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There has been considerable recent progress in identifying candidate materials for the transverse-
field Ising chain (TFIC), a paradigmatic model for quantum criticality. Here, we study the local
spin dynamical structure factor of different spin components in the quantum disordered region of the
TFIC. We show that the low-frequency local dynamics of the spins in the Ising- and transverse-field
directions have strikingly distinctive temperature dependencies. This leads to the thermal-activation
gap for the secular term of the nuclear magnetic resonance (NMR) 1/T ′2 relaxation rate to be half
of that for the 1/T1 relaxation rate. Our findings reveal a new surprise in the nonzero-temperature
dynamics of the venerable TFIC model and uncover a means to evince the material realization of
the TFIC universality.

I. INTRODUCTION

While classical matter freezes at zero temperature,
quantum many-body systems often display multiple
ground states due to the competition between different
couplings. Upon a continuous transformation from one
ground state to another, quantum criticality develops. It
is anchored by a quantum critical point (QCP) at zero
temperature, in contrast to a classical critical point that
appears at a thermally-induced phase transition. Quan-
tum criticality has emerged as a general organizing prin-
ciple to understand many of the richest phenomena that
have been observed in quantum materials [1, 2]. These in-
clude the cuprates [3, 4], heavy fermion metals [5–7] and
iron pnictides [8, 9]. One of the prominent features of
quantum criticality is that it mixes spatial and temporal
fluctuations [10, 11]. While this intermixing complicates
the description of quantum criticality, it also implies that
dynamical properties can be used to characterize the na-
ture of quantum criticality. As another outstanding fea-
ture of quantum criticality, approaching the QCP by a
non-thermal control parameter (g) and by temperature
(T ) represent two independent ways to examine its uni-
versal behavior. As such, it is instructive to probe quan-
tum criticality by analyzing dynamical properties as a
function of temperature, which can be conveniently stud-
ied experimentally.

A paradigmatic model for continuous quantum phase
transitions is the transverse field Ising model in one spa-
tial dimension [11–17]. It represents a prototype setting
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to explore the properties of quantum criticality. Yet, in
spite of its venerable status, there is much about it that
remains to be understood. Suitable materials to study
this model have only been emerging recently [18–22].
They have allowed new experiments that are providing
puzzling experimental results, especially on dynamical
properties at nonzero temperatures. At the same time,
calculating dynamical quantities near a QCP (gc) are al-
ways challenging. That is also the case for the transverse
field Ising chain, notwithstanding the considerable efforts
[12, 13, 23]. One of the particularly interesting quantities
is the local dynamical structural factor [24–26], which can
be measured by the longitudinal relaxation rate 1/T1 in
NMR experiment [27].

In this work, we begin the investigation by focusing on
the quantum disordered region of TFIC (g > gc). The
critical behavior of the transverse and longitudinal dy-
namical structure factors, Sxx and Szz, are analytically
determined at low frequency. Our result shows that Sxx

has a thermally-activated behavior with one single parti-
cle gap, since Pauli matrix σx is Z2 symmetric in TFIC.
In contrast, the thermal-activation energy in Szz is twice
as large as that of Sxx since σz is not Z2 invariant [25, 26].
This characteristic contrast is very unique and can serve
as a telltale sign to ascertain whether candidate materials
realize the TFIC universality. Accordingly, we propose
a new experimental signature for the TFIC realization,
viz. that the activation gap for the secular term of 1/T2,
named 1/T ′2 (Ref. 28), will be half of its counterpart for
1/T1 in NMR relaxation rate measurements.

The remainder of the paper is organized as follows.
Section II introduces the lattice Hamiltonian of TFIC
and its field theory description in the scaling limit. Sec-
tion III specifies the expression of the dynamical struc-
ture factor. The results of local dynamics at low fre-
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quency in transverse and longitudinal directions are ob-
tained in Sec. IV and are discussed in detail in Sec. V.
The proposal for using NMR experiments as a new means
of identifying candidate materials for the TFIC univer-
sality is presented in Sec. VI. Finally, Sec. VII contains
the conclusion and discussions.

II. THE MODEL

The Hamiltonian of the transverse field Ising chain is
given by [13]

HI = −J
N∑
i=1

(
σzi σ

z
i+1 + gσxi

)
, (1)

where σxi and σzi are Pauli matrices associated with the
spin components Sµ = σµ/2 (µ = x, y, z) on site i, and
g is the coupling with the transverse field. Below we
shall refer to the z (Ising) direction as longitudinal and
to the x direction as transverse. At zero temperature, the
system undergoes a quantum phase transition when the
transverse field is tuned across its QCP g = gc = 1. The
Hamiltonian can be conveniently converted to fermionic

operators, ci and c†i through Jordan-Wigner transforma-
tion. After introducing a Bogoliubov rotation, the Hamil-

tonian takes the canonical form HI =
∑
k εk(γ†kγk −

1
2 )

with single-particle energy dispersion

εk = 2J
√

1 + g2 − 2g cos k , (2)

where momentum k is dimensionless in all calculations.
At zero momentum, the gap, ∆ = 2J |g− gc|, vanishes at
gc.

In the vicinity of the QCP, the low energy effective
description of the system is given by an Ising field theory
obtained as the scaling limit of the lattice Hamiltonian
(cf. Appendix A). In this limit the lattice spacing goes
to zero, a → 0, while J → ∞ and g → 1 such that the
energy gap and the “speed of light” are kept fixed, 2J(1−
g) = ∆, 2Ja/~ = c. The resulting Hamiltonian describes
a relativistic field theory of free Majorana fermions with
mass m = ∆/c2

HI =

∫
dx

[
~c
i

2
(ψ
∂ψ

∂x
− ψ̄ ∂ψ̄

∂x
)±∆

i

2
(ψ̄ψ − ψψ̄)

]
, (3)

where the sign of second term is + (−) for the para-
magnetic (ferromagnetic) phase, corresponding to g >
gc (g < gc) in the lattice model. The field opera-

tors are related to the lattice operators as
(−)

ψ(ja) =
1√
2a

(
e∓iπ/4cj + e±iπ/4c†j

)
. Correspondingly, the single-

particle energy Eq. (2) becomes relativistic

ε(p) =
√

∆2 + p2c2 = ∆ cosh θ , (4)

where p = ~k/a and θ is the relativistic rapidity param-
eter. In the scaling limit, the σxj operator is related to

the energy density operator ε(x) through the following
relation,

σxj = −2a ε(x = ja) ≡ −2a i ψ̄(x)ψ(x) , (5)

where ε(x) = iψ̄(x)ψ(x) is quadratic in fermion oper-
ators. And σzj is related to the magnetization density
operator σ(x) as (~ = c = 1) [13]

σzj = s̄−1J−1/8σ(x = ja), (6)

where s̄ = 21/12e−1/8A3/2 and A = 1.2824271291 . . . is
Glaisher’s constant. The σ(x) operator corresponds to
the order parameter after taking its expectation value
with respect to the vacuum. Note that σ(x) is non-local
in the fermion operators and cannot be simply expressed
in terms of the latter.

III. DYNAMIC STRUCTURE FACTOR

In quantum disordered region of TFIC (g > gc), we
compute the local spin dynamical structure factor (DSF)
at low frequency ω � kBT , which are relevant to the
NMR relaxation rates [28, 29]. The DSF with spin com-
ponent α = x, y, z is given by (kB = 1)

Sαα(ω, q) =
−2

1− e−ω/T
Imχαα(ω, q) =∑

l

∫ ∞
−∞

dt eiωt−iqla〈σαl+1(t)σα1 (0)〉T , (7)

where χαα(ω, q) is the dynamical spin susceptibility at
the transferred energy ω and momentum q. In the
field theory, we consider the continuum operators ε(x),
σ(x) and the summation over lattice sites in Eq. (7)
is replaced by an integral over x. The local DSF is
Sαα(ω) =

∫
dq
2πS

αα(ω, q). Using field theory language
[30], the DSF can be written in Lehmann spectral repre-
sentation as

Sαα(ω, q) =
1

Z

∞∑
r,s=0

Cααr,s (ω, q) (8)

where Z is the partition function and

Cααr,s (ω, q) =

∫
dθ1 . . . dθr

(2π)rr!

