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We describe a mechanism for order fractionalization in a two-dimensional Kondo lattice model, in which
electrons interact with a gapless spin liquid of Majorana fermions described by the Yao-Lee (YL) model. When
the Kondo coupling to the conduction electrons exceeds a critical value, the model develops a superconducting
instability into a state with a a spinor order parameter with charge e and spin S = 1/2. The broken symmetry
state develops a gapless Majorana Dirac cone in the bulk. By including an appropriate gauge string, we can
show that the charge e, spinorial order develops off-diagonal long range order that allows electrons to coherently
tunnel arbitrarily long distances through the spin liquid.

I. INTRODUCTION

One of the fascinating properties of quantummaterials is the
phenomenon of fractionalization, whereby excitations break-
up into emergent particles with fractional quantum numbers.
Well-established examples of fractionalization include anyons
in the quantum Hall effect and the break-up of magnons into
S = 1/2 spinons in the one dimensional Heisenberg spin chain.
There is great current interest in the possibility that new pat-
terns of fractionalization can lead to new kinds of quantum
phases and quantum materials.

Figure 1. In second quantization, the “physical” Hilbert space of
definite particle numbers is expanded to a Fock space that allows the
description of particle fields.

There are some important parallels between second quan-
tization and fractionalization. We recall that even though a
many-body electron wave function evolves in a Hilbert space
of rigorously fixed particle number, physical quantities such
as density

ρ(x) =
∑
j

δ(x − xj) −→ ψ†(x)ψ(x), (1)

factorize into creation and annihilation operators ψ†(x) and
ψ(x) that link Hilbert spaces of different particle number (see
Fig. 1). Thus the description of particles requires an expan-
sion of the Hilbert space into a larger Fock space. Normally
we take this for granted - we are quite accustomed to the notion

Figure 2. Fractionalization involves the break-up of physical operators
such as spin, into excitations with fractional quantum numbers which
require an emergent Fock space for their description.

that photons create particle-hole pairs, content in the under-
standing that gauge invariance (ψ → eiα(x)ψ, A→ A+∇α(x))
preserves particle number. In a similar fashion, fractionaliza-
tion can be regarded as an emergent second-quantization, in
which the microscopic variables, such as the spin, factorize
into operators that describe fractionalized quasiparticles (see
Fig. 2), thus in a spin liquid a spin flip creates a pair of
spinons. Such fractionalized particles live within an emergent
Fock space, and like their vacuum counterparts, move under
the influence of a gauge field which preserves the constraints
of the physical Hilbert space.
One of the most dramatic manifestations of second-

quantization is the formation of superfluid condensates, in
which the field operators develop off-diagonal long-range or-
der (ODLRO), manifested as a factorization of the density
matrix in terms of the order parameter 〈ψ(x)〉 = Ψ(x),

〈ψ(x)ψ†(y)〉
|x−y |→∞
−−−−−−−→ Ψ(x)Ψ(y)∗. (2)

The description of superconductors is more subtle, for now the
condensate field operator carries charge and transforms under
a gauge transformation ψ̂(x) → eiα(x)ψ̂(x), ®A → ®A + ∇α,
so that 〈Ψ(x)〉 vanishes after averaging over the gauge fields,
a result known as Elitzur’s theorem. A sharper definition of
ODLRO[1] then requires the introduction of a gauge invariant
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boson field[2]

ψ̂N (x) = ψ̂(x)e−i
∫
d3r ®A(r)· ®Ecl (r−x), (3)

where ®Ecl(r) is the classical electric field of a point charge at
the origin, i.e ∇ · Ecl = δ(r), ®Ecl(r) = r̂/(4πr2)), and ®A is
the fluctuating, quantum vector potential. Off-diagonal long-
range order is then defined by

〈ψ̂N (x)ψ̂†N (y)〉
|x−y |→∞
−−−−−−−→ Ψ(x)Ψ(y)∗, (4)

where Ψ(x) = 〈ψ̂N (x)〉. The massive nature of the vector po-
tential inside aMeissner phase, guarantees that this result holds
true, even when quantum fluctuations are included. These
considerations lead us to ask: if fractionalization is a kind of
emergent second-quantization, is there a fractionalized analog
of superfluidity or superconductivity?

Early theoretical studies of a possible interplay between
fractionalization and broken symmetry were inspired by the
RVB-theory of cuprate superconductivity[3–5]; in these pa-
pers fractionalization appears under the guise of “spin-charge
separation”. In particular, the appearance of a charge e bo-
son in the slave-boson decomposition of the electron operator
c†jσ → f †jσbj raised the early intriguing possibility of novel
order parameters associated with spin-charge separation. Al-
though the presence of an emergentU(1) gauge field associated
with spin-charge separation appeared to forstall a supercon-
ducting, charge e condensate, it was soon realized[6, 7] that
there might be a topological effect. In particular, the topo-
logical interplay of the electromagnetic and emergent U(1)
gauge fields, Wen and Lee[6] identified a two-parameter fam-
ily of vortices and subsequently, Sachdev proposed a possible
stablization of h/e vortices[7] near a superconductor, pseudo-
gap phase boundary. The modern term “fractionalization”
appeared in a second-generation of theories[8, 9] that were
inspired by the pseudo-gap phase of cuprate superconductors.
These theories identified the fractionalization of electrons and
spins with an emergent Z2 gauge field. Senthil and Fisher[9]
introduced the term “vison” to describe the vortices of the Z2
field. In their theory, the development of a gap in the vison
spectrum gives rise to a novel fractionalized insulator gapped
vison excitations.

Our paper returns to these early lines of investigation, taking
crucial advantage of the Kitaev approach to introduce a new
platform for the discussion, in the form of a family of models
which control the gauge fields that are at the heart of fraction-
alization. The Kitaev approach with its static Z2 gauge fields
now makes it explicitly clear that fractionalization is physical.
This then leads us to reconsider the question of whether the
condensation of fractionalized bosons can actually give rise
to novel forms of order parameter? This could happen, for
instance if a spinon binds to an electron. The resulting order
parameter has the potential to carry fractional quantum num-
bers with novel order-parameter topologies and symmetries,
giving rise to a conjectured “order fractionalization”[10].

Here, we explore the idea of order fractionalization within
the context of the Kondo lattice model. The Kondo lattice has
a venerable history: first written down by Kasuya in 1955[11],
later proposed in the 1970s by Mott and Doniach[12, 13] to

Figure 3. Schematic of the Kitaev Kondo model showing a), the x, y
and z bonds of the lattice and b) the structure. The lower layer is a
Yao-Lee spin liquid with gapless spin (®Sj ) and gapped orbital degrees
of freedom (®λi). The upper layer is a honeycomb lattice of conduction
electrons, coupled to the spin liquid via a Kondo interaction.

explain heavy fermion materials. The Kondo lattice describes
a lattice of local moments, coupled to conduction electrons
via an antiferromagnetic super-exchange of strength J. When
J is sufficiently large, the local moments become screened by
conduction electrons, liberating their entangled spin degrees
of freedom into the conduction sea as a narrow band of “heavy
electrons”.
From a modern perspective, the Kondo lattice effect can

be understood as a spin fractionalization of localized mo-
ments. In a heavy Fermi liquid, local moments split into spin
1/2 heavy fermions, conventionally described as a bilinear of
S=1/2 “Dirac” fermions[14–18],

®S(xj) → f †jα

(
®σ

2

)
αβ

fjβ . (5)

In this scenario, a spin flip creates a pair of “spinons” mov-
ing in an emergent U(1) gauge field which enforces their
incompressibility[19]. When the Kondo effect takes place,
the coherent exchange of spin between the electron and spin
fluid Higgses the U(1) gauge field, locking it to the electro-
magnetic field and converting the neutral spinons into charged
heavy fermions[20]. This “Dirac fractionalization” of spins
provides a natural way to understand the expansion of the
Fermi surface in the Kondo lattice, described by Oshikawa’s
theorem[21, 22].
Here we study an unconventional spin fractionalization into

Majorana fermions, first proposed in[23, 24]

®S(xj) → −
i
2
( ®χj × ®χj), (6)

where ®χj = (χ1
j , χ

2
j , χ

3
j ) is a spin-1majorana[25] that moves in

a Z2 gauge field. In this alternate scenario, a spin flip produces
a pair of majoranas. Majorana fractionalization gives rise to a
gapless band of neutral excitations, and has been proposed as
a driver of odd-frequency pairing[23] and the origin of Kondo
insulators with neutral Fermi surfaces[24, 26, 27].
A novelty of our work, is the Kondo-coupling of electrons

to a gapless spin liquid in which Majorana fractionalization
is rigorously established. We combine a variant of the Ki-
taev honeycomb model[28], called the Yao-Lee model[29–
34], with a corresponding lattice of mobile electrons. Like the
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Kitaev model, the Yao-Lee model is exactly solvable, which
allows a nonperturbative treatment of the fractionalization, i.e
the strongest correlations in the model. The weaker Kondo
exchange is then treated withing mean field approximation in
the manner of Bogoluibov-de-Gennes theory. Unlike the
original Kitaev model, in which spin excitations create gapped
Z2 vortices[28], the Yao-Lee model describes a spin liquid in
which spin flips fractionalize into gapless Majorana fermions,
leaving the static Z2 gauge field unaffected. This radically
affects the character of the Kondo interaction between the
conduction electrons and the local moments, opening up the
possibility of a fractionalized order parameter formed from a
pair condensation of electrons and Majorana fermions.

