization over
the strain-split fine structure states.

The observed behavior of the exciton resonance in
mechanically-deformed WSe2 samples thus provides an
experimental illustration for the fine structure splitting
of the radiative doublet under strain.

V. CONCLUSION AND OUTLOOK

We have developed a theory of strain-induced effects
on the exciton energy spectrum fine structure in 2D
TMDCs. We have shown that the elastic strain pro-
duces optical anisotropy of a monolayer resulting in de-
viation from the chiral selection rules. The induced po-
larization is linked to the main axes of the strain tensor.
Further, the strain gives rise to a wavevector indepen-
dent polarization splitting of the exciton radiative dou-
blet, experimentally demonstrated for uniaxially strained

WSe2 monolayers. We have analyzed an interplay of this
splitting with the wavevector dependent longitudinal-
transverse splitting of excitonic states and shown that
these contributions can compensate each other for par-
ticular values of the exciton wavevector. In the vicinity
of these compensation points the exciton energy spec-
trum has a conical, massless Dirac, form. We have also
identified a strain-induced wavevector dependent contri-
bution to the exciton splitting in circular polarizations
linked with the specific three-fold rotational symmetry
of TMDC monolayers with broken spatial inversion. Mi-
croscopic mechanisms behind the strain-related contribu-
tions to the exciton effective Hamiltonian have been iden-
tified. The microscopic model has been developed within
the four-band k ·p-Hamiltonian, and the estimates of all
relevant contributions are presented.

The developed theory provides a basis for the strain
tuning of exciton fine structure [75] (see also Refs. [76, 77]
for conventional semiconductor systems), an important
property for quantum technology and the application of
exciton and biexciton emission for generation of enta-
gled photons [78]. The formation of a Dirac-like dis-
persion may be useful for the relalization of topological-
like effects in excitonic systems [79–81]. Strain-induced
spatially inhomogeneous pseudomagnetic fields may also
be realized in bilayer structures where moiré effects are
important [82–85] enabling adiabatic exciton pseudospin
evolution. Strain-induced exciton fine structure splitting
can be also important for the optomechanical applica-
tions of excitons in atomically-thin crystals [86–89].
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