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Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved
quantities in generic strongly-interacting quantum systems. Recent matrix product operator
methods1,2 have made simulations of quantum hydrodynamics in 1+1d tractable, but they do not
naturally generalize to 2+1d or higher, and they offer limited guidance as to the difficulty of simula-
tions on quantum computers. Near-Clifford simulation algorithms are not limited to one dimension,
and future error-corrected quantum computers will likely be bottlenecked by non-Clifford opera-
tions. We therefore investigate the non-Clifford resource requirements for simulation of quantum
hydrodynamics using “mana”, a resource theory of non-Clifford operations. For infinite-temperature
starting states we find that the mana of subsystems quickly approaches zero, while for starting states
with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each case
the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue
that this is because mana is a sensitive diagnostic of finite-time deviations from canonical typicality.

I. INTRODUCTION

Quantum hydrodynamics—the long-wavelength, long-
time dynamics governing transport of conserved
quantities—is believed to be efficiently simulable on clas-
sical computers, even for strongly-interacting systems. If
a system’s Hamiltonian satisfies the eigenstate thermal-
ization hypothesis (ETH)3–5 it will rapidly reach local
thermodynamic equilibrium. After that time local ob-
servables are well described by a Gibbs state with spa-
tially varying thermodynamic potentials. Since hydro-
dynamics is presumptively local6,7 one expects a local
approximation to be enough to compute long-time dy-
namics. 8 and 9 offer quantitative arguments that this is
the case.

Recent work has built on these conceptual insights
to create workable numerical methods in one dimen-
sion. The “generalized relaxation time approximation”10

treats integrable models perturbed by small integrability-
breaking terms; it replaces the detailed effect of the
perturbation by a local phenomenological collision inte-
gral with a single parameter, a relaxation time. Near-
equilibrium transport properties are accessible in non-
equilibrium steady-state setups.11–15 For unitary quench
dynamics far from integrability there is a new genera-
tion of matrix product operator methods, density matrix
truncation (DMT)1 and dissipation assisted operator evo-
lution (DAOE).2 These methods assume that non-local
information is unimportant and can be discarded, if one
proceeds carefully—but so far the only practical use of
either of these methods has been for a model close to free-
fermion integrability.16 All these approaches share two
key assumptions: that local approximations to the full
state “simple”, in some sense; and that capturing those
local properties is enough to simulate the system’s dy-
namics (at least in some hydrodynamical regime). These
matrix product operator methods are restricted to one-

FIG. 1. Subsystem mana in real-time evolution of
infinite-temperature starting states on a chain of 50 sites.
Bold lines show the average over 20 random starting states
(cf Sec. II B), faint lines show trajectories of individual states,
and dot mark points at which we measure the mana with time
step dt = 1/8. We use TEBD (cf Sec. II C). In each case we
see a rapid rise to approximately the average mana of a Haar
state (black line in bottom plot), due to local thermalization
of the subsystem, followed by a slow decay as the subsystem
entangles with the rest of the system.

dimensional systems.
But the insights that led to these methods are not lim-

ited to one-dimensional physics. In two (or more) spatial
dimensions, ETH Hamiltonians will still locally thermal-
ize, and one expects that Gibbs states will still have com-
pact representations. The questions, then, are—what
data structures and algorithms are suitable for higher-
dimensional mixed-state dynamics? How computation-
ally intensive is the early-time complexity “hump”? And
how computationally intensive is the long-time dynam-
ics?

The effective model of 8 offers one route to higher-
dimensional simulations. In that model one explicitly
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represents the small-diameter components of an operator
(or density matrix), and replaces dynamics in the large-
diameter subspace by decay into a vacuum. This effective
model generalizes naturally to more than one dimension,
and has tractable Hilbert space dimension. But checking
convergence is challenging, and the effective model re-
quires nontrivial physics—the rate of long-operator decay
rate—as input. (The bulk of 8 was devoted to computing
that decay rate.)

We propose that near-Clifford algorithms and data
structures offer a promising avenue for simulations of hy-
drodynamics in more than one dimension. Clifford cir-
cuits are efficiently simulable on classical computers,17–19

because they map each Pauli operator to a single other
Pauli operator. Pure Clifford circuits have been used
to construct analytically tractable ETH Hamiltonians,20

and related quantum cellular automaton models have
been used to study hydrodynamics.21,22 Circuits with few
non-Clifford gates (or many gates that are nearly Clif-
ford) are also classically simulable.23–30 But we wish to
do more than build model systems: we wish to simulate
any given (ETH) Hamiltonian, in any dimension.

At first sight, Clifford or near-Clifford circuits are ill-
suited to simulating hydrodynamics. They can map any
particular input state to at most a finite number of states.
(In particular, they map the computational basis state
only to stabilizer states.) By contrast the orbit of an
initial state under evolution generated by ETH Hamilto-
nian traces out a continuous manifold. Moreover cap-
turing chaotic growth in OTOCs requires many non-
Clifford gates31. But if we satisfy ourselves with non-
unitary local approximations to the system’s dynamics—
as we do in using DMT, DAOE, or the relaxation-time
approximation—a path opens up. Stochastic Clifford cir-
cuits (that is, averages over an ensemble of Clifford cir-
cuits) can simulate many mixed states, in fact every state
in the convex hull of the stabilizer states; one might con-
struct such an ensemble by using randomized Trotter de-
compositions or similar techniques.32–36

Each algorithm for near-Clifford simulation has classi-
cal computational complexity exponential in some mea-
sure of the distance of the circuit from a pure Clifford
circuit. One can estimate these circuit measures by com-
puting so-called magic monotones37 for the states pro-
duced by the circuits. A magic monotone is a function
on a quantum state that is non-decreasing under Clif-
ford gates and certain other reasonable operations; con-
sequently, it lower-bounds the number of non-Clifford
operations required to produce the state. Many magic
monotones exist.37–42

