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The bilayer Hubbard model describes the antiferromagnet to spin singlet transition and, poten-
tially, aspects of the physics of unconventional superconductors. Despite these important applica-
tions, significant aspects of its ‘phase diagram’ in the interplane hopping t⊥ vs. on-site interaction
U parameter space, at half-filling, are largely in disagreement. Here we provide a novel analysis
making use of the average sign of weights over the course of the importance sampling in quantum
Monte Carlo simulations to resolve several central open questions. Specifically, this metric of the
weights clarifies the finite-sized metallic regimes at small U . Furthermore, at strong interactions, it
points to the existence of a crossover from a correlated to uncorrelated band-insulator not yet ex-
plored in a variety of existing, unbiased numerical methods. Our work demonstrates the versatility
of using properties of the weights in quantum Monte Carlo simulations to reveal important physical
characteristics of the models under study.

I. INTRODUCTION

In the wake of the discovery of the high-temperature
superconductors, and the unlikeliness of their description
within a conventional electron-phonon mechanism [1],
strongly interacting models that could explain the phys-
ical mechanisms occurring in the cuprates had a surge of
investigation. Among these, multi-layer geometries such
as the bilayer Heisenberg model [2, 3], are essential to
understand the robust (i.e. finite temperature) antiferro-
magnetic ordering observed in undoped materials. The
bilayer t-J [4, 5] and Hubbard models [6–8] allowed the
study of the interplay of itinerant electrons and (short-
ranged) magnetic ordering in the presence of hole-doping,
and hence spin fluctuation mediated pairing. In the lat-
ter, original studies have pointed out the possibility of a
nodeless d-wave pairing, where the gap has opposite signs
in the bonding and anti-bonding Fermi surfaces, and that
interplane hybridization weakens in-plane superconduct-
ing correlations.

Due to the presence of the sign problem [9–11] in the
doped regime [12], investigations using quantum Monte
Carlo (QMC) simulations had most success studying the
half-filled case [13, 14], which allows the understanding
of how global long-range magnetic ordering takes place
at sufficiently small interplane hybridizations. More re-
cently, large scale ground-state QMC calculations [15]
have clarified the absence of metallicity at finite values
of the interactions, as initially suggested to occur [13, 16–
19], and further corroborated the existence of a magnetic
transition in the 3D Heisenberg universality class as the
interplane hybridization was increased, similar to that
of the bilayer Heisenberg model [20]. Dynamical cluster
approximation calculations have also examined the pos-
sibility of the enhancement of superconductivity as one
of the bands approaches the Lifshitz transition, and its
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implications for heavily electron-doped FeSe-derived su-
perconductors [21].

In this Letter we revisit the phase diagram of the half-
filled bilayer Hubbard model using the finite-temperature
determinant quantum Monte Carlo (DQMC) method [22,
23], with a goal of establishing its different phase bound-
aries in a way that takes the average sign of partial
weights in the sampling as a minimal correlator. This
metric, recently used to understand criticality in a vari-
ety of quantum models [24], further allows one to unveil
a subtle and often unappreciated crossover from a cor-
related to uncorrelated band-insulating regime at large
interplane hybridizations.

II. MODEL

The Hamiltonian of an L× L bilayer reads

Ĥ =− t
∑
〈ij〉` σ

(ĉ†i`σ ĉj`σ + H.c.)− t⊥
∑
i σ

(ĉ†i0σ ĉi1σ + H.c.)

+ U
∑
i`

(
n̂i`↑ −

1

2

)(
n̂i`↓ −

1

2

)
− µ

∑
i,l,σ

n̂ilσ, (1)

where ĉ†i`σ is the fermionic creation operator on site i of
the layer ` (` = 0, 1) with spin σ (σ =↑, ↓), and n̂i`σ
is the corresponding number density operator; t and t⊥
quantify the nearest-neighbor intra- and interplane hop-
ping amplitudes, while U is the strength of the local re-
pulsive interactions with chemical potential µ controlling
the electronic density [Fig. 1(a)].

In the non-interacting limit (U = 0) at half-filling
(µ = 0), the system undergoes a metal-to-band insu-
lator transition as t⊥/t > 4, with a gap opening be-
tween the bonding (−) and anti-bonding (+) bands,
ε±0 (k) = −2t[cos(kx)+cos(ky)]±t⊥, whose size is t⊥−4t.
In the opposite, strongly interacting, case (U � t, t⊥),
the Hamiltonian at µ = 0 is equivalent to the bilayer
Heisenberg model [2, 20], which displays a magnetic tran-
sition from an antiferromagnetic ordered bilayer to a
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Figure 1. (a) Schematic illustration of the Hamiltonian, with relevant parameters annotated. (b) The contour plot of the
average spin resolved sign 〈Sσ〉 in the space of parameters (t⊥, U); (c) the equivalent for the antiferromagnetic structure factor
SAF. All data are extracted at temperatures T/t = 1/20 in a 12 × 12 bilayer. Markers along the U/t = 0 axis in (b) and
(c) depict the values of t⊥/t that result in a nesting condition with a wavevector (π, π) for this lattice size. Examples of such
nestings are shown in (d) and (e) for t⊥/t = 1.73 and 3.0, respectively. Lines in (b) and (c) depict the results of Ref. 15 marking
the magnetic transition obtained via the scaling of the antiferromagnetic order parameter at T = 0.

quantum disordered phase featuring interplane singlets.
Mapping the spin exchange interactions J to the hopping
energy scales at this limit, gives a critical hybridization
tc⊥/t = 1.588 separating these two regimes.