In the Yao Lee model, the motion of the Majorana fermions
is described by the Hamiltonian

HYL = K
∑
<i, j>

ui j(i ®χi · ®χj), (7)

where ui j = ±1 is the static gauge field. The exchange-
coupling of a Yao-Lee spin liquid to electrons on an adja-
cent honeycomb layer (Fig. 3) now forms a Kondo lattice in
which the absence of gauge fluctuations establishes an order-

fractionalized state[10] in which electrons andmajoranas com-
bine into charge e, S = 1/2 bosons

v̂(xj) =
(
®σαβ · ®χj

)
cjβ =

(
v̂j↑
v̂j↓

)
, (8)

where cj is an electron operator at site j. When this boson
condenses, it gives rise to a state in which triplet pairs have
fractionalized into condensed bosonic spinors, forming a well-
defined order parameter with charge e and spin 1/2.
Since the fractionalized fields ®χj and v̂(x) carry a Z2 charge,

a gauge invariant definition of off-diagonal long range order
follows a similar procedure to a superconductor, introducing a
string of Z2 gauge fields,

P(xi, yj) =
∏

l∈Pj→i

u(l+1,l) (9)

along a path Pj→i linking sites j and i[35], giving rise to the
asymptotic factorization

〈v(x)P(x, y)v†(y)〉
|x−y |→∞
−−−−−−−→ v(x)v†(y). (10)

Figure 4. a) Development of a charge e condensate v(x) permits the coherent tunneling of electrons through the spin-liquid over arbitrary
distances. b) The mismatch between the three Majorana components of the spin liquid and the four Majorana components of the conduction
electrons (52) leads to a decoupled “neutral” conduction electron Majorana Dirac cone with a gap to charged electron excitations.

As in a superconductor, the Z2 vortices, or “visons” are absent
in the ground state, so one can adopt an axial gauge where
the u(i, j) = 1 and the string becomes unity. The development
of this off-diagonal long range order with fractional quantum
numbers constitutes order fractionalization[10, 36].

One of the most dramatic consequences of this off-diagonal
long-range order, is that electrons can tunnel over arbitrarily
large distances through the spin liquid (Fig. 4a). The am-
plitude Σ(x ′, x) for this process is directly proportional to the
spinor order at the entry and exit points x and x ′,

Σ(x ′, x) ∼ v(x ′)
1

|x ′ − x |2
v†(x). (11)

The long-range coherence of this process reflects the order-
fractionalization. The neutral character of the Majoranas in
the spin fluid has two interesting consequences: first, it means
that when electrons emerge from this tunneling process, they

can reappear into the conduction fluid as either electrons, or
holes, giving rise to both normal and Andreev scattering pro-
cesses. Secondly, themismatch between the quantum numbers
of the electrons and the Majorana fermions then gaps out three
Majorana components of the conduction sea, leaving behind
a neutral Majorana cone of conduction-like excitations (Fig.
4b). The sharp coherence of this neutral band reflects the
phase coherence of the charge e spinor order.
If we sample the spinor field locally, we can construct a

composite order parameter

〈v̂T (x)iσ2®σv(x)〉 ∝ 〈c↑(x)c↓(x) ®S(x)〉
= Ψ(x)(d̂1(x) + id̂2(x)), (12)

representing the local binding of a Cooper pair to a spin where
d̂1 and d̂2 are members of an orthogonal triad of unit vectors
(d̂1, d̂2, d̂3). However, this is not the primary order parameter
of the physics, as can be seen by observing that the gap in the
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spectrum is proportional to |v |, rather than |v |2.
The structure of this paper is as follows. Section II intro-

duces the Kitaev Kondo Model. Section III reviews the prop-
erties of the Yao-Lee spin liquid. Section IV introduces the
mean-field theory for the order-fractionalizing transition. Sec-
tion V discusses the quantum critical transition at half filling
and the first order order fractionalizing transition that devel-
ops with finite doping. Section VI discusses the nature of the
off-diagonal fractionalized long-range order. Section VII dis-
cusses the nature of the triplet pairing, and its odd-frequency
character. Section VIII discusses the phase diagram and long-
wavelength action. Finally, Section IX discusses the broader
implications of our results.

II. KITAEV-KONDOMODEL

Coupling a Yao-Lee spin liquid to a conduction sea, forms
a Kondo lattice with Hamiltonian H = HC + HYL + HK (see
Fig. 3), where

HC = −t
∑
<i, j>

(c†iσcjσ + H.c) − µ
∑
j

c†jσcjσ, (13)

HYL = (K/2)
∑
<i, j>

(®σi · ®σj)λ
αi j

i λ
αi j

j , (14)

HK = J
∑
j

®Sj · c
†

j ®σcj . (15)

Here 〈i, j〉 denotes a pair of neighboring sites, with i on the
even (A) and j on the odd (B) sublattice. HC is a tight-
binding model of conduction electrons moving on honeycomb
lattice with hopping matrix element −t. HYL is the Yao-Lee
model, a version of the Kitaev honeycomb model in which
each site has both an orbital degree of freedom, denoted by
three Pauli orbital λaj (a = 1, 2, 3) operators and a spin degree of
freedom, denoted by the Paulimatrices ®σj . [37] The ®Sj ≡ ®σj/2
are the normalized spins for the localized moments and the
αi j = x, y, z along the x,y and z bonds of the honeycomb
lattice (Fig. 3). Finally, HK describes an antiferromagnetic
exchange interaction between the electrons and the spin liquid.

Several earlier variants of Kitaev Kondo lattices have been
considered, including models that couple the original, spin-
gapped Kitaev spin liquid to a conduction sea[32, 38, 39],
and models that couple a Yao-Lee spin liquid to a conduction
sea via an anisotropic, octupolar coupling[40]. The current
model builds on these earlier treatments, isotropically cou-
pling electrons to a solvable gapless spin-liquid to preserve the
SU(2) spin symmetry, leading to a fluid in which crucially, the
gapped visons decouple from the low energy spin and charge
fluctuations.

III. THE YAO-LEE SPIN LIQUID

We begin by recapitulating the key features of the Yao-Lee
spin liquid[29–34]. The first step is to transmute the spin and
orbital operators into fermions, expanding the Hilbert space

into a Fock space by adding two ancilliary Majorana fermions
ΦS

j andΦ
T
j , equivalent to one ancilliary qubit, at each site. We

use the normalizing convention (ΦS,T
j )

2 = 1
2 throughout this

paper for all majoranas. The spin and orbital majoranas are
defined as a fusion of the Pauli operators with the ancillars[41]

χαj = Φ
S
j σ

α
j , ba = ΦTj λ

a
j . (16)

These satisfy canonical anticommutation algebras {χaj , χ
b
j } =

{baj , b
b
j } = δabδi j and {χaj , b

b
k
} = 0. Using the fact that

σxσyσz = λxλyλz = i, we obtain the reverse transformations

Φ
S
j = −2iχ1

j χ
2
j χ

3
j , Φ

T
j = −2ib1

jb
2
jb

3
j, (17)

which enable us to write the spins and orbitals as

®σj = 2ΦS
j ®χj = −i ®χj × ®χj,

®λj = 2ΦTj ®bj = −i®bj × ®bj, (18)

where we use vector notation ®χj = (χ1
j , χ

2
j , χ

3
j ) and ®bj =

(b1
j, b

2
j, b

3
j ). It follows that σ

a
j λ

α
j = −2iD̂j χ

a
j bαj , where

D̂j = −2iΦS
j Φ

T
j = 8iχ1

j χ
2
j χ

3
j b1

jb
2
jb

3
j . (19)