We ask: under what circumstances are local approx-
imations to hydrodynamics accessible to near-Clifford
simulations? We use the mana37 of subsystem reduced
density matrices as a proxy for that accessibility. We
choose it in part because it is closely related to the quan-
tity controlling the difficulty of the Monte Carlo method
of 23, and in part because it is computable without solv-
ing a minimization problem. We consider time evolution

10−3 10−2 10−1 100

hz

0.40

0.45

0.50

ga
p

ra
ti

o

FIG. 2. Gap ratio of Eq. (2) for the model (1) with hx =
J = 1, as a function of hz, on a system of L = 9 sites. For
0.1 . hz . 1.0 the model has the GOE gap ratio r ≈ 0.53
(upper dotted line); for hz � 0.1 it drops below the Poisson
gap ratio r ≈ 0.39 (lower dotted line)

of a stabilizer state, and measure the mana of local re-
duced density matrices as a function of time. We find
that local reduced density matrices display a clear “com-
plexity hump” (Fig. 1): for times t . ε−1 the local en-
ergy scale43 these local subsystems rise to nearly maximal
mana while for t & ε−1 the mana decreases, broadly fol-
lowing the mana of a Haar state with the appropriate
entropy. For finite-temperature states, we additionally
notice that the subsystem mana deviates from the Gibbs
state mana (which is zero for sufficiently small inverse
temperature44). We attribute this to mana’s sensitivity
to small deviations from canonical typicality.

The paper is organized as follows. In Sec. II we de-
scribe our model (a variant of the q = 3 Potts model),
our procedure for choosing initial states, and our numer-
ical methods, and we briefly describe mana. In Sec. III
we treat the evolution of mana for infinite-temperature
states, while in Sec. IV we treat the evolution of mana
for finite-temperature states.

II. MODEL, INITIAL STATE, AND METHODS

A. Model

Studies of thermalization and hydrodynamics typically
use a transverse-field Ising model with additional longi-
tudinal field. Because mana is only defined for qudits of
odd dimension,45 we cannot use that model. Instead we
use the analogous qutrit model

H = −J
∑
j

[Z†jZj + h.c.]− hx
∑
j

[Xj +X†j ]

− hz
∑
j

[Zj + Z†j ]
(1)
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where X =
∑2
m=0 |m+ 1 mod 3〉〈m| and Z =∑2

m=0 e
−2πim/3 |m〉〈m| are the clock and shift operators.

We take J = hx = hz = 1 and system size L = 50, except
where otherwise specified.

This model is ETH for most parameter values. Even
with hz = 0, where this model becomes the Z3 Potts
model, it is only integrable at the critical point J =
hx.46–4950 We add the longitudinal-field term to robustly
break integrability, even at J = hx, and the Z3 onsite
rotation symmetry, which will lead to more complicated
hydrodynamics.

To check that this Hamiltonian is in fact ETH, we mea-
sure the eigenstate gap ratio. The eigenstate gap ratio
is

r :=

〈
min(δα, δα+1)

max(δα, δα+1)

〉
, (2)

δα := Eα+1 − Eα, where the average is over eigenstates.
We additionally average over symmetry sectors. We plot
r as a function of hz for a system of L = 9 sites in Fig. 2;
we find that the system has GOE level-spacing statistics
for 0.1 . hz . 1.0, indicating that it satisfies the eigen-
state thermalization hypothesis. (In the limit hz � 1 the
uniform field term dominates; this will lead to a gap ratio
r = 0 due to degeneracies. Similarly, in the limit hz � 1
the regains its Z3 symmetry, again leading to degenera-
cies and a gap ratio r = 0. In each case the model pre-
sumably remains ETH for sufficiently large system sizes.)

Despite the fact that we ultimately seek two-
dimensional algorithms, we use the one-dimensional
model (1). We do so precisely because there already exist
data structures and algorithms—matrix product states
and TEBD—for one-dimensional systems. To use an ef-
fective model like 8 risks assuming our conclusion.

B. Initial state

We wish to study the effect of local thermalization on
subsystem mana. To do so cleanly, we choose each of
our initial states to be the product of onsite stabilizer
states (eigenstates of the single-site generalized Pauli ma-
trices) picked to give constant energy density. We use a
product state because we expect that the trajectory of
a subsystem’s mana will be intimately tied to the way
it entangles with the rest of the system. (Additionally,
choosing our initial state to be a product state keeps
our matrix product state bond dimensions tractable for
slightly longer.) We use stabilizer states, which have zero
mana, so we can watch the initial growth of the mana, as
well as its transfer from short-range degrees of freedom to
long-range degrees of freedom. We choose constant ini-
tial energy density because we do not wish to confuse the
effects of local thermalization with the those of long-time
hydrodynamical relaxation (which will drive the system’s
dynamics after the initial thermalization).

Our requirement that the energy density be spatially
homogeneous strongly constrains our initial state, and in-

FIG. 3. Energy of pairs of single-qutrit stabilizer
states in the Hamiltonian (1) with J = hx = hz = 1. The en-
ergy for the stabilizer product pair is defined as the bond term
for the pair plus half the single site terms from each qutrit.
Xα and Zα label eigenstates of the shift operator X and the
clock operator Z, respectively, while Sα are eigenstates of the
other onsite generalized Pauli operators ZX,ZX2.

deed the energy densities we can choose. Fig. 3 illustrates
the energy densities we can achieve with the product of
two stabilizer states. The energy density is a two-site
operator—call the energy density on sites j, j + 1 by

εj,j+1 ≡− J [Z†jZj+1 + h.c.]

− 1

2
hx[(Xj +Xj+1) + h.c.]

+
1

2
hz[(Zj + Zj+1) + h.c.]