For the generic U 6= 0 case, we solve (1) by making
use of DQMC, in which the introduction of a real-space
imaginary-time auxiliary field {siτ} decouples the inter-
actions, allowing the fermionic integration to be taken
exactly. As a result, the partition function is written in
terms of the product of weights for each fermionic fla-
vor σ, Z =

∑
s

∏
σ wσ({siτ}), where the field {siτ} is

being summed. Instead of solving for all configurations
{siτ}, importance sampling is performed while observing
the convergence of physical observables. The single, con-
trollable approximation used is the imaginary-time dis-
cretization ∆τ which we take as 0.1 throughout.

The form of the partition function reveals a peculiar-
ity of the method: the weights being summed are not
positive-definite. In fact, in a large class of problems of
interest this ‘sign problem’ precludes the accurate com-
putation of physical quantities in the most interesting
parts of their phase diagrams [9, 25]. At half-filling, how-
ever, due to the bipartite structure of the lattice, there
is no sign problem [23]. That is, the product of the signs
of the weights in the Monte Carlo sampling is positive
regardless of the configuration {siτ} of the Hubbard-
Stratonovich field. However, even though the total sign of
the weights is always positive, the sign of individual ones
are not. Indeed, recent results have demonstrated that
the average sign of individual weights, 〈Sσ〉 ≡ 〈sgn(wσ)〉,
are directly related to the physics of the Hamiltonian un-
der investigation, following scaling laws similar to those
for physical observables in the vicinity of quantum phase
transitions [24].

III. THE SIGN PROBLEM ‘PHASE DIAGRAM’

We start by studying the ‘sign’ phase diagram of the bi-
layer Hubbard model in Fig. 1(b), focusing on the regime
U . t. Lobes where 〈Sσ〉 is close to 1 appear at small
interaction strengths, while in a broad region of parame-
ters 〈Sσ〉 → 0. Not coincidentally, the boundaries of such
lobes in the U/t→ 0 limit match the loci where a perfect
nesting of the Fermi surfaces, ε+

0 (k+Q) = −ε−0 (k), occur
in a finite lattice [see Figs. 1(d) and 1(e) for two exam-
ples] when spanning the interplane hybrization t⊥/t [15].
These lobes are finite-size effects which vanish in the
thermodynamic limit, where the spacing between nest-
ing conditions similarly vanishes– other system sizes are
shown in Appendix A. Moreover, the Q = (π, π) nesting
suggests that the system is unstable towards antiferro-
magnetic order, and ensuing Mott insulating behavior
is the most probable scenario, as further pointed out by
mean-field calculations [15]. The immediate conclusion is
that the regions at small U/t with 〈Sσ〉 ' 1 identify the
metallic regime observed in finite lattices over a variety
of numerical methods [13, 16–19].

Going beyond small interactions, studies that use 〈Sσ〉
to track the phase transitions [24] have shown that the
region with vanishing spin-resolved sign can be identified,
in related models and when approaching the thermody-
namic limit, with either the magnetically ordered regime
or the one yielding a Mott insulator. This is the case
for the SU(2) Hubbard model in the honeycomb lattice,
for example, where both phases are known to concomi-
tantly occur [26–28]. Here, in the SU(2) bilayer Hubbard
model, however, by overlaying in Fig. 1(b) the accurate
numerical results from Ref. 15 for the critical interaction
strength Uc(t⊥) that leads to the onset of magnetism in
the T → 0 limit, we demonstrate that 〈Sσ〉 → 0 is not
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Figure 2. (a–d) The single-particle excitation spectrum Ak(ω) across a path connecting high-symmetry points (Γ−X−M −Γ)
in the Brillouin zone, for the indicated hybridization amplitudes In (a), t⊥/t = 1.5, and (d), t⊥/t = 4.0, the single-particle
gap ∆sp is marked, exhibiting, respectively, a direct and indirect behavior, respectively. (f–h) dynamical spin structure factor
S(k, ω) at different t⊥/t as marked, with a momentum integrated version shown in (e). Data are obtained at temperatures
T/t = 1/20 in an L = 12 bilayer with U/t = 10.

tracking the magnetic phase transition. Our results re-
solve the transition (or crossover) it probes, and, in doing
so, provide new insight into the transition between un-
correlated and correlated band insulating regimes.