Now D̂j , with eigenvalues Dj = ±1, commutes with H, and
the constraint Dj = 1 selects a physical Hilbert space

|ψp〉 =
∏
j

1
2
(1 + Dj)|ψ〉. (20)

in which

σa
j λ

α
j = −2iχaj bαj , (21)

which enables us to rewrite (14) in the expanded Fock space
of majoranas as

HYL = K
∑
<i, j>

ûi j(i ®χi · ®χj). (22)

Here, the i and j sites are on the A and B sublattices respec-
tively, and the ûi, j = −2ibαi j

i bαi j

j are gauge fields that live
on the bonds, with eigenvalues ui j = ±1. (Note the negative
sign in the bond operator, which simplifies later calculation of
string variables). The remarkable feature of Kitaev models,
making them so useful for our analysis, is that the gauge fields
ûi j are completely static variables, rigorously commuting with
H and the constraint operators Dj .
Like the Kitaev honeycomb model, HYL describes a Z2 spin

liquid with the gauge symmetry

®χj → Z j ®χj, ûi j → Zi ûi jZ j, (Z j = ±1). (23)

The product

Ŵp =
∏

<l+1,l>∈p
û(l+1,l) =

∏
j∈p

λ
a j

j (24)

around a hexagonal plaquette p, where the aj denote the direc-
tions exterior to the plaquette, commutes with H and the Dj ,
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forming a set of gauge-invariant constants describing static Z2
fluxes (visons). Note our use of the parentheses around the
indices of the û(l+1,l), which re-arranges the subscripts so that
the A sublattice index is first.

In the ground state, the eigenvaluesWp = 1 on every plaque-
tte while plaquettes where Wp = −1 describe gapped “vison”
excitations. Since a ®λj flips a bond, it creates two visons, so
the orbital degrees of freedom are gapped. This is then aHiggs
phase for the Z2 fields, in which the Z2 gauge field has become
massive. However, unlike the Kitaev honeycomb model, there
are three gapless ®χ majoranas which describe the fractional-
ization of the spins ®Sj = −(i/2) ®χj × ®χj . The action of ®Sj does
not create visons, leading to a spin liquid with gapless spin
excitations.

Although the vector Majorana fermions are not gauge in-
variant, they can be made so by attaching a gauge string to
them to create a Z2-neutral field

®χN (i) = ®χ(i)P(xi,−∞) (25)

where P(x, y) is the Z2 string defined in (9) .
It is convenient to choose a axial gauge in which the ux,y

i j = 1
along the x and y bonds, leaving the z-bonds as the dependent
variables. [42] Visons are present at a plaquette containing two
uz
i j of opposite sign, so we can set all bonds to unity, ui j = 1,

causing the strings to vanish, establishing an equivalence

®χN (i) ∼ ®χ(i). (26)

in the axial gauge. The key point is that in the ground state
the majoranas χj can be treated as physical fields that describe
the gapless spin excitations. We can also transform back to
the original spin variables, writing the majorana in terms of a
Jordan-Wigner string

1
√

2
®χ( j) = ®S( j) ©­«

∏
l∈Pj

λz(l)ª®¬ ×
{
λx( j), ( j ∈ B),
λy( j), ( j ∈ A), (27)

where the string takes a product of λz( j) along the path P
consisting of sites to the left and below site j (see appendix
A).

In the axial-gauge (22) becomes

HYL =
K
2

∑
i, j

[
γ(Ri − Rj) ®χA(i) · ®χB( j) + H.c

]
. (28)

whereRi is the location of the unit cell. The hopping amplitude
γ(R) = i(δR,0 + δR,R1 + δR,R2 ), where R1,2 = (∓

√
3

2 ,
3
2 ) are

the Bravais lattice vectors. We now Fourier transform the
Majorana fields, defining a vector majorana on each sublattice

χkΛ =
©­«
χ1
Λ
(k)

χ2
Λ
(k)

χ3
Λ
(k)

ª®¬ = 1
√

N

∑
j

©­«
χ1
Λ
( j)

χ2
Λ
( j)

χ3
Λ
( j)

ª®¬ e−ik·R j , Λ ∈ (A, B),

(29)
where N is the number of unit cells. Finally, combining χkA
and χkB into a six component vector

χk =

(
χkA
χkB

)
, (30)

the Hamiltonian becomes

HYL =
K
2

∑
k∈7

χk
†

(
0 γk 1

γ∗k 1, 0

)
χk (31)

where γk = i(1+ eik·R1 + eik·R2 ) and the momentum sum runs
over the original hexagonal Brillouin zone (7). Now the real
nature of the Majorana fermions means that χakΛ

† = χa
−kΛ, so

the two halves of the Brillouin zone are equivalent, allowing
us to truncate the Brillouin zone to a triangular region (/) that
surrounds the Dirac cone at K and spans half the hexagonal
Brillouin zone (see Fig.5). In terms of this reduced Brillouin
zone, the real-space fields can be written

χa
Λ
( j) =

1
√

N

∑
k∈/

(
χakΛeik·R j + χa†kΛe−ik·R j

)
, (32)

and the Hamiltonian becomes

HYL = K
∑
k∈/

χk
†(®γk · ®α)χk, (33)

where ®γk = (Reγk,−Imγk, 0) and the ®α = (α1, α2, α3) ⊗ 1[3]
are Pauli matrices acting in sublattice space.
Diagonalizing (33) then gives

HYL =
∑
k∈/

εs(k)(®η†k1 · ®ηk1 − ®η
†

k2 · ®ηk2), (34)

where εs(k) = K |γk |, describing a Dirac cone of majorana
excitations centered at K . The quasiparticle operators are
given by

®ηk1 = uk ®χkA + vk ®χkB,
®ηk2 = −v

∗
k ®χkA + u∗k ®χkB, (35)

where uk = 1/
√

2 and vk = γk/(
√

2|γk |). In the ground-state
|φYL〉 all negative energy states are filled,

|φYL〉 =
∏

a∈{1,3},k∈/
ηa†k2 |0〉. (36)

The presence of a triplet of gapless ?ajoranasmeans that the en-
ergy cost of visons is three times larger than in the Kitaev spin
liquid, and given by approximately 0.4K per vison pair[28].

IV. MAJORANA KONDO EFFECT

A. Mean-field Hamiltonian

We now examine the effect of the Kondo interaction on
the spin liquid. If we rewrite this interaction in terms of the
majoranas ®χj , it becomes

HK = J
∑
j

(c†j ®σcj) ·
(
−

i
2
®χj × ®χj

)
= −

J
2

∑
j

c†j

[ (
®σ · ®χj

)2
−

3
2

]
cj . (37)
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Figure 5. The hexagonal Brillouin zone of the honeycomb lattice,
where nodes of the dispersion ε(k) = |γk | lie at the vertices K and
K ′. Majorana excitations are independently defined over one half the
Brillouin zone, described by the green triangle centered at K .

The last term in (37) can be absorbed by a shift in the electron
chemical potential, allowing us to write

HK ≡ −
J
2

∑
j

(
v̂†j v̂j

)
, (38)

where v̂ is a S = 1/2, charge e spinor boson given originally
in Eq.(8),

v̂j =
(
®σαβ · ®χj

)
cjβ =

(
v̂j↑
v̂j↓

)
. (39)

Thus the fractionalization of the spins into majoranas trans-
forms the Kondo interaction into an attraction that favors the
condensation of charge e spinor boson.