(3)

for 1 < j < L − 1. (One must take care at the ends of
an open chain, i.e. j = 1, L − 1.) We can construct a
state at a particular constant energy density by choosing
the states |ψ1〉 , |ψ2〉 on sites 1 and 2 to have that energy
density, and then choosing the site on each successive
site j > 2 such that εj−1,j = ε1,2. This state selection
fixes the energy density on the L−1 pairs of neighboring
sites, but fails to account for the extra contribution of
half the on-site field therms for the first and last site of
the chain. The initial state is only accepted if the to-
tal energy is L times the specified local energy density.
This allows for some fluctuations in energy density at
the ends of the chain arising from the extra on-site field
contributions as long as these fluctuations do not alter
the desired total energy. Only a discrete set of energy
densities is possible, and many possible energy densities
admit only one state. If there is only one state in a man-
ifold, we cannot average to avoid non-generic effects. We
therefore restrict ourselves to energy density manifolds
with at least two states per bond; this gives a manifold
with N > 2L−1 possible states. Fig. 3 illustrates the
possibilities for J = ht = hl = −1.

We give some further details of the initial state config-
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uration in App. A

C. Method

The majority of our simulations use time evolution
with TEBD51,52 with a second-order Trotter decompo-
sition. We find that Trotter step dt = 1/16 and bond
dimension χ = 512 give good convergence for t . 6 as
measured by the half-chain entanglement entropy; the
subsystem mana is converged for t . 8. We indicate the
regime 6 ≤ t ≤ 8 by dotted lines and lower color satura-
tion. App. C gives details of our convergence testing.

D. Quantity of interest

We measure mana M.37 In this section we give a very
brief précis of the relevant properties of mana. In App. B
we describe how to calculate it. For slightly less brief
précis from a similar point of view see 53 and 54; for
more details see 37, 55, and 56.

Mana is a magic monotone, meaning that it is non-
increasing under Clifford unitaries, partial traces, and
(on average) stabilizer measurements. For a pure state,
the mana is zero if and only if the state is a stabi-
lizer state.55,56 Classical statistical mixtures of stabi-
lizer states likewise have zero mana, but some zero-mana
mixed states are not statistical mixtures of stabilizer
states.

Mana is multiplicative, in the sense that for two density
matrices ρ1, ρ2

M(ρ1 ⊗ ρ2) =M(ρ1) +M(ρ2) . (4)

One therefore expects it to be extensive for states with
short range correlations. In fact on a system of ` qudits
each with dimension d one can bound

M(ρ) ≤ 1

2
(` ln d− S2) , (5)

S2 the second Rényi entropy of the state ρ, and the mana
of a Haar-random state is extensive with subextensive
corrections.53

Mana is computed in terms of the Wigner norm W:

M(ρ) = lnW(ρ) .

Sometimes it is convenient to work in terms of this
Wigner norm, which shares the properties of mana, suit-
ably translated.

III. MANA AT INFINITE TEMPERATURE

Consider a length-` subsystem of our chain (we con-
sider the ` most central sites). The evolution of the
subsystem mana is governed by the competition between

FIG. 4. Subsystem mana in real-time evolution of
infinite-temperature starting states as a function of en-
tropy deficit ∆(t) = ` ln 3 − S2(t), S2 the subsystem second
Rényi entropy (cf Fig. 1). Bold lines show the average over 20
random starting states (cf Sec. II B), faint lines show trajec-
tories of individual states, and dot mark points at which we
measure the mana with time step dt = 1/8. In each case we
see a rapid rise to approximately the average mana of a Haar
state, due to local thermalization of the subsystem, followed
by a slow decay as the subsystem entangles with the rest of
the system.

two effects. The subsystem’s internal dynamics locally
randomize the state, for a fast rise in the mana density.
At the same time the coupling between the subsystem
and its complement steadily increases the subsystem’s
entropy: since the mana is bounded by (5) this ongo-
ing increase of entanglement must decrease the mana.
For short times the first effect dominates and the mana
rapidly rises; for longer times the second is dominates
and the mana must slowly decay. In the long-time limit
` ln 3 − S2 = 0 (up to a Page correction, which will be
small for `� L/2), so the subsystem mana must be

lim
t→∞

M = 0 .

The system as a whole, by contrast, is in a pure state.
One expects this pure state to be essentially a random
state in the microcanonical ensemble, and so to have
Haar-like magic

M≈ 1

2
(` log 3− log π/2) . (6)

This whole-system saturation was observed for a related
model in 57.

In Fig. 1 we show the subsystem mana as a function
of time. The subsystems consist of the ` central sites of
the MPS state. We clearly see both effects—rapid initial
rise due to local randomization, followed by decay to the
infinite temperature value M = 0.

The bound (5) depends solely on the “entropy deficit”

∆ = ` ln d− S2 ; (7)

one is entitled to ask how close the subsystem mana
comes to saturating that bound. Moreover one might
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FIG. 5. Subsystem mana in real-time evolution of
finite-temperature starting states on a chain of 50 sites.
Bold lines show the average over 20 random starting states (cf
Sec. II B), faint lines show trajectories of individual states,
and dot mark points at which we measure the mana with
time step dt = 1/8. As in the infinite-temperature case we
see a rapid rise, due to local thermalization of the subsystem,
followed by a slow decay as the subsystem entangles with the
rest of the system—but the decay no longer continues to mana
M` = 0 at accessible times.

expect the decay of the subsystem mana to track the
mana of a subsystem of a Haar-random state. For large
Hilbert space dimension the Wigner norm of a subsystem
of a Haar state is controlled solely by the entropy deficit,
and given by53

〈W〉Haar =
√

2/π (σ/µ)e−µ
2/2σ2

+ erf(µ/σ
√

2) (8)

where

σ2

µ2
= e∆ − 1 .

For ∆ & lnπ/2 the mana resulting from this expression
becomes53

M≈ 1

2
[∆− lnπ/2] . (9)

In Fig. 4 we plot the subsystem mana against the entropy
deficit ∆. Each subsystem starts at zero entropy S2,
hence large entropy deficit ∆, and moves right to left
to smaller entropy deficit. (We plot the entropy as a
function of time in App. D.) Dot mark points where we
measure the mana, every time step dt = 1/8. We see
again a fast early rise and a long-time decay, matching
the Haar prediction based on (8).