This becomes more evident if contrasting Figs. 1(b)
and 1(c). By plotting the antiferromagnetic structure
factor SAF ≡ (1/2L2)

∑
i,j(−1)i+j〈(n̂i↑−n̂i↓)(n̂j↑−n̂j↓)〉,

in a relatively large lattice (L = 12) [Fig. 1(c)], the criti-
cal points Uc(t⊥) systematically border the regime where
SAF is large. The average spin-resolved sign, on the other
hand, departs from zero at larger interplane hybridiza-
tions [Fig. 1(b)]. In particular, that the magnetic transi-
tion is not accompanied by a Mott transition in the bi-
layer Hubbard model was initially shown within cluster
dynamical mean-field (DMFT) calculations [17], which
demonstrated the existence of a paramagnetic Mott in-
sulator preceding the onset of a band insulating state at
larger t⊥ [29].

IV. THE MI-BI CROSSOVER

Differentiating between Mott and band-insulators at
sufficiently large t⊥ is challenging. This difficulty has
been illustrated not only in theoretical studies of model
Hamiltonians, but also in the experimental characteri-
zation of certain transition-metal dichalcogenides [30],
which exhibit a competition of on-site Coulomb repul-

sion and interlayer hopping in its layered structure. As
both phases naturally manifest a finite gap ∆sp for single-
particle excitations, either separating the upper and
lower Hubbard bands in the Mott phase or the bonding
and anti-bonding bands in the band insulating regime,
a useful distinguishing characteristic is provided by the
trend of ∆sp with growing interplane hybridization [17]
as well as the direct or indirect nature (in momentum)
of ∆sp.

To implement this approach, we start by reporting
the single-particle spectral function Ak(ω) in Fig. 2,
calculated via the stochastic analytic continuation of
imaginary-time dependent QMC data [31],

G(k, τ) =

∫
dω

π

e−ωτ

1 + e−βω
Ak(ω), (2)

where G(k, τ) is the space Fourier transform of the imag-
inary time (τ) displaced Green’s function G(k, τ) =
〈Ψr+R,σ(τ)Ψ†r,σ(0)〉 where the creation operator is given

as Ψ†r,σ = (ĉ†r0,σ, ĉ
†
r1,σ) with the creation operator of the

electron at unit cell r and sublattice 0, 1 with spin σ.
By focusing on large interactions, U/t = 10, we no-

tice that at small t⊥ [t⊥ . 2t, see Fig. 2(a)], the single-
particle excitation bands display a direct gap at the
X = (π, 0) point of the Brillouin zone as in the single-
layer Hubbard model, whereas for larger interlayer hop-
pings (t⊥ & 2t), the gap becomes indirect, connecting
the Γ-M [(0, 0)-(π, π)] points instead, Figs. 2(c) and 2(d).
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Figure 3. (a) A cut along U/t = 10 of the spin-resolved aver-
age sign 〈Sσ〉 with growing interplane hopping t⊥ and various
system sizes. The inset highlights the significant drift in the
upturn location t⊥/t of 〈Sσ〉 as one decreases the tempera-
ture T (or increase the inverse temperature β = 1/T ) for an
L = 12 bilayer. (b) The corresponding single-particle gap ∆sp

extracted by the minimum gap of single particle excitations
across the whole Brillouin zone, at comparable system sizes;
also shown the gap to spin excitations ∆s, finite once the AF
order is absent. This is also demonstrated by the vanishing
of the normalized (by the system size) AF structure factor,
shown in (c), in the thermodynamic limit at t⊥ = 2.05(5)t
– see first vertical shaded region in (b). The second shaded
region at t⊥ = 5.75(25)t describes the onset of ∆sp ' ∆s, also
seen in the zoom-in of the saturation of 〈Sσ〉 in (d). Data are
extracted at temperatures T/t = 1/20.

Moreover, for values of t⊥ ≈ 3t, the indirect gap reaches
a minimum, whereupon increasing hybridization leads to
a larger ∆sp. This is summarized in Fig. 3(b) for differ-
ent system sizes – additional details in the Ak(ω) results
are described in Appendix B, and an independent scheme
(with similar results) that bypasses the analytic contin-
uation is given in Appendix C.

This analysis allows us to divide the dependence of ∆sp

on the hybridization at fixed interaction strength in three
classifications: (i) a gap that is largely robust to the in-
crease of t⊥ up until t⊥/t ' 1.5− 2, (ii) a decrease of the
gap with t⊥ as the hybridization approaches t⊥/t ' 3,
and (iii) a growth of ∆sp for values t⊥/t & 3. The ob-
served trend of the gap d∆sp/dt⊥ < 0 (d∆sp/dt⊥ > 0)
was used before [17] in cluster-DMFT results to discern

the Mott (band-insulating) phases. Consequently, the
three regimes we describe can be interpreted, respec-
tively, as the antiferromagnetic Mott insulator, paramag-
netic Mott insulator [32], and band insulator. Noticeably,
quantitatively similar conclusions about the gap change
and the Mott-to-band insulator transition were obtained
in smaller clusters using dynamical cluster approxima-
tion [33], albeit at more modest interactions (U/t = 6).