At temperatures low enough to suppress visons, there are no
residual Z2 gauge field fluctuations, and we can consequently
treat the v̂j as a gauge neutral field. Taking advantage of the
bilinear form of the Kondo interaction, we now carry out a
Hubbard-Stratonovich transformation

HK = −
J
2

∑
j

c†j
[ (
®σ · ®χj

)2
]

cj

−→
∑
j

( [
V†j (®σ · χj)cj + H.c

]
+ 2

V†j Vj

J

)
(40)

where

Vj =

(
Vj↑

Vj↓

)
≡ −

J
2
vj (41)

is a spinor order parameter. The equivalence between Vj ≡

−(J/2)vj holds at the saddle point.
It proves convenient to make a global gauge transforma-

tion on the even (A) sublattice, (cAσ, cBσ) → (−icAσ, cBσ)
and similarly, (VAσ,VBσ) → (−iVAσ,VBσ). The conduction
electron Hamiltonian then takes the form

HC = −it
∑
<i, j>

(c†iσcjσ − H.c) − µ
∑
j

c†jσcjσ, (42)

In this gauge at µ = 0 the conduction and Majorana Hamil-
tonian have the same form, with opposite signs. Moreover,

in the lowest energy configuration the Kondo bosons v̂j then
conveniently condense into a uniform condensate.
The hybridization with the spin liquid induces triplet pair-

ing, so to proceed further, we define a 4-component Balian-
Werthammer spinor on each sublattice

ψkΛ =

©­­­­«
ckΛ↑
ckΛ↓
−c†
−kΛ↓

c†
−kΛ↑

ª®®®®¬
, (Λ = A, B). (43)

We then merge the two sublattice spinors into an 8-component
operator

ψk =

(
ψkA
ψkB

)
. (44)

In this basis, the sublattice (α) charge (τ) and spin (σ) operators
are denoted by three sets of Pauli operators given by the outer
products

®α[8] ≡ ®α[2] ⊗ 1[2] ⊗ 1[2],
®τ[8] ≡ 1[2] ⊗ ®τ[2] ⊗ 1[2],
®σ[8] ≡ 1[2] ⊗ 1[2] ⊗ ®σ[2], (45)

where the bracketed subscripts denoting the dimensions of the
operator will be dropped in future. We shall use the transposed
Pauli matrices for the isospin degrees of freedom ®τ[2] ≡ ®σT

[2] =

(σ1,−σ2, σ3), a choice that simplifies later expressions. In this
notation,

HC =
∑
k∈/

ψ†k(−t ®γk · ®α − µτ3)ψk. (46)

We now introduce a four-component spinor to describe the
Kondo hybridization,

VΛ =

©­­­«
VΛ↑
VΛ↓
−V∗
Λ↓

V∗
Λ↑

ª®®®¬ = VΛZΛ, (47)

where

ZΛ =
1
√

2

©­­­«
zΛ↑
zΛ↓
−z∗
Λ↓

z∗
Λ↑

ª®®®¬ (48)

is normalized to unity Z†
Λ
ZΛ = 1, and we use a Roman VΛ

to denote the magnitude of the hybridization. The hybridized
Kondo term then becomes

HK =
∑
Λ=A,B

(∑
k∈/

[
(ψ†kΛ®σVΛ) · ®χkΛ + H.c

]
+ 2N

V2
Λ

J

)
. (49)

We shall focus on the uniform case, where VA = VB = V,
which creates the largest hybridization gap. Combining (46)
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Figure 6. a) Spectrum of the Kitaev Kondo lattice for µ = 0, taking
units K = 1, t = 2K and V = 1.5K . Thick orange lines denote
gapped conduction electron lines, thick blue lines denote the gapped
Majorana spin excitationswhile while thin blue lines denote the single
gapless Majorana conduction band. b) Schematic three dimensional
plot of spectrum in the vicinity of the K point.

(49) and (33), the mean-field Hamiltonian can be compactly
written as

H =
∑
k∈/
Ψ
†

k

(
−t(®γk · ®α) − µτ3 ®σV

V†®σ K(®γk · ®α)

)
Ψk + 4N

V2

J
(50)

where

Ψk =

(
ψk
χk

)
, (51)

where ψk is defined in (44) and χk is defined in (30). In the
off-diagonal components of (50) we have used the short-hand
ψ†k ®σV χk ≡ ψ

†

k(®σ · ®χk)V and ®χ†kV
†®σψk ≡ V

†( ®χ†k · ®σ)ψk.

B. The case of half filling (µ = 0).

If we now split the conduction sea into scalar and vector
components

ψ0
kΛ = Z

† · ψkΛ,
®ψkΛ = Z

† · ®σ · ψkΛ, (52)

then from (49) we can decouple

(ψ†kΛ®σV) · ®χkΛ = V(ψ†kΛ®σZ) · ®χkΛ = V( ®ψ†kΛ · ®χkΛ). (53)

In other words, only the vector Majorana components of the
conduction sea hybridize with the spin liquid, and the scalar
part is unhybridized. At particle-hole symmetry µ = 0, the
Hamiltonian decouples into a gapless scalar conduction sea
and gapped vector sea of excitations

H =
∑
k∈/

ψ†0k(−t ®γk · ®α)ψ0k + 4N
V2

J

+
∑
k∈/

(
®ψ†k ®χ

†

k

) (
−t ®γk · ®α V

V K ®γk · ®α

) (
®ψk
®χk

)
. (54)

The fourteen eigenvalues of this Hamiltonian involve a single
Dirac cone with the two eigenvalues ±εc(k) of the original

conduction sea (light blue curve in Fig. 6), and four triply
degenerate gapped excitations (blue (+) and red (-) curves in
Fig. 6) with eigenvalues ±E+k and ±E−k , where

E±k =

√
V2 +

(
εc(k) + εs(k)

2

)2
±

(
εc(k) − εs(k)

2

)
. (55)

Here εc(k) = t |γk | and εs(k) = K |γk |(34).
Figure 6. shows a representative spectrum. The Dirac con-

duction band is composed of four degenerate majoranas: three
of these hybridize with the spin liquid, pushing the Dirac cone
intersection to a finite energy V , while the fourth Majorana
component decouples from the spin liquid as a single gapless
Dirac cone.
From these dispersions, we can calculate themean field Free

energy to be

F[T] = −T
∑
k∈7

ln
[
2 cosh

(
βεk
2

)]
− 3T

∑
k∈7,±

ln
[
2 cosh

(
βE±k

2

)]
+ 4N

V2

J
(56)

so the ground-state energy per unit cell is

E
N
= −

Ac

2

∫
k∈7

d2k
(2π)2

(
εk + 3(E+k + E−k )

)
+ 4

V2

J
(57)

where Ac =
3
√

3
2 is the area of the unit cell.

Differentiating with respect to V2 leads to a gap equation

Ac

2

∫
k∈7

d2k
(2π)2

1√
V2 + (εs(k) + εc(k))2/4

=
4

3J
(58)

If we introduce the scaled quantities g = J/[3(t + K)] (note:
3t and 3K are the half-band widths of the conduction and
Majorana bands, respectively) and v = V/(t + K), then the
mean-field equation for the gap becomes

1
g
= Φ(v) (59)

where

Φ(v) =
9Ac

4

∫
k∈7

d2k
(2π)2

1√
4v2 + |γk |2

. (60)

A quantum critical point separating spin-liquid/metal from the
an order fractionalized phase is located at gc = 1/Φ(0) =
0.5. Fig. 7 shows a plot of the hybridization versus coupling
constant predicted by the mean-field theory.

V. VICINITY OF THE QCP

The vicinity to the quantum critical point at g = gc , µ = 0 is
of particular interest. Phase transitions in systems with Dirac
spectrum lie in the class of of Gross-Neveu-Yukawa models
[43]. Renormalization group analyses of this class of models
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Figure 7. Plot of v = V/(t + K) vs g = J/3(t + K) predicted by
equations (59) and (60). The dashed line gives the asymptotic large
g limit ν = (9/8)g of the phase boundary.

indicate that the quantum critical point acquires full Lorentz
invariance (which in mean-field theory corresponds to the case
t = K). The corresponding long-wavelength action for our
case is the deformation of Eq.(50):

H =
∑
k∈/
Ψ

(
−it(®α · ®∇) − µτ3 ®σV

V†®σ it(®α · ®∇)

)
Ψ +

1
2
V+(−∇2 + m2)V + λ(VV+)2. (61)

The survival of a relativistic majorana in the broken symmetry
phase is rather striking consequence of the mismatch between
the number of electron and majorana channels. These features
may be of interest in the generalization of these ideas from
quantum materials to exotic scenarios of broken symmetry in
the vacuum.

A. Finite doping µ , 0

At finite doping, away from charge neutrality, the decoupled
conduction sea develops a Fermi surface. In principle, the ex-
citation spectrum of the condensate becomes more complex,
for atV = 0+, there are three Fermi surfaces: two derived from
the conduction electrons and one derived from the χ fermions.
In principle, as the hybridization is increased from zero, the
Fermi surfaces undergo a sequence of Lifschitz transitions, un-
til entirely disappearing once |V | ∼ |µ|/2, they entirely vanish,
entering the phase with a single neutral Majorana excitation
cone, qualitatively identical to that obtained at µ = 0. (See
Fig. 8.).