At intermediate times the state mana undershoots the
Haar prediction. This is because different parts of the
subsystem are not fully entangled. Heuristically, the sub-
system behaves like a tensor product of Haar states on
smaller subsystems. The mana is the sum of the manas
of these smaller subsystems (cf (4)), each of which comes
with a lnπ/2 correction from (9). Once the system is
fully (internally) entangled one can think of it as a single
Haar state with a single lnπ/2 correction: this gives the
black line in Fig. 4.

FIG. 6. Subsystem mana in real-time evolution of
finite-temperature starting states as a function of en-
tropy deficit ∆(t) = ` ln 3 − S2(t), S2 the subsystem second
Rényi entropy (cf Fig. 1). Stars mark Gibbs state values.
Time increases as entropy deficit decreases, i.e. from right to
left. In each case the long-time endpoint (t = 8, leftmost on
each curve) has mana and entropy noticeably larger than the
Gibbs value.

IV. MANA AT FINITE TEMPERATURE

How does this picture change when the initial state
has nonzero energy? Fig. 5 shows subsystem mana as
a function of time, and Fig. 6 shows it as a function of
the subsystem’s entropy deficit. In each case we show a
variety of energies, labeled by equilibrium temperature.58

We see an initial rise followed by a slow decay, broadly
following the Haar value, as in the infinite-temperature
case. In both Fig. 5 and Fig. 6, the β = 0.233 aver-
ages display much more variation than other tempera-
tures. We believe that the variation is due to the tight
constraints on initial states at this energy (cf App. A).
Although there are exponentially many suitable initial
states, they are locally similar.

But careful examination of Fig. 6 presents a mys-
tery. We extract the subsystem mana and entropy of
a Gibbs state from exact-diagonalization simulations on
small systems (cf Fig. 7 and App. F); we mark those
values in Fig. 6 with a dot.

We attribute the discrepancy to a subtle finite-time
effect related to deviations from so-called canonical
typicality.59–65 Essentially, the discrepancy is controlled
by the size of the Hilbert space of the region with which
our subsystem is entangled. As that region grows the
mana will approach its thermal value—but our MPS sim-
ulations are limited to times for which the entangled re-
gion is small.

To understand this, consider first subsystem mana in
finite systems at long times. Heuristically, one expects
long-time states to behave much like Haar-random states
on a microcanonical subspace (we rehearse the standard
intuition behind this statement in App. E). Almost all
such states have subsystem reduced density matrices near
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in trace norm to the subsystem reduced density matrices
of the microcanonical density matrix,61 hence to that of
the Gibbs state.

But this is not enough: two density matrices close in
trace norm can have widely divergent Wigner norms.
We show in App. G that if density matrices ρ, σ on a
dimension-d subspace have

‖ρ− σ‖1 ≤ η ,

then ∣∣∣ ‖ρ‖W − ‖σ‖W ∣∣∣ ≤ min(d2η, d1/2√η) . (10)

In App. H we argue that the Hilbert space dimension fac-
tors in (10) mean that it can only give very wide bounds
on mana when combined with the result of Popescu.
Moreover a Gibbs state can have zero mana but be near
the boundary of the zero-mana region; a nearby thermal
state may then have small but nonzero mana.

In Fig. 8 we plot subsystem mana as a function of
time in small (Krylov-accessible) systems at much longer
times than are accessible to matrix product states; we see
a steady-state deviation between the mana of the time-
evolved state and the Gibbs distribution mana.

So much for finite systems at large times. What about
large systems at finite times? We have considered fixed-
sized subsystems; as the surrounding system becomes
large, even bounds based on (10) and the typicality re-
sult of 61 will strongly constrain the mana. But a finite-
time state will be very different from most random mi-
crocanonical states: those states have nearly maximal en-
tanglement, while the state at time t has entanglement
entropy S ≈ 2ct. That finite-time state, then, can be
crudely modeled by a Haar state from the microcanoni-
cal subspace on a system of size l + 2ct. (To construct
a less crude model one might use random matrix prod-
uct states.66–68 A random MPS would mimic not only
the entanglement of the subsystem with its surround-
ings, but also its internal entanglement structure.) This
crude model is broadly consistent with Fig. 5, in that the
decay times increase linearly with subsystem time. We
leave a more careful comparison of numerics with predic-
tions from canonical typicality to future work.

V. DISCUSSION

We find that local subsystems of zero-energy initial
states have zero mana after a short local thermalization
time proportional to the subsystem size, consistent with a
characterization as an infinite temperature Gibbs state.
This suggests that infinite-temperature hydrodynamics
may be simulated classically methods with low overhead.
In the context of quantum simulation, there may be effec-
tive dynamics using mixtures of stabilizer states and Clif-
ford circuits, or circuits with few non-Clifford gates, that
also effectively reproduce the infinite-temperature hydro-
dynamics. At finite temperature the landscape is more

FIG. 7. Subsystem mana for Gibbs states of the Hamil-
tonian (1) on 9 qutrits with periodic boundary conditions.
We take J = hz = hz = 1.

FIG. 8. Long-time subsystem mana per site in Krylov
evolution of an L = 11 site chain with thermal values marked
with horizontal dashed lines. The average value of five sam-
ples is given by a dark solid line with each sample plotted
using a light line. Thermal values for all samples except
β = −0.227 are too small to be seen on the plot scale.

complicated: for sufficiently high (but still finite) temper-
ature the Gibbs state, hence the long-time thermal state,
has zero mana; while for somewhat lower temperatures,
the subsystem mana is small but nonzero. Additionally,
regardless of temperature, the subsystem mana takes a
long time to relax to the thermal value, because mana is
sensitive to small deviations from canonical typicality.

Because mana is sensitive to small deviations from the
Gibbs state, approximate simulations may be able to
achieve some desired precision using states with much
lower mana than that of the target state. This could
allow approximate simulations to use fewer non-Clifford
resources required than would be for exact simulation,
which would broaden the scope of physics accessible us-
ing near-Clifford simulation techniques and reduce the
cost of quantum simulation.