V. CHARACTERIZING BAND INSULATORS

The classification of the onset of a band-insulator via
the evolution of ∆sp with t⊥ is however incomplete. It has
been argued that a true (or uncorrelated) band-insulator
is characterized by identical gaps for particle and spin
excitations [34]. To verify this, we compute the dynami-
cal spin structure factor, S(k, ω) via the inversion of the
integral equation,

〈Ŝ(k, τ)Ŝ(−k, 0)〉 =

∫
dω

π

e−τω

1− e−βω χ
′′(k, ω), (3)

where χ′′(k, ω) is the dynamical spin susceptibility, which
allows the extraction of S(k, ω) = χ′′(k, ω)/(1 − e−βω).
Figure 2(f–h) reports the dynamical spin structure factor
for a representative path in the Brillouin zone. A finite
spin gap ∆s appears at values t⊥/t & 2 at the M = (π, π)
point, in agreement with the disappearance of antiferro-
magnetic long-range order, as also seen in the 1/L extrap-
olation of the normalized equal-time antiferromagnetic
spin structure factor, SAF = 1

2L2

∑
i,j exp{i(π, π) · (ri −

rj)}〈(n̂i,↑ − n̂i,↓)(n̂j,↑ − n̂j,↓)〉 [Fig. 3(c)]. Larger inter-
plane hybridizations lead to a much reduced momentum
dependence in S(k, ω); a momentum-integrated version
is shown in Fig. 2(e), and a compilation of the spin gap
extracted from S(ω) is presented in Fig. 3(b). Both gaps,
∆sp and ∆s, acquire similar values at t⊥/t ≈ 5.8, mark-
ing thus the onset of the uncorrelated band-insulating
phase.

We are now in position to analyze how 〈Sσ〉 captures
different crossovers, as reported in Fig. 3(a). Despite
not insignificant system-size dependence, these data in-
dicate that the upturn of the average spin-resolved sign
at sufficiently low temperatures occurs close to the MI-
BI crossover at around t⊥ ≈ 3t [as originally seen in
Fig. 1(b)]. In turn, 〈Sσ〉 saturates at one precisely when
the uncorrelated band-insulating regime takes place. Fig-
ure 3(d) shows a detailed zoom-in of this 〈Sσ〉 → 1 ap-
proach. Such saturation is also seen in quantifiers of the
typically sampled fields in DQMC, e.g. the average Ham-
ming distance [35] – see Appendix F. Although a scaling
analysis based on the average sign of the weights 〈Sσ〉 [24]
is elusive, likely due to the absence of an intrinsic or-
der parameter characterizing either phase, other models
where a band-insulating phase takes place, as the square
lattice ionic Hubbard model [36–40], also exhibit a con-
vergence of 〈Sσ〉 towards one, as we similarly observe
here [11, 24]. Further characterization of this crossover
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is shown in Appendix E which describes several local spin
correlators.

VI. SUMMARY AND OUTLOOK

By using a combination of quasiparticle excitation gaps
with the average sign of the weight of one fermionic fla-
vor 〈Sσ〉 in the importance sampling of DQMC simu-
lations, we identified the different phases of the bilayer
Hubbard model at half-filling. Beyond the clarification of
the system size-influenced metallic regimes at small inter-
actions, one of our main results using this tracker is the
onset of an uncorrelated band-insulating regime at large
interplane hybridizations. While this transition is likely
a crossover, i.e., without an associated order parameter,
the saturation of 〈Sσ〉 at one coincides with the regime
where spin and single-particle excitations are compara-
ble. As a result, in both uncorrelated phases at finite lat-
tices, metallic and band-insulating, 〈Sσ〉 → 1. That 〈S〉
might signal transitions in model Hamiltonians is con-
sistent with its role as a necessary ingredient to compute
any physical observable [23], thus inherently revealing de-
tails of the physics at play. Moreover, for the specific case
of the crossover between band insulating phases, it has
the added advantage that it does not require the quan-
tification of, often expensive, time-displaced correlation
functions, neither analytic continuation of the data.

A testament of the relevance of these results is pro-
vided by experiments involving ultracold atoms trapped
in optical lattices, which have recently succeeded in em-
ulating the bilayer Hubbard model [41, 42], opening a
further, and highly controllable, realization for precision
investigations of its different phases.