However, the mean-field theory predicts that these interme-
diate phases are entirely bypassed by a first order transition
into the high V state. This can be qualitatively understood
from the dependence of the Ginzburg Landau free energy on
µ and V , which in the vicinity of the µ = 0 QCP is given by

E = aµ2V + τV2 + bV3, (62)

where τ ∝ (gc − g). The coefficients a and b depend on the
ratio t/K , and can be evaluated explicitly for the relativistic
case t/K = 1, confirming that they are both positive. The
term linear inV results from the development of a gapV in the
electronDirac cones. Since the density of states is proportional
to energy, in the normal state there is a Fermi surface containg
O(µ2) electrons, giving rise to an increase in energy of order
µ2 |V |, so that a > 0. This energy is reminiscent of the Van
der Waals equation of state in the vicinity of the liquid-gas
critical point, and gives rise to a first order phase transition
at τ = −2|µ|

√
ab into a state with Vc = |µ|

√
a
b . Fig. 8

displays a detailed calculation of the mean-field free energy at
finite doping, showing that at the crical g, a minimum in the
free energy degenerate with the ground-state develops at finite
Vc ∼ 0.5|µ|.

Figure 8. a) Mean field phase diagram as a function of chemical
potential µ. At µ = 0, the quantum phase transition from the spin
liquid to the Kondo phase is a quantum critical point. b) represen-
tative plot of mean-field energy E[V] versus V illustrating first order
minimum that develops at finite µ. c) Critical value Vc at first order
quantum phase transition, showing that Vc/µ ∼ 0.5, corresponding
to a direct transition into a state with a single neutral majorana cone
of excitations. Calculations were made using K = 1, t = 2.
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VI. FRACTIONALIZED ORDER

We now address the nature of the long-range order associ-
ated with the hybridization between electrons and Majorana
fermions. Since the hybridization carries Z2 gauge charge, the
definition of long-range order requires the insertion of a gauge
string. We can construct the following density matrix

Σab(x, y) = 〈V̂a(x)P̂(x, y)V̂
†

b
(y)〉, (63)

where P̂(x, y) =
∏

l u(l+1,l) is the string operator linking the
sites x and y andV(x) is the four-componentKondo hybridiza-
tion introduced in (47)

V̂(x) =
1
√

2

©­­­­«
v↑(x)
v↓(x)
−v†
↓
(x)

v†
↑
(x)

ª®®®®¬
. (64)

Σab(x, y) determines the amplitude for an electron to coher-
ently tunnel through the spin liquid from y to x.
Like the underlying gauge fields, the gauge strings P̂(x, y)

are constants of motion, commuting with the Hamiltonian and
the constraints. The energetic cost of visons allows us to safely
set all uiA, jB = 1 in the ground-state, so the string variable is
simply unity,

P̂(x, y) = 1, (axial gauge), (65)

and in this gauge, Σ(x, y) reverts to a conventional two point
functions. This is precisely the gauge we have used for the
mean-field theory, so the mean-field density matrices factorize
into a product of the spinors

Σab(x, y) = Va(x)V
†

b
(y). (66)

Importantly, since this factorization occurs in a Z2 gauge in-
variant quantity, it is true in all gauges, and is thus immune to
the average over gauge orbits that annihilates gauge dependent
quantities (the origin of Elitzur’s no-go theorem). Of course,
mean-field theory is corrected by Gaussian fluctuations of the
fields, but these Z2 gauge invariant corrections are no different
to the corrections that occur in conventional ODRLO, so we
expect that beyond a coherence length, the factorization will
be preserved as an asymptotic long-distance property, i.e

〈V(x)P̂(x, y)V†(y)〉
|x−y |→∞
−−−−−−−→ V(x)V†(y). (67)

This is the phenomenon of order fractionalization.
We can extract two interesting quantities from this density

matrix, a Z2 string-expectation value

Z(x, y) = Tr[Σ(y, x)] = 〈V̂†(x)P̂(x, y)V̂(y)〉, (68)

and an SO(3) matrix

Dab(x, y) = Tr[Σ(y, x)σaτb]
= 〈V̂†(x)σaτbV̂(y)P̂(x, y)〉, (69)

The local density matrix Dab(x, x) = (2V2/J)[d̂b(x)]a deter-
mines the composite magnetism and pairing at site x, where

the (d̂b)a = Z
†(x)σaτbZ(x) is the triad of local vectors in-

troduced in (12) and we have normalized the spinors using
(41) and (47). The composite order Dab(x, x) only determines
the spinor-order up to a sign. However, the factorization of the
scalar Z(x, y)

Z(x, y)
|x−y |→∞
−−−−−−−→ V†(x)V(y) (70)

is sensitive to the relative sign of the order parameter v(x) at
sites x and y.
We can further emphasize the physical nature of these re-

sults by rewriting the order parameter and the gauge string in
terms of variables from the original model. Using (8) and the
constraint −2iΦS

j Φ
T
j = 1(19) we can rewrite the hybridization

field in terms of the composite operator Fj = (®σ · ®Sj)cj , as

v̂j = (®σ · ®χj)cj = 2iΦTj Fj . (71)

By substituting u(i, j) = −2iεxi x j b
αi j

i bαi j

j , where

εx′,x ≡

(
1 1
−1 −1

)
=

{
1 (x ′ ∈ A)
−1 (x ′ ∈ B) (72)

into the string P̂(x ′, x) =
∏

l u(l+1,l), then using the re-
lation ®λj = −i®bj × ®bj (18) at the bond intersections and
bαj = Φ

T
j λ

α
j (16) at its two ends, we can rewrite the string

as P̂ = −2iΦTx′Φ
T
xP
′, where

P̂ ′(x ′, x) = s(x ′, x)
∏
j∈P

λ
a j

j (73)

is a product of λ operators taken along directions aj extremal
to the path P (see Fig. 10), including an initial λai

i and final
λ
a f

f
operator, oriented along the initial and final bonds. The

parity s(x ′, x) = ±1 is determined by the relative directions of
the initial and final bond-vectors, v̂ and v̂′

s(x ′, x) =
{

εx′,x, (v̂ · v̂′ = 0)
sgn[(v̂′ × v̂) · ẑ], (v̂ · v̂′ , 0) (74)

where ẑ is normal to the plane.
In the ground-state, P does not depend on the path, so

−2i〈Fa(x)F
†

b
(y)P̂ ′(x, y)〉

|x−y |→∞
−−−−−−−→ va(x)v

†

b
(y). (75)

In other words, the composite fermions have developed a
gauged off-diagonal long-range order. By (71), the composite
fermions split up into a bosonic spinor with long range or-
der, and an ancillary majorana that decouples from the Hilbert
space:

Fj = (®σ · ®Sj)cj = −iv(x)ΦT (x). (76)

This remarkable transmutation in the statistics of the composite
fermions is a direct consequence of order fractionalization.
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Figure 9. An example of the string operator P ′ in Eq.(73).

Figure 10. Kondo plaquet. The energetic cost of flux through the
blue area favors a uniform arrangement of the spinor order parameter.

A. Topology and Vison Confinement

The Yao Lee and Kitaev spin liquids have a topological
degeneracy. We now discuss how this is modified by the
presence of a Kondo hybridization. Suppose we have a domain
across which the Z2 string (68) Z(x, y) changes sign. At the
domain boundary, there is a “Kondo flux” identified with an
inter-layer plaquette that links the conduction and spin fluids

K(x + a, x) = 〈c†(x + a)v(x + a)ux+a,xv
†(x)c(x)〉. (77)

K(x + a, x) describes the amplitude for an electron to traverse
a rectangular path entering the spin liquid at x, exiting at x + a
and returning via the conduction sea (see Fig 10). This favors a
ground-state with a spinor v(x) that is uniform in both direction
and sign.