We would be remiss not to outline some limitations
of our work. Most seriously, comparisons between the
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mana complexity hump of Fig. 1 or 5 and the entropy
complexity hump of e.g. 2 Fig. 2 can be importantly
misleading. The cost of an MPO calculation is, broadly
speaking,

[MPO cost] ∼
∑

bonds

exp [αSbond] ∝ L , (11)

where Sbond is the entanglement entropy across a bond
and α is some power. The simulation cost may be domi-
nated by the peak bond entropy, but it is still polynomial
in system size. Straightforward near-Clifford simulations,
by contrast, will have cost

[near-Clifford cost] ∼ exp

γ ∑
subsystems

Msubsystem


∼ eγmL

(12)

for some finite mana density m. That is, even if we take
advantage of the insensitivity of hydrodynamics to details
of long-range correlations, the cost is still exponential
in system size. Worse, since the peak mana is close to
the maximum mana, this suggests that there are no cost
savings to be had from short-range approximations.

We believe this obstacle is superable. Because the peak
mana occurs at short times, when the system displays
only short-range entanglement, one should be able to de-
couple simulation of different subsystems, effectively ex-
changing sum and exponential in (12) and giving cost
polynomial (indeed linear) in system size. Concretely,
imagine dividing the system into subsystems of some
length l, separating those subsystems separately for t ∝ l
and then re-introducing the couplings. While this dra-
matically changes the early- to intermediate-time dynam-
ics, it should not change the long-time hydrodynamics,
and it suggests that more sophisticated schemes are pos-
sible.

The nonzero finite-temperature long-time mana is
another limitation of our work. Absent decoupling
tricks like those required for early-time simulations, this
nonzero subsystem mana density means that the simula-
tion cost is exponential in system size, albeit with small
exponent.

And looming behind these limitations is the fact that
that while mana controls the difficulty of some classical
simulation methods and lower-bounds the non-Clifford
resources required to create a state, these bounds are
not constructive: knowing that a state has low mana
does not give one a recipe for constructing it. We leave
algorithms—the analogues of DMT or DAOE—to future
work.

We have framed this result in terms of classical simula-
tion, because we expect that to be its immediate applica-
tion, but in many ways it is more naturally understood
in the context of future error-corrected quantum com-
puters. In many error-correction architectures Clifford
gates are “easy”. Non-Clifford gates, by contrast, must
be performed by costly magic-state distillation and in-
jection schemes: magic comes dear. Our results suggest
that good local approximations to long-time states will
dramatically reduce requirements for this key resource.
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Appendix A: Initial state sampling

For our MPS time evolution, we choose pure initial
states with no mana or entanglement, ie tensor products
of the twelve single qutrit stabilizer states. We also want
to sample from initial states with the same energy density
for local subsystems to thermalize to a consistent temper-
ature without hydrodynamic energy transport. Looking
at the energy for pairs of single qutrit stabilizers we can
see what energy densities and therefore temperatures will
be accessible to this choice of initial states. The energy
densities for pairs of stabilizer states are grouped into
the X eigenstates (1, 11, 12), the Z eigenstates (2, 9, 10),
and other stabilizer states (3-8). The energies with high-
est degeneracy are any of the non X or Z eigenstates,
which have zero energy density when paired together, or
a slightly positive or negative energy density when paired
with one of the X or Z eigenstates. When hl = 0 states
3-8 only have nonzero energy density when paired with
an X eigenstate. This means our initial state sequences
will be random among states 3-8 for infinite tempera-
ture, or alternating between an X or Z eigenstate and
one of the other eigenstates. The colored tables and
graphs show the energy densities for different pairs of
these single qutrit stabilizer states, colored so negative
energies are red and positive energies are blue. Variation
of the on-site longitudinal field only affects pairs with a
Z eigenstate since all other single qutrit stabilizers have

FIG. 9. Top: Average support of initial states over energy
eigenstates in 8 qutrit system. The quantity | 〈ψ0|Ek〉 |, which
measures the support of an initial state |ψ0〉 with each each
energy eigenstate (labeled by their energy density Ek), is av-
eraged over stabilizer product states with the proper energy
for each temperature. The relative support of initial states on
different energy eigenstates roughly scales as the square root
of the Boltzman weights ∼ exp(−βEk/2). Bottom: Normal-
ized density of states with 0.2 width bins for energy density.

zero expectation value for this term.
The infinite-temperature states—those with εj,j+1 =

0—deserve special consideration, both for their simplicity
and their importance. Consider the six eigenstates of ZX
and ZX2. call them |φα〉, and write

|φαφβ〉 = |φα〉 ⊗ |φβ〉 . (A1)

Then term-by-term

〈φαφβ |εj,j+1|φαφβ〉 = 0 , (A2)

for every choice of φα, φβ , and any state of the form

|φα〉 = |φα1
〉 ⊗ |φα2

〉 ⊗ · · · ⊗ |φαL〉 (A3)

has zero energy density everywhere. Our infinite-
temperature states, then, are |φα〉 for random strings
α.

The initial states are chosen to be stabilizer states,
so that they have zero initial mana, and product states,
so that there is no initial entanglement and all subsys-
tems are pure. The energy of these initial states are de-
termined by all the nearest neighbor pairs of stabilizer
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FIG. 10. 50 qutrit MPS, half-system entropy convergence
with bond dimension and trotter step.

states. The only stabilizer states with nonzero expecta-
tion value of Hamiltonian terms are the eigenstates of
the generalized Z and X operators. The transverse and
longitudinal field terms each have one low energy eigen-
vstate, denoted X0 and Z0 respectively. These terms also
have two degenerate positive energy eigenstates denoted
X1 and X2 for the transverse field and Z1 and Z2 for
the longitudinal field. The states Zi also have nonzero
expectation value for the bond terms, with negative en-
ergy when the nearest neighbor pairs are the same and
positive when they are different. The other six stabilizer
states are denoted Si and have zero expectation with all
Hamiltonian terms.