Going beyond half-filling, our exploration of the sign
problem in this model may allow one to tackle the regime
which is mostly relevant to the doped cuprates, where
bilayer features have been observed [43] and numerically
interpreted [44], culminating on the investigation of the
potential onset of a finite-temperature superconducting
transition governed by a Kosterlitz-Thouless form. Such
analysis has been recently carried out for the case of a
single layer [24]. Its extension to a bilayer model might
reveal the impact of the interplane hybridization on the
finite critical temperature Tc, as well as on the dominant
pairing channel before this transition takes place [45–48].
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Appendix A: Local quantities and different system
sizes

From the discussion presented in the main text, the
location of the system size-influenced metallic regions is
already evidenced by the regimes where the 〈Sσ〉 con-
verges to one. To make this connection clearer, and ob-
serve how they extend as the lattice size is reduced, we
show in Figs. 4(a) and 4(c), the ‘sign phase diagram’
for L = 4 and 8, respectively. The lobe boundaries in
the noninteracting limit are again given by the values of
t⊥/t where a nesting condition occur, even more clearly
as the number of such matches is proportional to the sys-
tem size. A systematic shrinking of these regions takes
place with growing L.

While the weight of the configurations in the sampling
might initially be thought to be an artifact of the quan-
tum simulation algorithm, it directly captures the be-
havior of physical observables, including the double oc-
cupancy, 〈n̂↑↓〉 ≡ (1/2L2)

∑
i〈n̂i↑n̂i↓〉. In an insulator-

to-metal [metal-to-insulator] transition, the double oc-
cupancy increases [decreases] with changes in the pa-
rameter driving the evolution, for example the inter-
plane hybridization. Figures 4(b) and 4(d) show that
the derivative of the double occupancy with respect to
t⊥, d〈n̂↑↓〉/dt⊥, reflects this prediction, and identifies the
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Figure 4. (a) [(b)] The average spin-resolved sign 〈Sσ〉 [deriva-
tive of the double occupancy in respect to t⊥, d〈n̂↑↓〉/dt⊥] on
the T vs. U/t map for a 4 × 4 bilayer. (c) and (d) show
the same for an L = 8 lattice. As in Fig. 1, markers along
the U/t = 0 axis denote nesting conditions for the corre-
sponding lattice size, and data are extracted at temperature
T/t = 1/20.
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Figure 5. The spectral function Ak(ω) (a-d) and the single-
particle density of states N(ω) (e-h) for various interplane
hoppings as marked. For values t⊥/t & 2 the gap turns indi-
rect, connecting the two bands at the conduction and valence
bands at (π, π) and (0, 0), respectively. The density of states
at large t⊥/t’s displays a collection of features connected to
the incoherent superposition of interplane singlet-states. Data
is obtained for U/t = 10, T/t = 1/20 in an L = 12 bilayer.

metallic region boundaries in a finite lattice, in direct
agreement with the average sign analysis.

Appendix B: QMC results: Spectral function and
DOS

Following the discussion in the main text that es-
tablishes that the magnetic transition is accompanied
by a transition from a direct-to-indirect gap of the
single-particle excitations, we display in Fig. 5 (a–d) the
momentum-resolved Ak(ω) for a range of t⊥ values. To
contrast these results, we further show the full density of
states, N(ω) =

∑
kAk(ω) in Fig. 5 (e–h).

For the spectral function, the change of the gap-type,
from direct to indirect, is seen to happen at values
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Figure 6. (a-b) The imaginary-time (τ) dependent Green’s
function G(k, τ) at U/t = 10, t⊥/t = 4.5 for L = 12. Inset:
G(k, τ) on semi-logarithmic scales. (c) The single-particle
gap ∆sp extracted by the minimum gap of fitting lnG(k, τ) ∼
±ω∓(k)τ across the whole Brillouin zone (see text).

t⊥/t & 2, with a direct [(π, 0) − (π, 0)] gap giving way
to [(π, π)− (0, 0)], closely following the magnetic transi-
tion at U/t = 10 [15]. Deep in the non-magnetic phase
the (π, π)-contribution to the excitations departs from
the Fermi energy, and thus become less relevant at low
energies. In turn, the density of states, which is always
gapped when increasing the interplane hoppings, displays
a variety of incoherent peaks that are a characteristic of
the superposition of singlet-states formed across the bi-
layer in the regime t⊥/t� 1. In the main text, Fig. 3(b),
the gaps were extracted via the energy difference given
by the location of the maximum values of the δ-like func-
tions closest to the Fermi energy at ω = 0.

Appendix C: Directly extracting the single-particle
gap

In the main text, we make use of stochastic analytic
continuation to invert the integral equation [Eq. 2] that
allows one to retrieve the spectral function Ak(ω) (and
consequently the single-particle gap) via the examination
of the smallest gap across the allowed momentum points,
∆sp(k). Here, we employ a direct approach that com-
plements this procedure. The single-particle gap can be
similarly obtained by noticing that G(k, τ) ∝ e±ω∓(k)τ ,
for imaginary-time τ sufficiently away from its limits at
τ = 0 and τ = β. In particular, for the case of τ < β/2
[τ > β/2] one obtains the gap ω+ [ω−] above [below] the