If we separate two visons without allowing the spinor back-
ground to deform, then we create a ladder of bonds with
ui j = −1. The reversed sign in the ladder then gives rise
to a Kondo domain wall with cost E(L) ∝ L proportional
to its length. In this situation, the visions would be linearly
confined, and the cost of a Z2 vortex through the torus would
be proportional to the circumference of the torus, EZ2 ∝ LC

(Fig. 12). This is the situation we would expect if the Kondo
hybridization were a Z2 scalar (a situation that would occur
if the conduction band were made of three, rather than four
majoranas, giving rise to an O(3), rather than an SU(2) Kondo

Figure 11. a) When two visons are separated a distance L, they
introduce a ladder of ui j = −1, giving rise to Kondo domain wall
whose energy grows linearly with length E(L) ∝ L. (b) If each vison
bind to a “2π” vortex of the V field, the domain wall is eliminated,
so the vison-vortex combination is logarithmically confined, with an
energy E(L) ∝ ln L.

model.)
However, the two visons can remove the domain wall by

binding themselves to a “2π” or “h/2e” vortex in which the
principle axes d̂b rotate about some axis through 2π. A 2π
rotation of the spinor V(θ) = e−i

θ
2 τzV0 causes it to pick up

a minus sign: V(2π) = −V0. In isolation, such a vortex
would give rise to a sharp discontinuity in the spinor, but if
the jump in V is located along the ladder where the gauge
field ui j changes sign, then the Kondo domain is now removed
and the gauged density matrix Σab(x, y) remains a smooth,
single valued function. Since the energy cost of separating
two vortices grows as ln L, the resulting vortex-vison bound-
state is logarithmically confined.
In a similar fashion, if we create two visons, separating

them and re-annihilate them after passing one around a ring
of the torus, we create a Z2 vortex through the torus, with
a Kondo domain wall that passes right around it ( see Fig.
12a). This process costs no energy in a pure Kitaev or Yao Lee
model, and is the origin of their topological degeneracy. Let
us now consider the influence of the Kondo effect. In a model

Figure 12. a) A Z2 vortex through the torus is formed by a row of
u = −1 bonds. In theYao-Leemodel, the domainwall costs no energy,
but in the presence of a uniform order parameterV′, the domain wall
costs an energy E(L) ∝ LC , where LC is the circumference of the
torus. (b) When the Z2 vortex binds a 2π vortex of the hybridization,
the domain wall is removed, giving rise to an energy E ∼ O(1)
which is intensive in the torus dimensions, restoring the single-valued
character of the gauged off-diagonal long-range order.
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where the Kondo coupling were Z2 scalar[44] as in the double
layer Yao-Leemodel with the Heisenberg exchange interaction
between the layers, this would cost an energy proportional
to the circumference LC of the torus. However, if we also
introduce a vortex in which the V(x) rotates through 2π, as
shown on Fig. 12b, the spinor picks up an additional minus
sign in passing around the vortex, and we then remove the
discontinuity in the function Σab(x, y), removing the domain
wall. This state with a combined Z2 and 2π vortex only costs
the energy to twist the spinor order through π, which involves
an elastic energy (ρs/2)(π/L)2×LLC = π

2ρs/2(LC/L), where
ρ is the stiffness, a value which is intensive in the linear size.
Since this configuration cannot be smoothly returned to the
original ground-state without creating a Kondo domain wall,
the bound combination of a 2π vortice and vison pairs is
topologically distinct excitation of the ground-state.

VII. TRIPLET PAIRING CONDENSATE

A. Electron self-energy

Once the spinor v̂j condenses (dark blue region of Fig.
8), the resulting condensate will coherently scatter electrons
through the spin liquid. The order fractionalization means that
an electron can remain submerged within the spin liquid over
arbitrarily long distances. When a Majorana spinon resurfaces
into the electron fluid, it can do so as either a particle, or a
hole, so the scattering amplitude of electrons via the spin liq-
uid develops both normal and anomalous (Andreev) scattering
components (Fig. 13). To examine these processes, consider
the conduction electron self-energy that results from integrat-
ing out the majoranas χk. From (33), the propagator for the
majoranas in the unhybridized spin liquid is

G(0)χ (k, ω) =
1

ω − ®γsk · ®α
, (78)

where ®γk = (Reγk,−Imγk, 0) and γsk = Kγk = iK(1+eik·R1 +

eik·R2 ). Integrating out the majoranas in (50) then introduces
a self-energy to the conduction electrons given by

Σ(k, ω) = σaVG(0)χ (k, ω)V†σa

= σaV
1

ω − ®γsk · ®α
V†σa, (79)

where we sum over the repeated index a.

Figure 13. When an electron scatters through the spin liquid it can
emerge a) as an electron, giving rise to resonant scattering and b) as
a hole, giving rise to resonant Andreev reflection.

By commuting theV = VZ through the ®α, we obtain

Σ(k, ω) =
V2

ω − ®γsk · ®α
(σaZZ†σa). (80)

Using the identityZZ† + σaZZ†σa = 1, we can then write
the conduction self-energy in the form

Σ(k, ω) =
V2

ω − ®γsk · ®α
(1 − P), (81)

where P = ZZ† projects onto the zerothMajorana component
of the conduction sea, which consequently does not hybridize
with the spin liquid. Without the projector P, this scatter-
ing would describe a Kondo insulator on a honeycomb lattice:
the introduction of the projector breaks both time-reversal and
gauge symmetry by eliminating a specific Majorana compo-
nent of the conduction sea.
To examine the pairing components of the self-energy we

write ZZ† = 1
4 (1 + dabσaτb) where the dab ≡ (db)a =

Z†σaτbZ are the triad of orthogonal vectors (d1, d2, d3) that
define the composite SO(3) order (see (12)). For the choice
Z = Z0 =

1√
2
(1, 0, 0, 1)T , the d-vectors align with the co-

ordinate axes, (d1, d2, d3) = (x, y, z). The resonant scattering
off the spin liquid takes the form

Σ(k, ω) = V2 1
4

(
3 − (db · σ)τb

) ω + ®γsk · ®α

ω2 − |γsk |2
. (82)

We can divide the self-energy into normal and pairing compo-
nents

Σ = ΣN + ∆(k, ω)τ+ + ∆†(k, ω)τ−, (83)

where

ΣN (k, ω) = 1
4

(
3 − (d3 · σ)τ3

)
Σ0(k, ω),

∆(k, ω) = − 1
4

(
(d1 + id2) · σ

)
Σ0(k, ω). (84)

Here,

Σ0 = V2
(
ω + ®γsk · ®α

ω2 − |γsk |2

)
. (85)

ΣN describes a kind of odd-frequency magnetism (with no
onsite magnetic polarization). The second-term ∆(k, ω) in
(84) describes a triplet gap function, with a complex d-vector
d̂1 + id2 which breaks time-reversal symmetry.
The frequency, momentum and sublattice structure of the

pairing is an interesting illustration of the SPOT=-1[45]
acronym for the exchange-antisymmetry of pairing, where S,
P, O and T are the parities of the pairing under spin exchange,
spatial inversion, sublattice exchange and time inversion, re-
spectively. Here, since the pairing is triplet and spin sym-
metric (S=1), POT=-1: there are in fact three separate odd-
frequency, odd-parity and odd-sublattice components. The
term proportional to ω is odd frequency, (T=-1, P=O=+1),
while the even-frequency component (T=+1) divides into two
parts ®γsk · ®α = (γ

1
skα1 + γ

2
skα2) which are respectively, odd

parity, sublattice even (P=-1, O=+1) and even parity, sublattice
odd (P=+1, O=-1).
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B. Long-range tunneling

The structure of the self-energy reflects the long-range tun-
neling of electrons through the spin liquid. If the order pa-
rameter V(x) varies slowly in space and time, the electron
self-energy takes the form

Σ(x, x ′) = σaV(x)G(x − x ′)V†(x ′)σa (86)

where

G(x − x ′) =
∫

d3k
(2π)3

(
1

ω − γsk · ®α

)
ei(k·x−ωt) (87)

is the majorana propagator for the spin liquid. At long dis-
tances, this propagator is dominated by the relativistic struc-
ture of the excitations around the Dirac point at K, where
γsk+K = ic(kx + iky) (c = 3K/2 ). The approximate struc-
ture of Σ(x, x ′) can be obtained by power-counting: since
G(k) ∼ 1/k in Fourier space, G(x) ∼ 1/x2, so we expect that

Σ(x, x ′) ∼
[
σaV(x)

1
|x − x ′ |2

V†(x ′)σa

]
eiK·(x−x′) (88)

where |x |2 = x2 − c2t2. A more detailed calculation gives

G(®x, t) =
ct − ®x · ®β
4π |x |3

eiK·x (89)

where ®β = (αy, αx) defines the sublattice structure of the tun-
neling.

This infinite-range, power-law decay of the tunneling am-
plitude means that in the ground-state, the tunneling electrons
sample the fractionalized order at arbitrarily large distances. In
this way, we see that the development of a decoupled, coherent,
neutral Dirac cone is a direct consequence of the fractional-
ization of the order at infinite length scales.