We consider in Fig. 9 the magnitude of the inner prod-
uct of initial states with energy eigenstates in an 8-qutrit
system, averaged over initial states for a given temper-
ature. We find that initial states have support over
the full range of energy eigenstates, with the average
support scaling roughly as the square root of the ap-
propriate Boltzmann weights at that temperature, i.e.
| 〈ψ0|Ek〉 | ∼ exp(−βEk/2).

The exception is for the case where β = 0.233 (E0/L =
−2), where there are many energy eigenstates orthogonal
to all of the stabilizer product states at that tempera-
ture. This makes sense because this temperature has the
fewest number of initial states and significant correlations

FIG. 11. 50 qutrit MPS, subsystem entropy convergence with
bond dimension and Trotter step for a single initial state at
each temperature.

in those initial states imposed by the energy density se-
lection. Unlike at other temperatures these constraints
for β = 0.233 has restricted the initial states to have sup-
port over only a subspace of the energy eigenstates. The
the average support within this subspace, however, still
scales according to the appropriate Boltzmann weights.

Appendix B: Defining and calculating mana

Consider a system of ` qudits each of dimension d.
(NB this notation is different from that of Sec. IV and
Appendices G, H. There we write d for the dimension of
a whole Hilbert space; here we write d for the dimension
of the component qubits.)

To calculate the mana, first recall the generalized Pauli
strings

Tpq = ω2−1p·q
∏
j

Z
pj
j X

qj
j (B1)

where ω = e2πi/d, 2−1 = (d + 1)/2 is the multiplicative
inverse of 2 in the field Zd, and Zj and Xj are the clock
and shift operators on site j. Just as the Pauli strings
generalize continuous single-particle Weyl operators to a
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FIG. 12. 50 qutrit MPS, subsystem mana convergence with
bond dimension and Trotter step for the same single state at
each temperature as in Fig. 11

product of discrete rings, we can generalize the Wigner
function to a discrete Wigner function

Wpq(ρ) = d−`
∑
p′q′

ωp·q
′−p′·q Tr ρTp′q′ (B2)

This may also be written in terms of the phase-space point
operators Apq as

Wpq(ρ) = d−` Tr[ρApq], (B3)

where

Apq = TpqA0T
†
pq with A0 = d−`

∑
pq

Tpq. (B4)

The discrete Wigner function has
∑
pqWpq(ρ) = Tr ρ =

1, and—for classical mixtures of stabilizer states σ1, σ2—

Wpq(ασ1 + (1− α)σ2) ≥ 0. (B5)

(Among pure states only stabilizer states have Wp,q(ρ) ≥
0 for all p, q. This property is called the discrete Hudson’s
theorem.55) The Wigner norm

‖ρ‖W =
∑
pq

|Wpq(ρ)| (B6)

measures the size of the negative part of the Wigner func-
tion, and the mana is

M(ρ) = ln ‖ρ‖W . (B7)

Appendix C: Convergence in Bond Dimension and
Trotter Step

The accuracy of simulations of time evolution using
matrix product states is limited by both the bond dimen-
sion of the MPS and the Trotter step size of the TEBD
evolution. Trotterization of the time-evolution operator
to second order with time step ηt incurs an error of order
δt3, but a truncation also occurs at each time step; this
truncation projects the state back into the space of MPS
of the given bond dimension and causes additional error.

As the initial product state evolves in time entangle-
ment grows in the system but is ultimately limited by the
bond dimension of the MPS. The largest entanglement in
the system would occur across a central bipartition, so
we compare the entanglement entropy for this biparti-
tion with several different bond dimensions and Trotter
step sizes for a particular unentangled zero energy initial
state of a 50 site MPS. We see in Fig. 10 that the half
system entanglement entropy for MPS evolution of bond
dimension χ = 512 and χ = 1024 diverge at a time t ∼ 6,
while Trotter error is not significant (at either bond di-
mension) until later times t ∼ 8. We therefore consider
our simulations reliable

While the half system entropy suggests global prop-
erties of the MPS begin to diverge around time t = 6,
entropies and mana for subsystem of size l ≤ 6 are much
better converged as seen in Figures 11, 12. No noticeable
difference in these quantities is seen for the entire simu-
lated duration up to t = 12 for the smallest subsystems,
with slight differences noted at later times for the largest
subsystems. The spread in entropy of the six qutrit sub-
system between these different samples at time t = 12 is
2.7%.

We also see from these examples looking at a single
state that while mana of larger systems is always greater
or equal to mana of subsystems, the entropy of subsys-
tems can grow at different rates for early times. In our
examples at finite energy density the one and six qutrit
subsystems have a slower entropy growth than the inter-
mediate subsystems. This is due to the initial state on
the edges of our subsystem and how this affects the mix-
ing for initial dynamics. In the case of our zero energy
states all sites have single qutrit stabilizers which are nei-
ther X nor Z eigenstates and mix at identical rates. For
the finite energy density cases our initial states are dif-
ferent eigenstates of the X or Z operators, and so the
initial mixing rate depends on the exact pairing of sta-
bilizer states on each edge of the subsystem. For later
times once the systems have been sufficiently mixed the
larger subsystems have larger entropies as expected.



12

FIG. 13. 50 qutrit MPS, subsystem entropy measured in trits,
infinite and finite temperature initial states, J = hx = hz = 1.

Appendix D: Subsystem entropy

We often make reference to the entropy deficit ∆ of
our subsystems, which is defined as the maximal entropy
of the subsystem minus the second Rényi entropy of that
subsystem. In Fig. 13 we plot the average Rényi entropy
of the central subsystems of our 50 qutrit MPS over the
course of our TEBD evolution which is used to deter-
mine the entropy deficit. We also plot in dashed lines
the subsystem entropies of Gibbs states, which subsys-
tems should converge to in the process of thermalization.
Note that these thermal entropies are not the maximal
subsystem entropies, so the asymptotic entropy deficit
is still nonzero even after subsystems have converged to
thermal values of the entropy. The infinite temperature
case is an exception, since the thermal entropies are max-
imal and the entropy deficit is zero.