7

Fermi energy at µ = 0. As a result, the single-particle
gap is extracted as ∆sp = mink[ω+(k)] + mink[ω−(k)].
Figures 6(a) and 6(b) exemplify the τ -dependence of
the imaginary-time displaced Green’s functions at two
momentum points, k = (0, 0) and (π, π), respectively.
A least-square fitting of the exponential form close to
its ends reveals the gap sizes, and also that an indi-
rect gap between these two momenta forms at values of
t⊥/t = 4.5, as reported in the main text. Compiling
these results, across a range of interplane hybridization
values at U/t = 10 [Fig. 6(c)], leads to a ∆sp largely
consistent with the one originally presented in Fig. 4(b),
with a larger size-dependence, however. The minimum at
t⊥/t ' 3 still locates the transition from a paramagnetic
Mott insulator to the band-insulating regime.

Appendix D: Analysis of a possible bond-order wave

The energy gaps displayed in Fig. 3(b) in the main text
gave us indications for the existence of multiple phases
with growing t⊥. In particular, a possible candidate to
explain the intervening regime in-between the AF Mott
insulator and the band-insulator at large interplane hy-
bridization is a rung bond-ordered wave (BOW). To ac-
count for this possibility, we calculate the BOW order
parameter,

〈B̂i〉 ≡
∑
σ

(ĉ†i1σ ĉi2σ + ĉ†i2σ ĉi1σ), (D1)

where, in the notation presented in the main text, the
second sub-index refers to the fermionic operator layer.
Verification of the existence of long-range order is ac-
complished via monitoring the BOW structure factor,
SBOW = (1/L2)

∑
ij e
−ik·(ri−rj)〈B̂iB̂j〉.

In Fig. 7, the structure factors are shown as a func-
tion of the interlayer hopping for two system sizes, as
obtained for a system with U/t = 10. In all channels we
investigate, k = [π, π], [0, π] or [0, 0], no apparent size-
dependence of the BOW structure factor can be observed
for a large range of interplane hybridizations, suggesting
the absence of such ordering in the thermodynamic limit.

Appendix E: Local correlators

While BOW rung correlations are short-ranged, other
local correlators aid in drawing a picture of the low-
energy physics as the interplane hopping is increased.
The density-density correlations within a unit cell
[Fig. 8(a)] start at the value 0.25 when the planes are
uncoupled (t⊥ = 0) and evolve such that equal-spin cor-
relations are quickly suppressed whereas opposite spin
ones are enhanced until t⊥/t ' 2.1. Accompanied by the
large negative interplane, intra-unit cell spin-spin cor-
relations [Fig. 8(c)], these point to a robust interplane
singlet formation in this regime, as a local signature of
the overall antiferromagnetic state. Past this threshold
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Figure 7. BOW structure factor SBOW as a function of the
interlayer hopping t⊥/t for two system sizes at U/t = 10 and
T/t = 1/20. Different symmetry channels are displayed, (a)
k = [π, π], (b) [π, 0], and (c) [0, 0]. The absence of any signi-
ficative size dependence indicates there is no long range bond
order.

in the hybridization t⊥, 〈Ŝzi,0Ŝzi,1〉 decreases in magnitude
signalling the long-range order is absent and interplane
singlets in different unit cells become more and more in-
dependent. This can be seen explicitly in Fig. 8(b) and
(d), which report the interplane two-point correlations
(density and spin, respectively) for nearest-neighbor unit
cells: they asymptotically approach their uncorrelated
values, pointing to the decreasing interdependency of the
different singlets within a unit cell. This approach is con-
tinuous (at the low, but finite temperatures T/t = 1/20)
and does not indicate a sharp transition to the collective
product state of singlet states. Rather, they are sug-
gestive of a crossover, which is behind the explanation of
the smooth transition from the correlated to uncorrelated
band-insulating phases.

Appendix F: Hamming Distance

Recent investigations in various fermionic models have
shown that the onset of criticality can be directly tracked
by quantities related to metrics of the auxiliary Hubbard-
Stratonovich (HS) field [35, 50], bypassing the necessity
of extraction of physical observables. This field, local to
each orbital in the spinful Hubbard model in its (d+ 1)-
dimensions formulation [22], is the quantity being sam-
pled via a Metropolis algorithm over the course of the
Monte Carlo sampling [23]. A useful metric (although
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Figure 8. (Top): Cartoon depicting the different sites (i, l)
where the two-point correlations are computed as displayed
in the lower panels. (Bottom): The interlayer (a-b) density-
density correlations for same (σ = σ′) and different spin com-
ponents (σ 6= σ′ = −σ) within the same unit-cell (a) and
nearest-neighbor unit cells (b). (c) and (d) display the equiv-
alent for the spin-spin correlations. All data are extracted at
U/t = 10 for L = 14 and T/t = 1/20. Spin summation is
implicitly assumed for the density correlations.

others exist [51, 52]) is given by the average distance
travelled in respect to a given point in the phase space
of configurations {si,τ}, and can be defined by the L1-
distance (or Hamming distance) of configurations,