∫
dθ′1 . . . dθ

′
s

(2π)ss!
e−Er/T (2π)2

δ(ω+Er−Es)δ(q+Pr−Ps) |〈θ1 . . . θr|σα(0, 0)|θ′1 . . . θ′s〉|2 ,
(9)

with the energy and momentum eigenvalues of the mul-
tiparticle states |θ1, . . . , θn〉 are En = ∆

∑n
i cosh θi and

Pn = ∆
∑n
i sinh θi. The term Cααr,s carries a factor

e−Er/T < e−r∆/T , thus the small expansion parame-
ter is e−∆/T . Its dependence on s is less obvious but
thanks to the energy conserving Dirac-delta, the ener-
gies of the two states with r and s particles are re-
lated. For a fixed frequency ω and at low temperature
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one can truncate the double sum in both r and s. As
shown in Appendix B, Eq. (8) is a low-temperature ex-
pansion which has term-by-term divergences that can
be regularized in a linked cluster expansion [31, 32],
Sαα(t, x) =

∑∞
r=0,s=0D

αα
r,s (t, x), where the finite terms

Dαα
r,s are certain linear combinations of Cααr,s and terms

appearing in the expansion of the partition function.

IV. LOCAL DYNAMICS AT LOW FREQUENCY

Let’s first consider the leading critical behavior of
Sxx(ω) in the quantum disordered region with ω � T �
∆. Since σxj and ε(x) are quadratic in the fermionic
operators, Eq. (9) has nonzero matrix elements between
states that either have an equal number of particles or
the particle number difference is 2.

The first term in Eq. (8) is the vacuum contribution
Cxx00 = |〈0|ε|0〉|2δ(ω)δ(k), i.e. 0 particle - 0 particle (0p
- 0p) contribution. In the field theory this is a divergent
contribution and requires renormalization (e.g. by nor-
mal ordering) [32]. However, since we are interested in
the finite (but small) ω domain, we ignore this term. The
terms Dxx

0,s and Dxx
s,0 contribute to frequencies ω ≥ s∆

outside of our domain of interest, 0 < ω � ∆. Thus the
first contributing term is the 1p - 1p term,

Cxx11 (ω, q) =

∫ ∫
dθ

2π

dθ′

2π
|F ε2 (θ|θ′)|2e−∆ cosh θ/T (2π)2

δ [q + ∆(sinh θ − sinh θ′)] δ[ω + ∆(cosh θ − cosh θ′)] ,
(10)

where the 1p - 1p form factor F ε2 (θ|θ′) is F ε2 (θ|θ′) ≡
〈θ|ε(0)|θ′〉 = −i∆ cosh

(
θ−θ′

2

)
, as can be obtained from

the plane wave expansion of the fields in a straightfor-
ward way (cf. Appendix C). Then after performing two
integrals of Eq. (10), the leading contribution to local
transverse DSF at ω � T � ∆ region is

Cxx11 (ω) ≈ −∆

π
e−∆/T

[
ln
( ω

4T

)
− T

2∆
+ γE

]
, (11)

where γE is Euler’s constant. The main features of the
result are the ∼ e−∆/T temperature dependence and
the ∼ ln(ω/T ) logarithmic frequency dependence. From
Eq. (9) the higher particle number contributions Dxx

r,s

with max(r, s) ≥ 2 contain the factor e−Er/T δ(ω + Er −
Es), so they are exponentially suppressed at low tem-
perature T � ∆ for frequencies ω � ∆, in particular,
Dxx
r,s ∼ e−max(r,s)∆/T . So we find that the leading order

contribution to the local transverse DSF Sxx(ω) in the
quantum disordered region with ω � T � ∆ is given by
the 1p - 1p term, i.e. Eq. (11).

Because the σxj operator is local and quadratic in terms
of the fermion operators, it is promising to calculate
the transverse DSF Sxx from the discrete spin chain di-
rectly without taking the scaling limit. As shown in Ap-
pendix E, we further utilize two methods: one is an exact

FIG. 1. The local transverse DSF Sxx vs. frequency (blue
dots) at fixed ∆ = 0.1J and T = 0.01J . The logarithmic
frequency dependence is well fitted by the red solid line.

lattice calculation and the other is the truncated form
factor expansion. Both of them give the same leading
behavior for Sxx(ω) as Eq. (11) obtained by using field
theory.

We next turn to the leading critical behavior of Szz

in the quantum disordered region with ω � T � ∆.
Following the same strategy for calculating Sxx(ω) in the
scaling limit, we can obtain (cf. Appendix F)

Szz(ω) ≈ σ̄2

∆

3
√

3

2π

(
T

∆

)2

e−2∆/T , (12)

where σ̄ = ∆1/8s̄. This result exhibits a characteris-
tic thermal-activation gap, i.e. 2∆, which agrees with
the scaling limit of the corresponding result found in
Refs. [25, 26].

Fig. (1) shows the frequency dependence of Sxx(ω)
and its fitting function with parameters ∆ = 0.1J and
T = 0.01J . The data points are calculated by numeri-
cally integrating out q from Sxx(ω, q) (cf. Appendix E),
and the fitting function gives the expected logarithmic
divergence in ω: 106 × Sxx(ω) = −2.08 − 1.39 ln(ω/∆).
This agrees well with the asymptotic result Eq. (11),
106 × Sxx(ω) = −1.99− 1.38 ln(ω/∆).

We also study the temperature dependence of Sxx with
ω = 10−4J and ∆ = 0.1J . The data points shown in
Fig. (2), are calculated by numerically integrating out q
from Sxx(ω, q) (cf. Appendix E), and the corresponding
fitting function Sxx(T ) = e−∆/T [0.24 + 0.03 ln(T/∆)]
indicates that the thermal behavior of Sxx(T ) is
dominated by 1p - 1p term and activation gap is
∆. This fitting conforms with the result obtained
from the asymptotic expression Eq. (11), Sxx(T ) =
e−∆/T [0.23 + 0.02(T/∆) + 0.03 ln(T/∆)]. In the fitting,
the T/∆ term is not taken into account since it is negligi-
ble compared with other terms in the considered region.

Similarly, we show the temperature dependence of
Szz by numerically integrating out q from Szz(ω, q)
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FIG. 2. The contrast of the thermal-activation gaps between
Sxx (blue dots) and Szz (black dots). The exponential decay
behaviors of Sxx and Szz are well fitted by red and orange
lines, respectively, showing the gap for Sxx is half of that for
Szz.

with fixed frequency ω = 0.1∆ (cf. Appendix F). The
fitted line Szz(T ) = 0.87(T/∆)2.06e−1.99∆/T which is
consistent with the prediction of Eq. (12), Szz(T ) =
0.83(T/∆)2e−2∆/T . Here Szz(T ) exhibits a distinct ther-
mal behavior with the activation gap being 2∆ compared
with Sxx(T ).

V. CONTRASTING THERMAL ACTIVATIONS
OF Sxx AND Szz

Our key result is the different exponential tempera-
ture dependence, e−∆/T vs. e−2∆/T , for Sxx and Szz,
respectively. This is eventually a consequence of the Z2

symmetry of the model, i.e. σx → σx and σz → −σz.
For large transverse fields g � 1, the ground state corre-
sponds to spins pointing in the x direction, so intuitively,
excitations in the paramagnetic phase can be thought of
as spin flips in the transverse direction generated by σz.
This means that σz creates and destroys particles that
carry the same quantum numbers as the operator itself,
i.e. they are odd under spin reversal in the z direction.
As a consequence, the nonzero matrix elements of σz in
the paramagnetic phase are between states with different
particle number parity [33, 34]. For σx it is the opposite:
its only nonvanishing matrix elements are between states
of the same parity because it is quadratic in the fermionic
operators.