We see that small subsystems quickly converge to their
thermal values and stabilize at this entropy. However, at
later times we begin to see decreases in subsystem en-
tropies which arise from truncation errors in the MPS
evolution and are not reflective of accurate dynamics
of the subsystem entropies. Unfortunately, some of the
larger subsystems fail to reach their thermal entropy val-
ues before these truncation errors become relevant and

start to decrease subsystem entropy.

Appendix E: Thermalization, typicality, and the
eigenstate thermalization hypothesis: intuition

Imagine evolving a tensor product state |ψ〉 by a
Hamiltonian H. Since |ψ〉 is the eigenstate of some local
Hamiltonian, it has energy uncertainty[

〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2
]1/2

= ∆
√
L , (E1)

where ∆ is some O(1) constant with dimensions energy.
The time-evolved state is

|ψ(t)〉 =
∑
j

e−iEjt 〈Ej |ψ〉 |E〉j

only has weight near the initial energy E = 〈ψ|H|ψ〉 of
|ψ〉. The phase factors e−iEjt break the delicate conspir-
acy between overlaps 〈Ej |ψ〉 that results in the state ψ
at the initial time t = 0, and we can think of the state
as randomly chosen from a distribution on energy eigen-
states with width given by (E1). That distribution, in
turn, is similar to a microcanonical distribution with the
same width.

This cartoon assumes that the eigenstates have no
structure. If they do, the overlaps 〈Ej |ψ〉 will be
weighted towards eigenstates that resemble the initial
state, leading to a failure of thermalization.

Suppose the system has a classical limit. Berry’s
conjecture4,71 is that the eigenstates are appropriately
structureless if the corresponding classical system is
chaotic. (More precisely the energy eigenfunctions are
random in such a way that the Wigner function, aver-
aged over a small phase space volume, matches the mi-
crocanonical ensemble.)

But Berry’s conjecture does not contemplate the dis-
crete Wigner functions we work with! In order to take
the average over a small phase space volume, we would
have to work with large onsite Hilbert space dimension d.
More broadly the small-d model does not have an obvious
classical limit, chaotic or integrable.

If the system does not have a classical limit, as ours
does not, Berry’s conjecture becomes the eigenstate ther-
malization hypothesis (ETH)3—that local expectation
values in eigenstates match thermal expectation values.
One expects the system to thermalize if its Hamiltonian
satisfies the ETH, and not otherwise. NB the ETH is
a hypothesis, not a conjecture like Berry’s conjecture: a
particular Hamiltonian may or may not satisfy the ETH,
so it must be checked (generally numerically.) The mes-
sage of our Fig. 2 is that our Hamiltonian at our param-
eters does satisfy the ETH.

For a thorough and accessible review see 5, especially
Sec. 2.4 on the semiclassical limit and Berry’s conjecture
and Sec. 4.1-4.2 on the eigenstate thermalization hypoth-
esis. 72 offers a review of recent work on quantum chaos
in the semiclassical limit from a very different point of
view.
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FIG. 14. Subsystem mana of Gibbs states with inverse
temperature β = −0.25 for different system sizes. The sub-
system mana converges rapidly with system size which allows
us to use these small system estimates for our large scale MPS
simulations.

Appendix F: Gibbs state mana

We use exact diagonalization on a system of up to nine
sites with periodic boundary conditions to determine the
thermal properties of subsystems for the larger qutrit
chain. We use the energy densities of these systems to
map initial state energies to temperatures. Fig. 14

We would like to compare the asymptotic mana of sub-
systems that have thermalized with nonzero initial en-
ergy density to the expected value of thermal subsystem
mana. From these plots we can extract the subsystem
mana for a given inverse temperature as well as the en-
ergy density for a given inverse temperature. From these
we can find the subsystem mana we expect for an initial
state of a given energy density.

Appendix G: Bounding the difference in mana
between nearby states

Proposition 1. Suppose two density matrices ρ, σ on a
Hilbert space of dimension d are nearby in trace distance:

‖ρ− σ‖1 ≤ η .

Then

‖ρ− σ‖W ≤ d2η [linear bound]

‖ρ− σ‖W ≤
√
dη [square root bound].

Applying the reverse triangle inequality to this result
will give

Corollary 1.∣∣∣‖ρ‖W − ‖σ‖W ∣∣∣ ≤ min(d2η,
√
dη) . (G1)

and subadditivity of the log will give

Corollary 2.

ln ‖ρ‖W ≤ ln ‖σ‖W+min

(
2 ln d+ ln η,

1

2
ln d+

1

2
ln δ

)
.

(G2)

Now to prove 1.

Proof. Start with the linear bound. The difference in
Wigner functions is

|Wpq(ρ)−Wpq(σ)| = d−1|TrApq(ρ− σ)|
≤ d−1‖Apq‖1‖ρ− σ‖1 .

(G3)

Since the phase-space point operators Apq of (B4) are
unitary, ‖Apq‖1 = d, so

|Wpq(ρ)−Wpq(σ)| ≤ η (G4)

and

‖ρ− σ‖W =
∑
pq

|Wpq(ρ)−Wpq(σ)| ≤ d2η . (G5)

as desired.
Turn to the square root bound. Write

∆ := ρ− σ ; (G6)

the hypothesis is that ‖∆‖1 ≤ η Then, using Cauchy-
Schwarz,

‖∆‖W =
∑
pq

|Wpq(∆)| ≤ d
[∑
pq

W 2
pq(∆)

]1/2

(G7)

But ∑
pq

W 2
pq =

1

d
‖∆‖22 ≤

1

d
‖∆‖1 (G8)

since −1 � ∆ � 1, so

‖∆‖W ≤
√
dη (G9)

as desired.

Appendix H: Mana and canonical typicality

Let us use the result of Popescu et al.61 to be more
precise about how what canonical typicality means for
mana.