HD =
1

2V
∑
i,τ

|si,τ − sref.
i,τ |, (F1)

with respect to a reference configuration {sref.
i,τ }. Here V

is the length of the field, Lτ · 2L2 in our case, with Lτ
being the number of imaginary-time slices that discretize
the inverse temperature: β/Lτ = ∆τ . Assuming that
{sref.
i,τ } is a ‘typical’ configuration (namely, one obtained

after a significant number of warmup sweeps in the field),
storing HD after each sweep on the sampling allows one
to quantify the average distance the Markov chain probes
in the (d+ 1)-dimensional phase space. This was shown
to be intrinsically related to the physics of the models
being investigated [35]. For example, unordered phases
were demonstrated to be associated with completely un-
correlated HS configurations, rendering an average Ham-
ming distance, HD, equals to 0.5. Departure from this
value signals correlation within the sampled space, and
thus physically ordered phases.
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Figure 9. (a) Average Hamming distance and averaged stan-
dard deviation of Hamming distances vs. interplane hybridiza-
tion with U/t = 10 and L = 14. (c) The correspond-
ing spin resolved sign 〈Sσ〉. Vertical shaded regions in (a)
and (d) display the QCP obtained by AFM structure factor
tc⊥/t ≈ 2.1, whereas the shaded regions in the zoomed-in pan-
els (b) and (d) mark the confidence region in t⊥ that indicates
the correlated-to-uncorrelated band insulating crossover (see
main text).

Applying this idea to the bilayer Hubbard model, we
report in Fig. 9 the average Hamming distance HD as
a function of the interplane hybridization at large in-
teractions U/t = 10. A significant departure from the
uncorrelated sampling occurs at t⊥ ≈ 5.8t, which marks
the regime where the uncorrelated band-insulator gives
way to a correlated one [see Fig. 3(b) in the main text].
Another metric of the sampling is the typical width σHD
of the Gaussian-distributed Hamming distances within
a given realization. Averaging among independently-
seeded Markov chains, σHD, results in a marked loca-
tion for the change of the distributions, which coincides
with the onset of the ordered phase at t⊥/t ≈ 2.1. That
is, Hamming distances obtained at each sampling pro-
cess are much more diverse within the ordered phase in
comparison to the ones within the physically unordered
regime. These results lend extra insight about the loca-
tion of the different phases, and have been checked to
exhibit qualitatively small finite-size effects.

Appendix G: ED results

We start by analyzing the strongly interacting regimes,
where finite-size effects are typically less dramatic: Fig-
ures 10 (a–d) for U/t = 10, and (e–h) for U/t = 32. The
dependence of the antiferromagnetic spin structure fac-
tor (see main text for definition) is shown in (a) and (e).
As the system evolves from a typical planar antiferro-
magnet to a bilayer one as t⊥ increases, i.e., the number
of neighbors effectively grows, this quantity (computed
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Figure 10. ED results of observables in a
√

8 ×
√

8 bilayer
at U/t = 10 vs. interplane hybridization: (a) the expectation
value of the staggered charge and spin-structure factor; (b)
intra- and interplane spin-spin nearest neighbor correlations;
(c) double occupancy and (d) the fidelity susceptibility. (e–
h), the same for U = 32t; vertical dashed line in (h) depicts
the Heisenberg result from Ref. [2, 20] Jc⊥/J = 2.52181(3)
converted to tc⊥/t = 1.58802(1) via their correspondence in
the strongly interacting regime, J ∝ t2/U .

in the ground-state |Ψ0〉) initially increases. However, at
larger interplane hybridization, it is then suppressed for
t⊥ & t as singlets form, similar to the behavior seen in the
DQMC results in the main text. Concomitantly, given
the reduced spin ordering, the staggered charge structure
factor, Scdw ≡ (1/2L2)

∑
i,j(−1)i+j〈(n̂i↑ + n̂i↓)(n̂j↑ +

n̂j↓)〉 slightly increases with t⊥, albeit with an overall
small magnitude, suggesting the absence of a charge den-
sity wave formation. The smooth evolution of these two
quantities is evidence against the manifestation of a first-
order phase transition in the range of parameters studied.

The reduction of global antiferromagnetic order giving
way to a unordered state displaying interplane spin sin-
glets can be also seen by directly computing the nearest-
neighbor intra- and interplane spin correlation functions,
〈m̂im̂j〉 ≡ 〈(n̂i↑ − n̂i↓)(n̂j↑ − n̂j↓)〉. All such spin corre-
lations are negative, which signals their local antiferro-
magetic character. With increasing t⊥, interplane spin
correlations surpass intraplane ones in magnitude, pre-
ceding the onset of the quantum disordered phase.