VIII. STATISTICAL MECHANICS AND LONG
WAVELENGTH ACTION

A. Statistical Mechanics and Phase Diagram

We now discuss the statistical mechanics and long-
wavelength of the order fractionalized phase. When we in-
tegrate out the Fermions from the model, we are left with a Z2
lattice gauge theory of the spin liquid, coupled to the “matter
fields” provided by the Kondo spinors vj

H = −J
∑
(i, j)

v†i ui jvj +U
∑
j

(v†j vj −1)2− κ
∑
p

∏
�

u(l,m). (90)

where the the U term constrains the vj to fixed magnitude
and final plaquette term ascribes an energy cost of 2κ to each
vison. Here we have used our earlier notation u(l,m) where
the parentheses orders the site indices so that the A sublattice
is first. The condensed v-spinors are the Higgs fields for the
Z2 gauge field u, transforming its uncontractible Wilson loops

Figure 14. Schematic Phase diagram for the 3D classical
gauged spinor model from (90). White arrow shows the order-
fractionalization transition.

into “Kondo domain walls” of finite energy density. (Fig.
12) At finite temperatures, we expect no phase transitions,
for the orientational degrees of freedom are eliminated by
the Mermin Wagner theorem, and the presence of small but
finite concentrations of visons eliminates the possibility of a
Z2 phase transition [46].
There is an interesting issue to what extent charge e bosons

may survive as excitations at nonzero T . This depends on the
ratio of J to the vison gap of order κ. Consider the average of a
large Wilson loop of area S. Its value for a configuration with
n visons is (−1)n. At JK = 0 the gauge field is not higgsed,
the excitations are point-like visons. The probability of such a
configuration is∼ Cn

S
exp[−nκ/T], whereCn

S
= n!(S−n)!/S! is

a combinatoric pre-factor. The sum over configurations gives

〈W(S)〉 =
∑
n

(−1)nCn
S = (1 − exp[−κ/T])S = e−S/πR

2
(91)

giving rise to an area-law confinement at finite T with a con-
finement area πR2 ∼ 1/ln(1 − e−κ/T ) ∼ eκ/T proportional to
the inverse vison density. On the other hand the correlation
length ξ of the v(x)-fields calculated in the limit κ → ∞ is
ξ ∼ exp(J/T). So, if J <˜ κ, then ξ � R and finite-temperature
confinement effects are superceded by the finite orientational
correlation length of the order parameter and are thus unim-
portant.
However, the quantum model for the Kitaev Kondo lattice

at zero temperature is equivalent to the statistical mechanics of
the above Z2 gauged spinor lattice in 3D [47]. In the absence of
the matter fields, the pure 3D Z2 lattice gauge theory develops
an Ising phase transition for sufficiently large κ, into a phase
where visons are absent[48]. At small finite J the Ising transi-
tion persists, even though the orientational order of the spinors
will be absent, corresponding to an entry into the Higg’s phase
of the gauged Ising model. This phase corresponds to the Yao
Lee model at zero temperature. (Grey region of Fig. 14). At
still larger J, the v̂ will develop orientational order in which
Σab(x, y) ∼ V(x)V†(y) factorizes at long distances, corre-
sponding to a state of fractionalized order. This is the phase
transition described by our mean-field theory (Orange region
of Fig. 14). Lastly, we note that in the region of large J, but
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small κ, (which is not applicable to the Kitaev Kondo model),
the local quantity Σab(x, x) is expected to develop long range
order in the presence of deconfined visons, corresponding to
unfractionalized, vector order. In this phase, the order param-
eter is the unfractionalized composite order parameter (12).
(Blue region of Fig. 14). The conjectured phase diagram for
the model is shown in Fig. 14.

B. Long Wavelength action

A discussion of the long-wavelength action of the order
fractionalized phase is simplified by taking the special case,
where K = t, leading to a relativistic field theory with an effec-
tive speed of light cE = (3/2)K governing all excitations (see
(61)). So long as there are no domain walls, the relativistic,
coarse-grained action for slow variations in the spinor v(x, τ)
is

S = ρs

∫
d2xdτ

���(∂µ + i
e
~

Aµ
)
v(x)

���2 (92)

where ∂µ = (1/cE∂τ, ®∇). It is convenient to rewrite this in
terms of the four-component spinorZ, as

S = ρs

∫
d2xdτ

���(∂µ + i
e
~

Aµτ3

)
Z

���2 (93)

If we writeZ in terms of Euler angles,

Z = exp
[
−i
φ

2
τ3

]
exp

[
−i
θ

2
τ2

]
exp

[
−i
ψ

2
τ3

]
Z′, (94)

then ∂µZ = − i
2 (ω

a)µσaZ defines the components of the an-
gular velocity ®ωµ = ωa

µda measured in the body-axis frame,
i.e ∂µdb = ®ωµ × db . It follows that(

i∂µ −
e
~

Aµτ3

)
Z =

1
2
(ωa

µ −
2e
~

Aµδa3)τaZ, (95)

allowing us to rewrite the long-wavelength action in the the
form of a principle chiral action,

S =
ρs
2

∫
d2xdτ

[
(∂µ n̂)2 + (ω3

µ −
2e
~

Aµ)2
]

(96)

where we have made the substitution (ω1
µ)

2 + (ω2
µ)

2 = (∂µ n̂)2

and n̂ ≡ d3 = Z†®στ3Z.
The action (96) resembles the action of a superconductor.

However, there are a number of important differences.

• In contrast to a superconductor,

Jµ = −
δS
δAµ

=
2eρs
~
(ω3

µ −
2e
~

Aµ)

=
2eρs
~
(∂µψ −

2e
~

Aµ + cos θ∂µφ) (97)

contains an additional term cos θ∂µφ, derived from ro-
tations of n̂, so the magnetic aspects of the phase asso-
ciated with n̂ are intertwined with the superconducting
properties.

• The first homotopy class π1(SU(2)) = 0 is empty, im-
plying that there are no topologically stable vortices of
an SU(2) order parameter. Thus in general, any current
loop can be relaxed by relaxed by the rotation of the
magnetic vector n̂ out of the plane. Magnetic anisotropy
is required to stabilize superfuid or superconducting
behavior[23].

• Although the vorticity of a screening current has no
topological protection, for the case of charged conduc-
tion electrons, a fragile Meissner phase is expected[49],
because the relaxation of surface screening currents re-
quires the passage of skyrmions into the condensate.
The energy of a single skyrmion is 4πρs , so their pene-
tration into the bulk needs to offset by a finite field exter-
nal field. Thus we expect that below a critical field, this
paired state will exhibit a fragile Meissner effect[27].

Finally we note that a magnetic field introduces a Zeeman
coupling to the electrons and the underlying spin liquid. The
Yao-Lee spin liquid now acquires a Fermi surface. The ef-
fective action now contains terms of the form −gµBv†σzv,
which convert the physics into that of an x − y model with a
finite temperature BKT transition associated with the binding
of vortices. One of the interesting questions, is whether this
state will exhibit h/e vortices characteristic of a charge e con-
densate? In fact, the development of these vortices depends
subtlely on the energetics of the visons[7]. The composite
order parameter

〈vT (x)iσ2®σv(x)〉 ∼ (d̂1(x) + id2(x)) (98)

carries charge 2e. If we rotate the vectors d1(x) and d̂2(x)
through 2π about the d̂3(x) axis, we create an h/2e vortex.
Such a vortex rotates the underlying spinor order through 2π,
causing it to pick up a minus sign, so that two h/2e vortices
are connected by a Kondo domain wall whose energy grows
with length, which would a priori bind two h/2e vortices
into a single h/e vortex. However, the naked domain wall
can be removed by binding a vison to the the h/2e vortex.
The confinement of the h/2e vortices into h/e vortices thus
depends on whether the binding energy is negative, or

E
[

h
e

]
− 2

(
E

[
h
2e

]
+ EV

)
< 0 (99)

For small enough superfluid stiffness, this quantity is neces-
sarily negative, so that in the vicinity of the quantum phase
transition into the order-fractionalized state, we expect h/e
vortices to be stable in the fractionalized condensate.

IX. DISCUSSION: BROADER IMPLICATIONS

We have presented a model realization of order fractional-
ization in a Kondo lattice where conduction electrons interact
with a Z2 spin liquid. Our theory, which describes the interac-
tion of an emergent Z2 gauge theory with matter, has several
distinct features:
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1. The order parameter, a spinor, carries charge e and spin
S=1/2.