As the discussion about Eq. (11), at low frequencies
ω � ∆ only those matrix elements can contribute to the
Lehmann representation where the energies of the two
states are close to each other due to the Dirac-delta ex-
pressing energy conservation. This implies that matrix
elements between the ground state and the excited states
do not contribute. Moreover, independently of which
state carries the Boltzmann factor, the contribution of

the matrix element will be ∼ e−n∆/T where n is the
larger of the particle numbers in the two states. Together
with the parity property of σz this implies that the lead-
ing temperature dependence of the longitudinal DSF is
e−2∆/T coming from 1p - 2p contributions while that of
the transverse DSF is e−∆/T coming from 1p - 1p matrix
elements. Therefore, this characteristic contrast of the
temperature dependence of Sxx and Szz can serve as a
new universal behavior of TFIC and can also be verified
in NMR experiments.

From a symmetry perspective, σz can also have
nonzero 1p - 1p matrix element if the Z2 symmetry of
the system is broken. One such case is the quantum E8

integrable model, which emerges from longitudinal-field
perturbed quantum critical TFIC [35]; the additional lon-
gitudinal field breaks the Z2 symmetry. In the model,
the low-temperature DSF Szz exhibits e−m/T (where m
is the mass of the lightest E8 particle) [24]; we stress,
however, that it is due to a physical mechanism of bro-
ken Z2 symmetry that is completely different from what
happens in the present work.

VI. NMR RELAXATION RATES

The transverse field applied along the x-axis in the
TFIC serves as the applied static magnetic field in an
NMR setup [27]. The longitudinal NMR relaxation rate
1/T1 of TFIC is given by [28, 29]

1

T1
∼ |Ay|2Syy(ωn) + |Az|2Szz(ωn) . (13)

Here, Aj (j = x, y and z) is the scalar hyperfine cou-
pling, which we take as constants for simplicity, and
ωn is the resonant frequency (∼MHz) of NMR mea-
surements. Therefore, 1/T1 probes local spin dynamics
through Szz and Syy along the two orientations orthog-
onal to the transverse-field direction x. In the TFIC,
we have Syy(ω) = Szz(ω)ω2/[4(gJ)2] [24], so the contri-
bution from Syy can be ignored in an NMR setup (at a
very low frequency). As such, we expect 1/T1 ∼ Szz(ω =
ωn) ∼ e−2∆/T , where the thermal-activation gap is 2∆
[26, 27].

To probe Sxx(ω), we consider the transverse NMR re-
laxation rate 1/T2 of TFIC which is given by [28, 29]

1

T2
=

1

T ′1
+

1

T ′2
, (14a)

1

T ′1
= A

1

T1
, (14b)

1

T ′2
= |Ax|2Sxx(ωn). (14c)

Here, the non-secular contribution 1/T ′1 can be estimated
from the result of 1/T1 measurement and the prefactor
A is calculated based on Bloch-Wangsmann-Redfield the-
ory (cf. Appendix I). Then, the secular term 1/T ′2 can
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be determined from Eq. (14a) by subtracting 1/T ′1 from
1/T2. Therefore, at relatively low temperature, 1/T ′1 is
exponentially suppressed by the larger gap 2∆ of Szz

but 1/T ′2 ∼ Sxx(ω = ωn) ∼ e−∆/T still remains sizable
with a thermal-activation gap ∆. Since 1/T1 and 1/T2

measurements are two independent NMR experiments,
we predict that the ratio of extracted thermal-activation
gaps for 1/T1 and 1/T ′2 is 2.

VII. CONCLUSION

To conclude, we determined the leading behavior of the
local transverse DSF in the quantum disordered region
of the TFIC at small transfer energy with temperature
much smaller than the gap. It is shown that when the
transfer energy is much smaller than the temperature
the local transverse DSF exhibits a logarithmic singu-
larity. We found that the extracted thermal activation
gap from the local transverse DSF is half of that for the
longitudinal one, which can be attributed to the different
parities of σx and σz in the quantum disordered region of
the TFIC. This sharp contrast can be directly tested in
a proper NMR setup through 1/T1 and 1/T2 relaxation
rate measurements. In addition, it’s worth noticing that
for unpolarized-spin measurements, our results unveil the
underlying physical mechanism for the observed single-
particle gap in the thermal activation [36, 37] where the
transverse DSF is expected to dominate the low-energy
behavior.

It is known that a thermodynamic quantity of the
TFIC, the Grüneisen ratio–the ratio of magnetic expan-
sion coefficient to specific heat–exhibits a unique quan-
tum critical behavior [23]. Here, our work reveals a sharp
contrast of the temperature dependence of the trans-
verse and longitudinal local DSFs of the TFIC, which
represents a unique and surprising dynamical feature for

the TFIC. Furthermore, accessing the universality of the
TFIC in experiments is a crucial step toward a realization
of the exotic quantum phenomena such as the new parti-
cles in the quantum E8 integrable model [21, 22, 24, 38].
Our work implies that combined measurements of the dy-
namical and thermodynamic quantities provide telltale
experimental signs for the class of TFIC universality.
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Appendix A: Diagonalization of the lattice and field theory Hamiltonians

After Jordan–Wigner transformation, σxi = 1− 2c†i ci and σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, the TFIC Hamiltonian

Eq. (1) becomes

HI = −J
N∑
i=1

[
(c†i ci+1 + c†i c

†
i+1 + h.c.) + g(1− 2c†i ci)

]
(A1)

in terms of the fermionic operators ci, c
†
i . After Fourier transformation, cj = 1√

N

∑
k cke

ikj , the Hamiltonian is

diagonalized by a Bogoliubov rotation γk = ukck− ivkc†−k , where uk = cos(θk/2) , vk = sin(θk/2) with the Bogoliubov

angle tan(θk) = sin k
g−cos k . After these steps, we arrive at

HI =
∑
k

εk

(
γ†kγk −

1

2

)
(A2)

with single-particle energy dispersion εk = 2J
√

1 + g2 − 2g cos k.
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The field theory Hamiltonian Eq. (3) can be diagonalized by the plane wave expansion of the Majorana fields which
in the paramagnetic phase reads (setting ~ = 1)

ψ(x, t) =

√
mc

2

∫
dθ

2π
e−θ/2

[
αa(θ)eipθx−iεθt + α∗a†(θ)e−ipθx+iεθt

]
, (A3a)

ψ̄(x, t) = i

√
mc

2

∫
dθ

2π
eθ/2

[
αa(θ)eipθx−iεθt − α∗a†(θ)e−ipθx+iεθt

]
, (A3b)

where α = e−iπ/4, and pθ = mc sinh(θ) and εθ = mc2 cosh(θ) are the momentum and energy in terms of the rapidity
variable θ. The creation/annihilation operators obey the algebra

{a(θ), a†(θ′)} = 2πδ(θ − θ′) (A4)

and diagonalize the Hamiltonian which becomes

HI =

∫
dθ

2π
a†(θ)a(θ)mc2 cosh θ . (A5)

Appendix B: Form-factor method and linked cluster expansion

Exploiting the local nature of the transverse magnetization in terms of the fermions, the transverse DSF Sxx(ω, q)
can be obtained exactly. This is however not true for the longitudinal DSF Szz(ω, q). Still, in both cases one can give
a systematic low temperature expansion [31, 32]. As we are mainly interested in the low-temperature NMR relaxation
rates, we first discuss this more general approach, applicable both in the spin chain and in the field theory. We shall
use the field theory notations but everything can be translated to the spin chain in a straightforward manner.

Our starting point is the Lehmann spectral representation,

Sαα(ω, q) =
∑
l

∫ ∞
−∞

dt eiωt−iql〈σαl+1(t)σα1 (0)〉T =
1

Z
∑
n,m

e−βEn(2π)2δ(~ω + En − Em)δ(q + Pn − Pm)|〈n|σα1 (0)|m〉|2 .

(B1)
Using the multiparticle energy eigenstates1 |θ1, . . . , θn〉 in the Lehmann representation (B1) leads to

Sαα(ω, q) =
1

Z

∞∑
r,s=0

Cααr,s (ω, q) (B2)

with α = x, y, z and

Cααr,s (ω, q) =

∫
dθ1 . . . dθr

(2π)rr!