The double occupancy, 〈n̂↑↓〉 ≡ 〈n̂↑n̂↓〉, in analogy
with Figs. 4(b) and (d), can give the locations of the
insulator-metallic pseudo-(or finite-size influenced) tran-
sitions at small interactions, in particular when its deriva-

tive, d〈n̂↑↓〉/dt⊥, is evaluated. At large U/t, Fig. 10(g),
their absolute value is relatively small, and reflects the
approach to the Heisenberg regime of localized spins.

While much can be captured by the dependence of
few-body correlators as we have done so far, a direct
account of how the many-body ground state changes
with the increasing interplane hybridization, can be un-
derstood in terms of the fidelity susceptibility g⊥ =
1
L2

1−|〈Ψ0(t⊥)|Ψ0(t⊥+dt⊥)〉|
dt2⊥

[53–56], which can locate a

quantum phase transition without making direct assump-
tions regarding a possible order parameter [57–59]. This
quantity displays a peak that is extensive, and inde-
pendent of the (sufficiently small) parameter ‘perturba-
tion’ for continuous phase transitions. Here, we take
dt⊥ = 10−3t, and we note the presence of a first peak
at small t⊥ as related to the crossover from planar to
bilayer antiferromagnetism. A second peak is also visi-
ble, which in the case of almost full formed local spins
captures the magnetic transition, closely following the re-
sults obtained for the Heisenberg model for much larger
lattices [2, 20].

A more general description of such quantities across
the t⊥ − U phase diagram is given in Fig. 11. At
small interactions, the various observables are deeply af-
fected by finite-size effects, manifesting the influence of
the metallic region extending at finite values of U . In
this small cluster, only eight k-points are available in
the Brillouin zone. In this case, the nesting condition
(see main text) between the two bands occurs only at
t⊥/t = 0 and 4. As a result, the phase diagrams are
remarkably similar to the ones obtained in small clus-
ters in DMFT [17]. In particular, we can highlight (i)
the large antiferromagnetic structure factor at small t⊥
denoting the magnetically ordered phase [Fig. 11(a)];
(ii) the d〈n̂↑↓〉/dt⊥ > 0 [d〈n̂↑↓〉/dt⊥ < 0] describing
the insulator-metal [metal-insulator] transition for this
small cluster [Fig. 11(b)], similar to the results of Fig. 4;
(iii) the onset of the quantum disordered phase, signi-
fied by the close-to-saturation of the interplane nearest-
neighbor spin correlations, 〈m̂im̂j〉inter in Fig. 11(c); and
(iv) the second peak (branch) of the fidelity suscepti-
bility at t⊥/t ≈ 4 describes the magnetic transition at
small interactions, and converges to the Heisenberg limit
at sufficiently large values of U/t [Fig. 11(d)].

Lastly, we provide a simplified view of the single-
particle gap within ED calculations by computing the
charge-gap for excitations,

∆c = [E0(Ne + 1)− E0(Ne)]− [E0(Ne)− E0(Ne − 1)],
(G1)

where E0(Ne) is the ground-state energy with Ne elec-
trons. Since the lattice is small, this quantity displays
relatively large finite-size effects, but in principle should
capture similar information as the single-particle gap ex-
tracted from QMC simulations in the main text, in par-
ticular in the case where twisted-boundary conditions are
applied [60].

Here, using standard periodic boundary conditions, we
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Figure 11. Color maps of several quantities in the space of
parameters t⊥ vs. U for the 2 × 8-sites bilayer lattice. (a)
Expectation value of the antiferromagnetic spin-structure fac-
tor, (b) derivative of the double occupancy in respect to t⊥,
(c) interplane spin-spin nearest neighbor correlations, and
(d) the fidelity susceptibility gt⊥ . Star markers depict the
magnetic transition at T = 0 obtained using QMC in much
larger lattices in Ref. [15]; cross marker on the right (large U)
panel edge denotes the Heisenberg limit [2, 20]; and diamond-
shaped ones mark the nesting conditions in the noninteracting
regime for this cluster size.

report ∆c in Fig. 12, accompanied by the corresponding
fidelity susceptibility. We avoid the regime of small in-
teractions, focusing on U/t = 10, and contrast it with
the results in much larger systems obtained via QMC in
Fig. 3(b) of the main text.

Although at small values of t⊥ the gaps ∆c and ∆sp,
extracted from ED and QMC respectively, do not display
similar behavior (notwithstanding the strikingly differ-
ent lattice sizes), at large hybridization, both exhibit a
minimum at around t⊥/t ' 3, which we have associated
to a crossover from a paramagnetic Mott insulator to-
wards a band insulator in the main text. To argue that
the magnetic transition is not aligned with the above de-
scribed crossover, we overlay the data originally shown in
Fig. 10(d) for the fidelity susceptibility in Fig. 12. The
peak at large t⊥/t, which we inferred to be related to
the magnetic transition, does not coincide with the local
minimum of ∆c, opening room for a potential paramag-
netic Mott insulator surviving at 2.8 < t⊥/t < 3.3 for
this lattice size and for U/t = 10.
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