2. The broken symmetry state has a gaplessMajoranamode
in the bulk, which results from a mismatch between the
quantum numbers of the conduction electrons, which
carry spin 1/2, charge e, and the elementary spin-one
majorana excitations of the Z2 spin liquid. This mis-
match determines the quantum numbers of the order
parameter formed as a bound-state between conduction
electrons and Majorana fermions.

3. Fractionalized order, in which the spinor order param-
eter develops long-range order, allows the electrons to
coherently tunnel through the spin liquid over arbitrarily
long distances.

The condensation of an order parameter carrying a Z2
charge is a direct consequence of the massive Z2 gauge field,
which eliminates visons and gives rise to deconfined Majo-
rana fermions in the spin liquid. Although the models we have
discussed, involve a static Z2 gauge field, whose excitations -
visons, are immobile, the phenomena we observe in our model
only requires that the underlying spin-liquid contains gapped
gauge excitations.

Some features of our model are related to its low dimen-
sionality. In 2D fractionalized order is only strictly present
at zero temperature when there are no visons, however, as
we discussed in Section VIII A, vestiges of order fractional-
ization order will persist to finite temperatures provided the
correlation length ξ of the order parameter is shorter than the
confinement radius R of the gauge field determined by the
density of thermally excited visons. Order fractionalization

is likely to become more robust in higher dimensions. In
particular, like the Kitaev spin liquid, our model serves as a
platform for an entire family of three dimensional lattices with
trivalent co-ordination[50], including the hyperoctagonal lat-
tice (the subject of a forthcoming paper [51]) where the phase
transition occurs at finite temperature and at arbitrary small
JK so that all analytical calculations can be performed in a
controllable manner.
More generally, we expect that the order fractionalization

observed in our model constitutes an emergent phenomenon
with physically observable consequences in the quantum uni-
verse at large, including quantum materials, and in the con-
text of relativistic theories (see section V). This wider context
also includes the expectation of superconducting phases with
gapless Majorana Fermi surfaces, and Z2 phase transitions in
which the domain walls associated with an emergent spinor
order may manifest themselves as hidden order phase transi-
tions. Several aspects of quantum materials, including heavy
fermion compounds with hidden order, such as URu2Si2[52],
and superconductors and insulators with signs of an underlying
Fermi surface, such as UTe2[53] and SmB6[54] are interesting
candidates for these novel possibilities.
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Appendix A: Alternative Fermionization of the Yao-Lee model using Jordan-Wigner Fermions

Like the Kitaev honeycomb model, the Yao-Lee model can be solved using a Jordan-Wigner transformation. This alternative
fermionization scheme allows a derivation of the model that does not involve an expansion of the Hilbert space. The derivation
here is an adaptation of that of Feng, Zhang and Xiang[55] for the Kitaev honeycomb model, that incorporates the additional
degrees of freedom in Yao-Lee model. To see how this works, we first redraw the honeycomb as a brick-wall lattice, composed
of one dimensional chains with alternating cross-links (see Fig. 15 A.), where the horizontal chains are labelled by the index l
, and the position along the chains is labelled by the index j. The Yao-Lee Hamiltonian with antiferromagnetic bond-strengths
Kx , Ky and Kz is written

H =
1
2

∑
l+j∈even

[
Kx(λxjlλ

x
j−1,l)®σjl · ®σj−1,l + Ky(λ

y
jl
λ
y
j+1,l)®σjl · ®σj+1,l + Kz(λz

jl
λz
j,l+1)®σjl · ®σj,l+1

]
, (A1)

where the ®λjl and ®σjl are Pauli matrices for the orbital, and spin degrees of freedom, respectively. We label the sites so that A
sublattice j + l is odd, while on the B sublattice, j + l is even.

Following [55], we carry out a Jordan-Wigner transforma-
tion on the frustrated orbital degrees of freedom λa

jl
, as follows:

λ+jl = (λ
x
jl + iλy

jl
)/2 = f †

jl
Pjl

λ−jl = (λ
x
jl − iλy

jl
)/2 = fjlPjl

λz
jl
= 2njl − 1, (A2)
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Figure 15. a) Equivalence between honeycomb and “brick-wall”
lattice. “A” sites (white circles) correspond to odd j + l, whereas “B”
sites (black circles) correspond to even j + l. b) Showing Jordan-
Wigner string Pjl = exp[iΦjl] snaking along the rows up to site
( j, l).

where Pjl = exp[iΦjl] is a real, Z2 string operator, where

Φjl = π
∑
j′< j

nj′l + π
∑
i

∑
l′<l,

nil′ . (A3)

The string operator Pjl runs from left to right along each row of
the lattice, starting at the bottom left-hand corner, continuing
until it reaches site ( j, l) (see Fig. 15 B. ) Pjl commutes with
the fermions fmn at sites above or to the right of site ( j, l), but
anticommutes with all fermions fmn along its path, i.e sites
to the left of jl on the same row, and sites on any row below
row l. This guarantees the the orbital operators λa

jl
commute

between sites. Applying the Jordan-Wigner transformation to
the orbital interaction terms in (A1), we have

λxjlλ
x
j−1,l = ( fj,l + f †

j,l
)( fj−1,l − f †

j−1,l),

λ
y
j+1,lλ

y
j,l
= ( f †

j+1,l − fj+1,l)( f
†

j,l
+ fj,l),

λz
jl
λz
j,l+1 = (2njl − 1)(2nj,l+1 − 1), (A4)

so that the fermionized Hamiltonian becomes

H =
1
2

∑
l+j∈even

[
Kx( fjl + f †

jl
)( fj−1l − f †

j−1l)(®σjl · ®σj−1l)

+ Ky( f †
j+1l − fj+1l)( f

†

jl
+ fjl)(®σjl · ®σj+1l)

+ Kz(2njl − 1)(2nj,l+1 − 1)(®σjl · ®σjl+1)

]
. (A5)

Splitting the fermions into their Majorana components, choos-
ing fjl = (cjl−ibjl)/

√
2 for even j + l, while fjl = (bjl +

icjl)/
√

2 for odd j + 1, so that cjl = ( fjl + f †
jl
)/
√

2 (even j + l)
and cj,l = i( fj,l − f †

j,l
)/
√

2 (odd j + l) and

(2njl − 1)(2nz
j,l+1 − 1) = icj,l+1u jl+1, jlcjl, (A6)

where u jl+1, jl = −2ibjl+1bjl is a Z2 field operator with eigen-
values ±1 that lives on the vertical z bonds. The Hamiltonian
can then be written

H =
∑

j+l∈even
i(Kxcj−1l ®σj−1l + Kycj+1l ®σj+1l

Figure 16. The modified string operator Pj incorporates the final
link on the string as an extremal bond.

+ Kzcjl+1®σjl+1u jl+1, jl) · cjl ®σjl . (A7)

Notice that the operators u jl+1, jl = −2ibj,l+1bj,l only appear
on vertical bonds in the Hamiltonian, commuting with the
entire Hamiltonian, forming static Z2 gauge fields.
Finally, we note that the operators

®χjl = cjl ®σjl (A8)

are real, and satisfy canonical anticommutation relations

χajl = (χ
a
jl)
†, {χajl, χ

b
mn} = δ

abδjmδln, (A9)

enabling us to identify them as independentMajorana fermions
(normalized so that (χa

jl
)2 = 1/2). The Hamiltonian thus

reverts to the fermionized version of the Yao-Lee model

H =
∑
〈i, j 〉

iKαi j ui, j( ®χi · ®χj) (A10)

in the gauge where the gauge fields ux
(i, j)
= uy

(i, j)
= 1 are set

to unity in the x and y directions. With this gauge choice the
flux through each hexagon is determined by the vertical bonds
alone. (In our treatment of the model, we set all Ka = K to be
equal.)

Lastly, note that we can invert the Jordan-Wigner transfor-
mation, identifying

Pjl =
∏
j′l′∈P

λz
j′l′

(A11)

as the product of the orbital matrices along the path P of the
string (not including site ( j, l) ). The χ majoranas can then be
written as

1
√

2
®χjl = ®SjlPjl ×

{
λ
y
jl
, (A site j + l ∈ odd),

λx
jl
, (B site j + l ∈ even), (A12)
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We can incorporate the dangling λa operators by regarding the
final link on the string as an extremal bond, defining

Pjl = λ
αj l, j−1l
jl

Pjl (A13)

so that now

1
√

2
®χjl = ®SjlPjl (A14)

providing a unique, non-local expression for theMajorana spin
excitations.
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