∫
dθ′1 . . . dθ

′
s

(2π)ss!
e−βEr

(2π)2δ(~ω + Er − Es)δ(q + Pr − Ps) |〈θ1 . . . θr|σα(0, 0)|θ′1 . . . θ′s〉|2 , (B3)

where the energy and momentum eigenvalues are En = mc2
∑n
i cosh θi and Pn = mc

∑n
i sinh θi.

This series is a low-temperature expansion in the following sense. The term Cr,s (we omit the αα superscript) carries
a factor e−βEr < e−rβm, thus the small expansion parameter is e−βm. Its dependence on s is less obvious but note
that thanks to the energy conserving Dirac-delta, the energies of the two states with r and s particles are related. For
a fixed frequency ω and at low temperature one can truncate the double sum in both r and s. The partition function
can also be written as Z =

∑∞
n=0Zn where Zn has a factor of e−βEn .

Now the main problem to be solved is the regularization of the singularities present in the partition function and in
the matrix elements (form factors) of the operators in question. In infinite volume all Zn are singular due to the fact
that they contain a scalar product of two momentum eigenstates. Similarly, Cr,s inherits the kinematical poles of the
form factors whenever two rapidities in the two sets coincide, i.e. θi = θ′j for some i, j. Since the structure factor is a

1 More generally, in interacting field theories the basis of asymp- totic scattering states is used.
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well-defined physical quantity, these singularities must cancel each other. In order to make this manifest we reshuffle
the infinite series in a linked cluster expansion [31, 32]

χαα(t, x) =

∞∑
r=0,s=0

Dαα
r,s (t, x) , (B4)

where the terms

D0,s = C0,s , (B5)

D1,s = C1,s −Z1C0,s−1 , (B6)

D2,s = C2,s −Z1C1,s−1 + (Z2
1 −Z2)C0,s−2 + . . . (B7)

are supposed to be finite, and equivalent relations hold with the indices interchanged. In order to obtain a finite
result one needs to regularize the divergencies either in a continuum scheme by adding infinitesimal imaginary parts
to the rapidities [31], or by going to a large but finite volume L that satisfies 1� mL� emβ , so that the density of
thermally excited particles is small [31, 32]. The singularities manifest themselves as positive powers of L, while the
final result for the Dr,s should be ∼ O(L0). All the D1n(t, x) terms are given for any massive relativistic diagonal
scattering theory in Ref. 32, while the general expression for D22(t, x) can be found in Ref. 39.

The resulting series still can have diverging terms, signaling that the zero temperature quantity is already singular.
This happens around the single particle dispersion relation ~ω ∼ ε(k), where the zero temperature DSF is proportional
to an on-shell Dirac-delta which broadens at non-zero temperatures [31]. In these cases a resummation of infinitely
many terms is necessary in order to obtain the finite result. However, if we are interested in the small-ω behavior
in the disordered phase of the Ising model then due to ~ω � mc2 we are far from the mass shell. In this case the
individual terms are not singular and the truncated series should give a good approximation.

Appendix C: Detailed field theory calculation of local transverse DSF

In this appendix we provide the details of the calculations leading to Eq. (11). Our starting expression is Eq. (10)
from the main text,

C11(ω, q) =

∫ ∫
dθ

2π

dθ′

2π
|F ε2 (θ|θ′)|2e−βm cosh θ(2π)2δ[q +m(sinh θ − sinh θ′)]δ[ω +m(cosh θ − cosh θ′)] . (C1)

Both integrals can be performed using the Dirac-delta constraints. The system of equations can be brought to the
following form in terms of x = eθ

′
and y = eθ

x− y = ω̃ + p̃ ≡ A , (C2a)

1

x
− 1

y
= ω̃ − p̃ ≡ B , (C2b)

where ω̃ = ω/m, q̃ = q/m. This leads to the two solutions {x+, y+} and {x−, y−}

x± =
AB ±

√
AB(AB − 4)

2B
, (C3a)

y± =
−AB ±

√
AB(AB − 4)

2B
. (C3b)

These roots must be real and positive, so their product must be positive, implying

x+y+ = x−y− = −x+x− = −A
B

=
q̃ + w̃

q̃ − w̃
> 0 , (C4)

so q̃2 − w̃2 > 0. Their sum is also positive, leading to

x± + y± =
±
√
AB(AB − 4)

B
, (C5)
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so only the “ + ” solution is valid for B = ω̃ − q̃ > 0 and only the “ − ” solution is valid for B = ω̃ − q̃ < 0. Note
that since AB < 0, the expression under the square root is always positive so the reality condition is automatically
satisfied. Summarizing,

eθ± =
q2 − ω2 ±

√
(q2 − ω2)(q2 − ω2 + 4m2)

2m(ω − q)
, (C6)

eθ
′
± =

−q2 + ω2 ±
√

(q2 − ω2)(q2 − ω2 + 4m2)

2m(ω − q)
, (C7)

where the “+” roots are valid for q < −|ω| and the “-” roots are valid for q > |ω|. The Jacobian of the change of
variables

{m(cosh θ′ − cosh θ),m(sinh θ′ − sinh θ)} → {θ, θ′} (C8)

is m2 sinh(θ − θ′). Conveniently,

cosh(θ − θ′) = 1 + (q2 − ω2)/(2m2) , cosh θ± =
(
−ω ∓ q

√
1 + 4m2/(q2 − ω2)

)
/(2m) . (C9)

Using |F (ε)(θ|θ′)|2 = m2[1 + cosh(θ − θ′)]/2 we obtain

C11(ω, q) = e−mβ cosh θ±
q2 − ω2 + 4m2

2
√

(q2 − ω2)(q2 − ω2 + 4m2)
=

1

2
eβω/2

√
1 +

4m2

q2 − ω2
e
− β2 |q|

√
1+ 4m2

q2−ω2 , (C10)

where we used ±q = −|q|. The local dynamic structure factor is given by

C11(ω) =

∫
dq

2π
C11(ω, q) = 2

∫ ∞
|ω|

dq

2π
C11(ω, q) . (C11)

Note that as long as ω is non-zero, the exponential cuts off the diverging prefactor and the integrand remains finite.
This is no longer true for ω = 0 which signals a logarithmic singularity. We can extract the leading behavior in the
small-ω (and low-T ) limit as

C11(ω) ≈ 1

2
eβω/2

∫ ∞
|ω|

dq

π

(
2m

q
+

q

4m

)
e
− βm2

(
q2

4m2 +2+ω2

q2

)

≈ 1

2
eβω/2

∫ pm

ω

dq

π

(
2m

q
+

q

4m

)
e
− βm2

(
2+ω2

q2

)
+

1

2
eβω/2

∫ ∞
pm

dq

π

(
2m

q
+

q

4m

)
e
− βm2

(
q2

4m2 +2
)

=
eβω/2e−mβ

32π

{
2ω

m
e−

βm(m+ω)
2m+ω

(
e
βm
2 (2m+ ω)− ωe

βmω
4m+2ω

)
+
(
16m− βω2

) [
Γ

(
0,

mβω

4m+ 2ω

)
− Γ

(
0,
mβ

2

)]}
≈ −m

π
eβω/2e−mβ

[
ln

(
βω

4

)
− 1

2mβ
+ γE

]
,

(C12)

where the incomplete gamma function Γ(a, z) =
∫∞
z
ta−1e−tdt, Euler’s constant γE ≈ 0.57712, and pm =

√
ω(2m+ ω)

is the extreme point of the exponent.