That result is as follows. The subspace of interest is the
vector space spanned by the eigenvectors within ∆

√
L/2

of E; call it

R = span{|Ej〉 : |Ej − E| < ∆
√
L/2} ,
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and its dimension dR. The relevant microcanonical en-
semble is

E =
1

dE

∑
|Ej−E|<∆

√
L/2

|Ej〉〈Ej | . (H1)

Call the subsystem of interest S, and its Hilbert space
dimension dS ; call the rest of the system B = S̄. The
microcanonical ensemble E traces down to

ΩS = TrB E (H2)

on S ; the effective accessible dimension on B is

deff
E =

1

Tr Ω2
B

, (H3)

where ΩB = TrS E . Finally, write µ for the Haar measure
on the vector (sub)space R. Then

µ
(
|φ〉 ∈ R : ‖ρS(φ)− ΩS‖1 ≥ η

)
≤ η′ (H4)

with

η = ε+
1

2
3L/2

√
deff
E

η′ = 4e−Cd
2
Rε .

(H5)

Now use (H4) and (H5) together with Cor. 1 to bound
the difference in Wigner norms between ρS(φ) and |ΩS〉
Write

Wφ = ln ‖ρS(φ)‖W
WΩ = ln ‖ΩS‖W

for the subsystem mana of the randomly chosen state |φ〉
and the microcanonical ensemble Ω, respectively. Apply-
ing Cor. 1 from App. G, we find that

µ
(
φ ∈ R : Wφ −Wρ ≥ δ

)
≤ η′ (H6)

with

δ = min(d2
Sη,
√
dη) , (H7)

η as in Eq. (H5).
To get some intuition for what this result means, let us

look for the η (and hence δ) corresponding to η′ = 1/2:
that is, (an upper bound on) the median discrepancy in
Wigner norm. This η′ = 1/2 gives

ε =
ln 8

Cd2
R

for

η = ε+
1

2

√
dS
deff
E

≤ ln 8

Cd2
R

+
dS

2
√
dR

using that [bound on deff
E from Popescu]. The second

term dominates the first, so

η .
dS

2
√
dR

.

(Were η′ sufficiently small this would not be the case.)
Now

δ ≈ dS√
2
√
dR
∼ dSd−1/4

R . (H8)

Appendix I: Krylov subspace evolution

We want to corroborate our stories about thermaliza-
tion and subsystem mana in small enough systems where
more exact methods than TEBD evolution of MPS states
can be done for long times. We also need the system to
be large enough to see thermalization of the smallest sub-
systems and finite size correction emerging for larger sub-
systems, which is challenging using exact diagonalization
of a chain of qutrit sites. So, we turn to Krylov subspace
methods to time evolve states of our Potts model for
intermediate system sizes and high-precision long time
dynamics. The Potts model is the same as in Eq. 1, but
with periodic boundary conditions and the coefficients
J = hx = hz = 1. We evolve the product stabilizer ini-
tial states for an L = 11 qutrit chain up to time t = 100
and measure the mana and entropy of subsystems less
than half the system size.

The time evolved state which has thermalized is com-
pared to the Gibbs state values obtained through exact
diagonalization of an 8 qutrit system. The subsystem en-
tropies asymptotically approach the thermal values, with
deficits visible in four and five qutrit systems due to fi-
nite size effects. The entropy of the β = 0.135 states are
lower and have larger standard deviation between differ-
ent initial states than other temperatures. The entropies
of the β = 0.233 states have fluctuations which are the
same across the initial state, which have more correlation
due to their relatively lower statistics from energy con-
straints. These fluctuations are maintained in averaging
and result in a low standard deviation.

For subsystem mana, subsystems smaller than four
which have zero thermal mana match, with larger sub-
systems having finite size corrections. However, for
β = 0.233 and β = −0.227, which have small but nonzero
mana in most subsystems, have significantly more mana
than thermal values even in smaller subsystems.

What we also notice for the Gibbs states is that for
−0.12 ≤ β ≤ 0.2 all subsystems have zero mana, thus
the Gibbs state itself may be inside the stabilizer hull.
For our zero energy initial states, most subsystems are
maximally mixed with finite size effects reducing the en-
tropy only for the largest subsystems. The maximally
mixed state is in a sense at the center of the stabilizer
hull and far from any states with mana, so all subsystems
of the late time states for zero energy initial states have
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FIG. 15. 11 qutrit Krylov evolution, subsystem entropy in
trits up to t = 100, thermal subsystem values of 8-qutrit
system dashed.

zero mana except for the ` = 5 subsystem where finite
size effects are seen.

Our Gibbs states with β = 0.135,−0.96 are also in-
side the stabilizer hull, but closer to the boundary. The
late time subsystems for these intiial states also have zero
mana for most subsystems, though the ` = 4 subsystems
noticeably have mana where the same sized subsystems
for zero energy initial states did not. This could still be
from finite size effects, but being closer to the stabilizer

hull boundary the introduction of mana does not require
as large of a deviation from the true Gibbs state subsys-
tems.

For Gibbs states with β = 0.233,−0.237 subsystems
do have a small amount of mana and lie just outsize the
stabilizer hull. We see however an excess of mana in sub-
systems over the Gibbs state values even for small sub-
systems. These states, although close to the Gibbs state
subsystems in some sense, have enough ’wiggle room’ in a
small neighborhood to amount significantly more mana.

Our subsystem mana estimates for thermal states were
carried out by numerically finding the exact Gibbs state
for small systems and then computing the mana of vari-
ous sized subsystems. We see in Fig. 14 that the subsys-
tem mana converge rapidly with overall system size and
so we can accurately use these values as estimates of the

FIG. 16. 11 qutrit Krylov evolution at t = 100 compared with
finite temperature subsystems of an 8 qutrit chain. Entropy
deficit in trits versus subsystem mana, with the relationship
for Haar random states given by the solid black line.

subsystem mana for large system thermal states. More-
over, the finite size effects we do see increase the sub-
system mana, so it is unlikely that these values would
underestimate the mana of thermal subsystems. This
shows further that the large excess of mana seen in long
time simulations is due to canonical typicality effects of
time evolved pure states.
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