1. Alternative derivation of the local transverse DSF

Another way to obtain the result in Eq. (11) is to focus on the local DSF from the start, defined as

Sε(ω) =

∫
dt eiωt〈ε(0, t)ε(0, 0)〉T . (C13)

This contains a disconnected piece proportional to δ(ω). The first nontrivial term in the expansion of the connected
part is

C11(ω) =

∫
dθ

2π

∫
dθ′

2π
|F ε2 (θ|θ′)|2e−βm cosh θ2πδ[ω +m(cosh θ − cosh θ′)] . (C14)
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Let us assume that ω > 0 so the energy conservation condition has two real solutions θ+ and θ− = −θ+ for all θ,
where we denote the positive solution by

θ+ = arccosh(cosh θ + ω/m) > 0 . (C15)

Now δ[ω +m(cosh θ − cosh θ′)] = 1
m sinh θ+

[δ(θ′ − θ+) + δ(θ′ + θ+)] , so

C11(ω) = m

∫
dθ

2π

e−βm cosh θ√
(cosh θ + ω/m)2 − 1

[1 + cosh θ(cosh θ + ω/m)] , (C16)

where we used the identity cosh2[(θ − θ+)/2] + cosh2[(θ + θ+)/2] = 1 + cosh θ cosh θ+. Introducing the shorthand
notation ω̃ = ω/m and changing integration variable to u = cosh θ,

C11(ω) =
m

π

∫ ∞
1

du e−mβu
u2 + ω̃u+ 1√

(u− 1)(u+ 1)(u− 1 + w̃)(u+ 1 + w̃)
. (C17)

The integral is singular for ω = 0. To extract the small-ω behavior, we can approximate the integral by

C11(ω) ≈ m

π

∫ ∞
1

du e−mβu
u2 + 1

(u+ 1)
√

(u− 1)(u− 1 + w̃)
≈ m

π

∫ ∞
0

dv e−mβ(1+v) 1 + v/2√
v(v + w̃)

=
m

π
e−mβ

[
eβω/2K0

(
βω

2

)
+

√
π

4mβ
U(1/2, 0, βω)

]
,

(C18)

where K0(x) is the modified Bessel function of the second kind and U(a, b, z) is the confluent hypergeometric function.
Expanding the result for small ω we find

C11(ω) ≈ m

π
e−mβ

[
− ln

(
βw

4

)
+

1

2mβ
− γE

]
(C19)

which agrees with the result in Eq. (C12).

Appendix D: Calculations of local transverse DSF in the spin chain: Truncated form factor series method

In this appendix we present the form factor calculation, analogous to that in App. C, in the spin chain. The
transverse magnetization on the lattice is given in terms of the Jordan–Wigner fermions as

σxj = 1− 2c†jcj . (D1)

The Hamiltonian is quadratic in these fermionic operators and it is diagonalized by going to momentum space and
performing the Bogoliubov transformation

1√
L

L∑
j=1

cje
ikj = c(k) = cos(ϑk/2)α(k) + i sin(ϑk/2)α†(−k) , (D2a)

1√
L

L∑
j=1

c†je
ikj = c†(−k) = i sin(ϑk/2)α(k) + cos(ϑk/2)α†(−k) (D2b)

with

eiϑk =
g − eik√

1 + g2 − 2g cos k
=

2J(g − eik)

ε(k)
. (D3)

The ground state expectation value of σxj is then easily calculated to be

〈σx〉 ≡ 〈0|σxj |0〉 = 1− 2
1

L

L∑
n=1

sin2(ϑk/2) =
1

L

L∑
n=1

(
1− 2 sin2(ϑk/2)

)
=

1

L

L∑
n=1

cos(ϑk) −→
∫ π

−π

dk

2π
cos(ϑk) . (D4)
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We can also compute the matrix elements

〈0|σxj |k, k′〉 ≡ 〈0|σxj α
†
kα
†
k′ |0〉 =

2i

L
e−i(k+k′)j sin

(
ϑk − ϑk′

2

)
, (D5)

〈k|σxj |k′〉 ≡ 〈0|αk σxj α
†
k′ |0〉 = − 2

L
ei(k−k

′)j cos

(
ϑk + ϑk′

2

)
+ δk,k′ 〈σx〉 . (D6)

The first contributions to the local DSF in the Lehmann representation are

C00(ω) = 2πδ(ω) 〈σx〉2 , (D7)

C11(ω) =
∑
n,m

e−βεn2πδ(ω + εn − εm)

[
δ(ω) 〈σx〉2 δn,m +

(
2

L

)2

cos2

(
ϑkn − ϑkm

2

)
− δn,m

4

L
cos

(
ϑkn − ϑkm

2

)]
,

(D8)

where εn = ε(kn) with kn = 2πn/L, n = −L/2 + 1, . . . L/2 (Ramond sector). When calculating D11(ω), the first term
in C11(ω) cancels exactly Z1C00(ω). The remaining terms containing δn,m contribute to the ω = 0 response. Let us
focus on the first nontrivial term contributing at finite ω,

F (ω) ≡
(

2

L

)2∑
n,m

e−βεn2πδ(ω + εn − εm) cos2

(
ϑkn − ϑkm

2

)
−→ 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
e−βε(k)2πδ(ω + ε(k)− ε(k′)) cos2

(
ϑ(k)− ϑ(k′)

2

)
. (D9)

The energy Dirac-delta can only be satisfied if

εmin = 2J |1− g| ≤ ε(k) + ω ≤ 2J(1 + g) = εmax , (D10)

which implies

cos k0 ≡ −1 +
1 + g

g
ω̃ − ω̃2

2g
≤ cos k ≤ 1 +

|1− g|
g

ω̃ − ω̃2

2g
, (D11)

where ω̃ ≡ ω/(2J). Note that for ω < 0 the first inequality is automatic, while for 0 < ω < 2∆ the second inequality
is automatically satisfied. We focus on the latter case from now on. Then cos k′ is given by

cos k′ =
1 + g2 − (ω + ε(k))2/(4J2)

2g
= cos k − ω̃

g

√
1 + g2 − 2g cos k − ω̃2

2g
(D12)

which has two solutions which we denote by k′1 > 0 and −k′1. Changing variables and performing the integration over
k′ we obtain

F (ω) =
2

π

∫ k0

−k0

dk e−βε(k) ε(k′1(k))

4J2g sin(k′1(k))

[
cos2

(
ϑ(k)− ϑ(k′1(k))

2

)
+ cos2

(
ϑ(k) + ϑ(k′1(k))

2

)]
. (D13)

Now we use the identity cos2[(x− y)/2] + cos2[(x+ y)/2] = 1 + cos(x) cos(y), the explicit forms of ε(k) and

cosϑ(k) =
g − cos k√

1 + g2 − 2g cos k
(D14)

together with ε(k′1) = ε(k) + ω to arrive at

F (ω) =
1

Jhπ

∫ k0

−k0

dk e−βε(k) 2ε̃(k)(ε̃(k) + ω̃)− sin2 k − ω̃/g cos k(ε̃(k) + ω̃/2) + ω̃2/2

ε̃(k)
√

1− (cos k − ω̃/gε̃(k)− ω̃2/(2g))2
, (D15)

where ε̃(k) = ε(k)/(2J). We would like to obtain an approximate analytical result in the ω → 0 limit. Then we can
keep only the O(ω̃0) terms in the numerator. Changing variables to u = cos k,

F (ω) ≈ 2

Jgπ

∫ 1

−1+(1+g)/g ω̃−ω̃2/(2g)

du e−β2Je(u) 2e(u)2 − (1− u2)√
1− u2e(u)

√
1− (u− ω̃e(u)/g − w̃2/(2g))2

∼ 4

π

|1− g|
2Jg

e−β∆ ln ω̃ =
1

π

∆

J2g
e−β∆ ln ω̃

(D16)

with e(u) =
√

1 + g2 − 2gu. It’s not surprising that the same logarithmic divergent behavior appears as in Eq. (E13)
and Eq.(11). Comparing to the field theory we have to keep in mind that between ε and σx there is a rescaling factor
of −2a = −~c/J which leads to a perfect match of the prefactors of lnω.
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Appendix E: Transverse DSF Sxx(q, ω) in the spin chain

In this section we discuss the transverse DSF in the spin chain. In this section, we report the calculation of the
exact transverse DSF and specify its low temperature and low frequency behavior at the end of the calculation. The
analogous derivation in the scaling limit can be found in Appendix G.

The transverse DSF follows by

Sxx(ω, q) =

N∑
l=1

∫ ∞
−∞

dteiωt−iqla · [〈σxl (t)σx0 〉T − 〈σ
x
l (t)〉T 〈σx0 〉T ] , (E1)

where ~ω and ~q are transferred energy and momentum, respectively. In the following we set the lattice spacing as

a = 1 and ~ = 1. Starting from σxi = 1 − 2c†i ci, going to momentum space and performing the Bogoliubov rotation,
the thermal expectation values can be calculated in a straightforward way using the Hamiltonian Eq. (A2) and Wick’s
theorem. The resulting expression for Sxx(ω, q) reads

Sxx(ω, q) =
4

N

∑
k

[
2πδ(ω − εk+q/2 + εk−q/2) · (u2

k+q/2u
2
k−q/2 − uk+q/2vk+q/2uk−q/2vk−q/2) · (1− nk+q/2)nk−q/2

+2πδ(ω + εk+q/2 + εk−q/2) · (u2
k−q/2v

2
k+q/2 + uk+q/2vk+q/2uk−q/2vk−q/2) · nk+q/2nk−q/2

+2πδ(ω − εk+q/2 − εk−q/2) · (u2
k+q/2v

2
k−q/2 + uk+q/2vk+q/2uk−q/2vk−q/2) · (1− nk+q/2)(1− nk−q/2)

+2πδ(ω + εk+q/2 − εk−q/2) · (v2
k+q/2v

2
k−q/2 − uk+q/2vk+q/2uk−q/2vk−q/2) · nk+q/2(1− nk−q/2)

]
=

∫ π

−π
dk
[
2(1 + f(k, q)) · δ(ω − εk−q/2 + εk+q/2) · (1− nk−q/2)nk+q/2 + (1− f(k, q))

·(δ(ω − εk−q/2 − εk+q/2) · (1− nk−q/2)(1− nk+q/2) + δ(ω + εk−q/2 + εk+q/2) · nk−q/2nk+q/2)
]

(E2)

with Fermi distribution function nk =
[
eεk/(kBT ) + 1

]−1
and

f(k, q) = 4J2 ([g − cos(k − q/2)][g − cos(k + q/2)]− sin(k − q/2) sin(k + q/2)) /(εk−q/2εk+q/2) . (E3)

Here we have taken advantage of particle and energy conservation during the derivation, for example∫∞
−∞ dteiωt〈eiHtγk−q/2γ†k+q/2e

−iHtγk+q/2γ
†
k−q/2〉T = 2πδ(ω + εk+q/2 − εk−q/2)(1− nk−q/2)nk+q/2. Focusing on ω > 0

region, after integration, we obtain

Sxx(ω, q) =
∑
s=±

[
2(1 + f(ks, q)) ·

(1− nks−q/2)nks+q/2

|D−+
ks

(ω, q)|
+ (1− f(ks, q)) ·

(1− nks−q/2)(1− nks+q/2)

|D−−ks (ω, q)|

]
, (E4)

where k± are solutions of energy conservation constraint

cos(k±) =
ω2 cos

(
q
2

)
16J2g sin2

(
q
2

) ±( ω2

16J2 sin2
(
q
2

) − 1

)1/2(
ω2

16J2g2 sin2
(
q
2

) − 1

)1/2

, (E5)

and the Jacobians are

|D−−ks (ω, q)| =

∣∣∣∣∣4J2g

(
sin
(
ks + q

2

)
εks+q/2

+
sin
(
ks − q

2

)
εks−q/2

)∣∣∣∣∣ , s = ± (E6)

|D−+
ks

(ω, q)| =

∣∣∣∣∣4J2g

(
sin
(
ks + q

2

)
εks+q/2

−
sin
(
ks − q

2

)
εks−q/2

)∣∣∣∣∣ , s = ± . (E7)

The transverse DSF, measured in units of ~/J , is plotted in Fig. 3 as a function of dimensionless variables using
the infrared frequency and wave number scales ∆/~ and ∆a/(~c), respectively. The upper threshold in Fig. 3 (a) is
given by

ωup(q) = 2εq/2±π = 4J
√
g2 + 2g cos (q/2) + 1 , (E8)
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FIG. 3. (a) The transverse DSF (J/~)Sxx(ω, q) for ω > 0 at ∆ = 0.1J , kBT = 0.01J . qIR/a = ∆/(~c) = (g − 1)/a is the
infrared wave number scale. The continuum above 2∆ is contributed from the second term of Eq. (E4). (b) The enlarged view
of the small rectangular region in (a) exhibits Sxx(ω, q) in the small momentum and low energy region which comes from the
first term in Eq. (E4).

while the lower thresholds are

ωlow1(q) = 2εq/2 = 4J
√
g2 − 2g cos (q/2) + 1 , (E9)

ωlow2(q) = ε0 + εq = 2J
(√

g2 − 2g cos q + 1 + |g − 1|
)
. (E10)

In Fig. 3 (b), the thresholds are ωlow’(q) = εq/2+k and ωup’(q) = εq/2−k with k = arccos [cos (q/2)/g] .

1. Low temperature behavior of the local transverse DSF

We now focus on the local transverse DSF in the quantum disordered region with gap much larger than the
temperature, i.e. kBT � ∆. The leading contribution in Eq. (E4) is of the order e−∆/(kBT ), and is given by the first
term of Eq. (E4). Then the local transverse DSF follows immediately,

Sxx(ω) =

∫ π

−π

dq

2π
Sxx(ω, q) =

∫ π

qc

dq

π
Sxx(ω, q) ≈

∫ π

qc

dq

π

∑
s=±

2[(1 + f(ks, q)]
(1− nks−q/2)nks+q/2

|D−+
ks

(ω, q)|
(E11)

≈
∫ π

qc

dq

π

∣∣∣∣∣
√

1 + g2 − 2g cos q2
gJ sin q

2

∣∣∣∣∣ e−εk−+q/2/(kBT ) , (E12)

where qc ≈ ω/2J is the lower bound obtained from ω = ωup(q) at ω → 0 limit. The asymptotic behavior of the
integral in the ω � kBT � ∆ regime is determined in Appendix H with the result

Sxx(ω) ≈ e
− ∆
kBT

π

[
− 2∆

J(∆ + 2J)

(
ln

(
ω

4kBT

)
+ γE

)
+

∆2 + 12J2 + 6∆J

6J2(∆ + 2J)2
kBT

]
. (E13)

The asymptotic result Eq. (E13) shows that finite temperature local transverse DSF diverges logarithmically as ω → 0.
The energy conservation constraints in Eq. (E4) implies only the first term of Eq. (E4) can contribute to such low-
energy behavior. Furthermore, the energy conservation leads to a constraint for the phase space. After integration
of Eq. (E2), the constraint gives rise to the 1/q dependency in the integrand of Eq. (E12) for small q, which is just
the case for the lower bound dependent on the frequency. This finally results in the logarithmic behavior. The
temperature dependence shows an exponential decay together with a logarithmic correction in the prefactor. In the
scaling limit we obtain

Sxx(ω) ≈ ∆

πJ2
e
− ∆
kBT

[
− ln

(
ω

4kBT

)
+
kBT

2∆
− γE

]
. (E14)
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Using J = c/(2a) and recalling the rescaling factor 2a between the σx and the field theory operator ε, we find perfect
agreement with the result (11).

In the kBT � ω � ∆ region, we can simply approximate the integral by the steepest descent method and obtain
the asymptotic result

Sxx(ω) ≈ 1

π
e−∆/(kBT )

√
πkBT

ω

2∆

J(2J + ∆)
. (E15)

FIG. 4. The local transverse DSF as a function of temperature at fixed ∆ = 0.1J , and ω = 10−4J . In the high T region it
clearly deviates from the exponentially decaying behavior.

Appendix F: Detailed field theory calculation of longitudinal DSF

In this section we turn to the DSF of the order parameter field. This operator is highly nonlocal in terms of the
Jordan–Wigner fermions prohibiting an exact calculation based on free fermion techniques. However, one can still
use the truncated form factor series approach. This approach has been used in the study of local spin DSF and NMR
relaxation rate 1/T1 in Refs. [24–26]. The calculation of the form factors of σz are far from being trivial, but are
known exactly even on the finite spin chain [34]. Here we perform the calculation in the paramagnetic phase in the
scaling limit, focusing on the DSF of the continuum spin operator σ(x) in Eq. (6). In the disordered phase, the σ(x)
operator creates and destroys particles, so its only non-zero matrix elements are between states with particle numbers
of different parity, that is, the total number of particles in the two states must be odd. The vacuum form factors are
given by [33]

Fσn (θ1, . . . , θn) = 〈0|σ|θ1, . . . , θn〉 = σ̄
∑
i<j

tanh

(
θi − θj

2

)
(F1)

with σ̄ = s̄m1/8 where s̄ is defined in Eq. (6) and we work with ~ = c = 1 for the following field theory calculation.
All other matrix elements can be obtained by the crossing relation. For example,

〈θ|σ|θ1, . . . , θn〉 = 〈0|σ|θ + iπ, θ2, . . . , θn〉 , (F2)

whenever θ 6= θj which will be the case in our calculations.
Thus the first contributions to the DSF come from D01(t, x) = C01(t, x) and D10(t, x) = C10(t, x), yielding

Szz01 (ω, q) = σ̄2

∫
dθ

2π
(2π)2δ(ω −m cosh θ)δ(q −m sinh θ) , (F3)

and S10(ω, q) = eβωS01(−ω,−q). Due to the energy conserving Dirac-delta, both S10 and S01 are zero for ω < m. It
is clear that all D0,s and Dr,0 will also give zero contribution, which reflects the fact that the zero temperature result
is identically zero.

Energy conservation at small frequencies also leads to a great simplification in higher orders, similarly to the case
of the transverse magnetization in the previous sections. Because of the Dirac-delta and ω ≈ 0 the two states in each
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matrix element must have almost equal energies, so Sr,s(ω ≈ 0, q) ∼ e−max(r,s)·βm. This implies that the classification
in terms of orders of e−βm is simplified, because in every order there is only a finite number of terms. For instance,
in the second order one has S12 + S21, in the third order S23 + S32, in the fourth S14 + S41 + S34 + S43, and so on.

Thus up to the second order one needs only two terms, S12 and S21. We use the expression for D12 given in Ref. 31
that can be shown to be equivalent to the more general formula in Ref. 32,

D12 =
1

2

∫
dθ

2π

∫
C+

∫
C−

dθ1

2π

dθ2

2π
|Fσ3 (θ + iπ, θ1, θ2)|2e−βm cosh θ

× 2πδ[q +m(sinh θ − sinh θ1 − sinh θ2)]2πδ[ω +m(cosh θ − cosh θ1 − cosh θ2)]

− σ̄2

∫
dθ

2π
e−mβ cosh θ2πδ(ω −m cosh θ)2πδ(q −m sinh θ) ,

(F4)

where the contours C± are running above and below the real axis, respectively, to avoid the kinematical poles of the
form factors. But θ = θi (i = 1, 2) is impossible for ω < m, so the integrals avoid the poles even for real rapidities and
there is no need to shift the contours off the real axis. The last term is proportional to D01 so it does not contribute
for ω < m and we are left with

Szz12 (ω, q) =
1

2

∫
dθ

2π

∫
dθ1

2π

∫
dθ2

2π
|Fσ

z

3 (θ + iπ, θ1, θ2)|2e−βm cosh θ

× 2πδ[q −m(sinh θ1 + sinh θ2 − sinh θ)]2πδ[ω −m(cosh θ1 + cosh θ2 − cosh θ)] .

(F5)

Exploiting the Dirac-deltas we perform the integrals over rapidities θ1,2. The Jacobian of the transformation is
m2 sinh(θ1 − θ2). The set of two constraint equations coming from the Dirac-deltas has two solutions, {θ1, θ2} =
{θ+, θ−} and {θ1, θ2} = {θ−, θ+}, where

θ± = log

[
1

2

(
ωθ + qθ ±

√
(ω2
θ − p2

θ)(ω
2
θ − q2

θ − 4)

ωθ − qθ

)]
(F6)

with qθ ≡ q/m+ sinh θ, ωθ ≡ ω/m+ cosh θ. The rapidities θ1,2 must be real which gives restrictions on the remaining
rapidity θ. The reality condition of θ1,2 is equivalent to the condition that eθ1 +eθ2 and eθ1 eθ2 must be positive, which
gives ωθ + qθ > 0, ωθ − qθ > 0. Moreover, the combination under the square root must also be positive, ω2

θ − q2
θ > 4.

One of the first two conditions, e.g. ωθ − qθ > 0 can then be dropped which leaves us with two conditions. The
solution of ω2

θ − q2
θ > 4 for |ω| < m is the following:

θ < θ(−) |ω| < q , (F7a)

θ > θ(+) −|ω| > q , (F7b)

θ < θ(−) or θ > θ(+) −ω < q < ω , (F7c)

and for ω < q < −ω (ω < 0) there is no solution. Here

θ(±) = log

[
q2 − ω2 + 3m2 ±

√
(q2 − ω2 +m2)(q2 − ω2 + 9m2)

2m(ω − q)

]
. (F8)

It turns out that the other condition, ωθ + qθ > 0, is automatically satisfied, so Eqs. (F7) give the integration domain
of θ in the various cases depending on ω and q. Thus we find

Szz12 (ω, q) = 2

∫
D

dθ

2π

e−βm cosh θ|Fσ3 [θ + iπ, θ+(θ), θ−(θ)]|2

m2
√

(ω2
θ − q2

θ)(ω2
θ − q2

θ − 4)
, (F9)

where D denotes the domain given in Eqs. (F7) and we used that sinh(θ1 − θ2) =
√

(ω2
θ − q2

θ)(ω2
θ − q2

θ − 4)/2. It is

easy to see that S21(ω, q) = eβωS12(−ω, q), so we have the total leading O(e−2mβ) contribution to the DSF. The
result Szz12 (ω, q) + Szz21 (ω, q) is plotted in Fig. 5.

The corresponding local DSF reads

Szz12 (ω) =
1

2

∫
dθ

2π

∫
dθ1

2π

∫
dθ2

2π
e−βm cosh θ|F z3 (θ + iπ, θ1, θ2)|22πδ[ω −m(cosh θ1 + cosh θ2 − cosh θ)]

=
1

2

∫
dθ1

2π

∫
dθ2

2π

eβω−βm(cosh θ1+cosh θ2)√
(m cosh θ1 +m cosh θ2 − ω)2 −m2

[
|Fσ3 (θ0 + iπ, θ1, θ2)|2 + {θ0 → −θ0}

]
,

(F10)
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FIG. 5. The leading O[e−2∆/(kBT )] contribution to the longitudinal dynamic structure factor in the scaling limit,
∆2/(~2c σ̄2)Szz, at kBT = ∆/10.

where θ0 = arccosh(cosh θ1 + cosh θ2 − ω/m) > 0. At the second order we also need S21(ω) = eβωS12(−ω).

We can give approximate expressions for S12 and S21. For βm � 1 only a small region around the origin in the
(θ1, θ2) plane contributes, so we can expand both the exponent and the rest of the integrand to second order using the
explicit form factors. Performing the resulting Gaussian integrals, and expanding the result in ω/m (with T/m� 1)
we obtain the result in Eq. (12):

Szz(ω) ≈ Szz12 (ω) + Szz21 (ω) ≈ σ̄2

m

3
√

3

4π

(
1

mβ

)2

e−2mβ
[
eβω

(
1 + 2

ω

m

)
+
(

1− 2
ω

m

)]
≈ σ̄2

m

6
√

3

4π

(
T

m

)2

e−2mT =
σ̄2

∆

3
√

3

2π

(
kBT

∆

)2

e
−2 ∆

kBT .

(F11)

The correction terms to this result are the third order S23 + S32. However, these terms contain singularities for
which the regularization has not yet been worked out explicitly. But as we discussed, unlike the case of the broadening
of the Dirac-delta in the zero temperature DSF, there is no physical reason why unexpected singularities should show
up in the higher terms, thus we stop at the second order.

Appendix G: Exact transverse DSF in the field theory

Using the plane wave expansion Eq. (A3) and ε = iψ̄ψ, the connected correlation function

Cε(x, t) = 〈ε(x, t)ε(0, 0)〉T − 〈ε(x, t)〉〈ε(0, 0)〉T (G1)

can be written as a four-fold rapidity integral of a linear combination of thermal expectation values of products of
four creation/annihilation operators. Using the thermal Wick’s theorem,

〈a±(θ)b1b2b3〉T = f±(θ)
(
{a, b1}〈b2b3〉T − {a, b2}〈b1b3〉T + {a, b3}〈b1b2〉T

)
, (G2)

where a+ = a†, a− = a, and f+(θ) = (1 + eβεθ )−1 = f(θ), f−(θ) = (1 + e−βεθ )−1 = 1− f(θ), one arrives at

Cε(x, t) =
m2

4

∫
dθ

2π

∫
dθ′

2π

[
f(θ)f(θ′)(eθ−θ

′
− 1)ei(p+p

′)·x + (1− f(θ))(1− f(θ′))(eθ−θ
′
− 1)e−i(p+p

′)·x

+f(θ)(1− f(θ′))(eθ−θ
′
+ 1)ei(p−p

′)·x + (1− f(θ))f(θ′)(eθ−θ
′
+ 1)e−i(p−p

′)·x
]
,

(G3)
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where we used the Lorentz product notation, p · x = εt− px. At zero temperature T = 0, f(θ) = 0 and we obtain the
closed form result

C(x, t) =
m2

4

∫
dθ

2π

∫
dθ′

2π
(eθ−θ

′
− 1)e−i(p+p

′)·x =
m2

4

∫
dθ

2π
eθe−ip·x

∫
dθ′

2π
e−θe−ip

′·x − m2

4

(∫
dθ

2π
e−ip·x

)2

= m2K2
0

(
m
√
x2 − t2

)
−m2K2

1

(
m
√
x2 − t2

)
.

(G4)

Note that since (p+ p′) · x = (εθ + εθ′)t− (pθ + pθ′)x and εθ + εθ′ ≥ 2∆, after Fourier transformation S(ω, q)|T=0 = 0
for 0 < ω < 2∆. At low temperature, the leading order can be obtained by approximating f(θ) ≈ e−βε(θ) and keeping
only first powers of f(θ) :

C(x, t) ≈ m2

4

∫
dθ

2π

∫
dθ′

2π

[
(1− f(θ)− f(θ′))(eθ−θ

′
− 1)e−i(p+p

′)·x

+f(θ)(eθ−θ
′
+ 1)ei(p−p

′)·x + f(θ′)(eθ−θ
′
+ 1)e−i(p−p

′)x
]
.

(G5)

Taking the Fourier transform, for frequencies |ω| < m only the second line gives nonzero contribution and it recovers
the expression Eq. (10).

Appendix H: Asymptotic analysis of the integral Eq. (E12)

In this appendix we report the details of the asymptotic analysis of Eq. (E12) for the local transverse DSF. We

approximate the integral by dividing it into two integrals at the extreme point qm =
√

ω∆
J(∆+2J) of the exponent:

Sxx(ω) ≈
∫ π

qc

dq

π

∣∣∣∣∣
√

1 + g2 − 2g cos q2
gJ sin q

2

∣∣∣∣∣ e−εk−+q/2/(kBT )

≈
∫ π

qc

dq

π

∆
Jq + q

(
J

2∆ + ∆
24J + 1

2

)
∆
2 + J

· exp

{
− 1

kBT

[
∆ +

∆

4J(∆ + 2J)

ω2

q2
+ q2J

(
J

2∆
+

1

4

)]}
≈
∫ qm

qc

dq

π

∆
Jq + q

(
J

2∆ + ∆
24J + 1

2

)
∆
2 + J

· exp

{
− 1

kBT

[
∆ +

∆

4J(∆ + 2J)

ω2

q2

]}
+

∫ π

qm

dq

π

∆
Jq + q

(
J

2∆ + ∆
24J + 1

2

)
∆
2 + J

· exp

{
− 1

kBT

[
∆ + q2J

(
J

2∆
+

1

4

)]}

=
1

π

e
− 1
kBT

(∆+ ∆J
∆+2J+ω

4 )

96∆J3(∆ + 2J)2

[
ω
(
∆2 + 12J2 + 6∆J

) (
4∆Je

∆J
kBT (∆+2J) − ωe

ω
4kBT (∆ + 2J)

)
−∆Je

ω
4kBT

+ ∆J
kBT (∆+2J)

(
96∆J(∆ + 2J)− ω2

kBT

(
∆2 + 12J2 + 6∆J

))(
Γ

(
0,

J∆

kBT (2J + ∆)

)
− Γ

(
0,

ω

4T

))]

+
1

π

e
− 1
kBT

(
∆+

π2J(∆+2J)
4∆ +ω

4

)
6J2(∆ + 2J)2

[
6∆J(∆ + 2J)e

1
kBT

(
π2J(∆+2J)

4∆ +ω
4

)(
Ei

(
−Jπ

2(2J + ∆)

4∆T

)
− Ei

(
− ω

4kBT

))
+kBT

(
∆2 + 12J2 + 6∆J

)(
e
π2J(∆+2J)

4∆kBT − e
ω

4kBT

)]
≈ 1

π
e
− ∆
kBT

(
− 2∆

J(∆ + 2J)

(
ln

(
ω

4kBT

)
+ γE

)
+

∆2 + 12J2 + 6∆J

6J2(∆ + 2J)2
kBT

)
+ · · ·

≈ ∆

πJ2
e
− ∆
kBT

[
− ln

(
ω

4kBT

)
+
kBT

2∆
− γE

]
+ · · · ,

(H1)

with the incomplete gamma function Γ(a, z) =
∫∞
z
dt ta−1e−t and the exponential integral function Ei(z) =

−
∫∞
−z

e−t

t dt. The last line is obtained by taking scaling limit ∆/J → 0, namely, g → gc, and the result agrees

with field theory result Eq.(11).
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Appendix I: NMR relaxation rates for large nuclear spin

For nuclear spin I > 1/2, the nuclear quadrupole interaction splits the nuclear spin energy levels, and Eq. (14a)
needs to be evaluated based on Bloch-Wangsness-Redfield theory using the density matrix for nuclear spin ραα′
[40–43],

dραα′

dt
=
∑
ββ′

Rαα′,ββ′ρββ′ , (I1)

where α, α′, β and β′ specify the nuclear spin energy levels, and Rαα′,ββ′ is the element of the relaxation matrix R.
In this approach, 1/T2 = Rαα−1,αα−1 for the Iz = α to α− 1 transition of a given nuclear spin I [40], and

1

T2
= A

1

T1
+ γ2

n h
2 τo, (I2)

where the pre-factor A is a constant that depends on I, γn is the nuclear gyromagnetic ratio of the observed nuclear
spin, h2 represents the averaged fluctuating hyperfine magnetic field along the direction of the external magnetic field
(i.e. x-axis in the present case of TFIC), τo is the correlation time (ωnτo � 1), and the second term represents 1/T ′2
within the framework of Redfield’s theory. In the case of nuclear spin I = 1/2 with no nuclear quadrupole splitting,
A = 1/2 [40]. For the Iz = +1/2 to −1/2 central transition of I = 3/2, earlier work showed that A = 7/2 [41, 42]. In
the case of I = 9/2 at 93Nb sites in the TFIC candidate material CoNb2O6, the calculations of A are straightforward
but rather tedious, and we obtained A = 49/2.
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