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Nonlinear responses in condensed matter attract recent intensive interest because they provide
rich information about the materials and hold the possibility of being applied in diodes or high-
frequency optical devices. Nonlinear responses are often closely related to the multiband nature of
the system, which can be taken into account by the geometric quantities such as the Berry curvature,
as shown in the nonlinear Hall effect. Theoretically, the semi-classical Boltzmann treatment or the
reduced density matrix method have been often employed, in which the effect of dissipation is
included through the relaxation time approximation. In the diagrammatic method, the relaxation
is treated through the imaginary part of the self-energy of the Green function and the consequent
broadening of the spectral function for the integration over the real frequency. Therefore, the poles
of the Green function do not play an explicit role when there is finite dissipation. In this paper, in
stark contrast to this conventional picture, we show that the poles of the Green function determine
mainly the nonlinear response functions with dissipation, which leads to the terms with the Fermi
distribution function of complex argument and results in the dissipation-induced geometric term.
Furthermore, we elucidate the geometric origin of the nonreciprocal conductivity, which is related
to the Berry curvature generalized to the higher derivative. Finally, we derive the analytical results
on the geometric terms of the nonlinear conductivities in the type-I and type-II Weyl Hamiltonian
to demonstrate their crucial roles.

I. INTRODUCTION

Recently, nonlinear response in the bulk systems in
condensed matter physics has been intensively stud-
ied, especially in the context of the higher-harmonic
generations[1–6], nonlinear Hall effect[7–11], photovoltaic
effect[12–16], and non-reciprocal transport[17–26] be-
cause they have the information on the symmetry of ma-
terial and have the possibility of the application to de-
vices. For example, we can detect the parity-breaking
of the bulk through the detection of the second har-
monic generation[1–3]. Furthermore, the photovoltaic
effect in bulk has the possibility of application to high-
frequency rectification devices[16]. Moreover, the large
non-reciprocality was found in the superconductors[21–
23] and can be applied to the diode devices.

In the linear conductivity, the effect of dissipation and
multi-band contribution are usually separated, such as
the anomalous quantum Hall effect, which can be de-
scribed by the Berry curvature and is not affected by
dissipation. On the other hand, in the nonlinear conduc-
tivity, both dissipation and multi-band contribution in-
tertwine the novel transport. For example, the Berry cur-
vature dipole term is proportional to the lifetime, which
is the inverse of the strength of dissipation, while it is
also proportional to the Berry curvature[27–29]. More-
over, it has been pointed out in Ref.[18] that, for the
nonreciprocal current under the time-reversal symmetry
(TRS), both dissipation and multi-band are necessary.
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Therefore, it is essential to properly analyze the effect of
dissipation on the multi-band contribution in the nonlin-
ear conductivities.

In most previous studies, the nonlinear response has
been commonly studied by the semi-classical Boltzmann
(SCB) treatment[7, 27, 28, 30] or the reduced density
matrix (RDM) method[4, 31–35]. In these methods, it is
not easy to consider the effect of dissipation rigorously.
Therefore, we usually use the relaxation time approxima-
tion (RTA) to include the dissipation or calculate each re-
laxation time for various scatterings[27, 28], such as the
side-jump and skew scattering. RTA has the problem
that it breaks the gauge invariance between the velocity
gauge and the length gauge[31, 36], and it cannot de-
scribe the proper relaxation when considering the finite
input frequency[36], while it well describes the relaxation
when considering the DC input[36].

In the microscopic diagrammatic theory, the relaxation
is treated by the imaginary part of the self-energy of the
Green’s function and the vertex corrections. The for-
mer also leads to the broadening of the spectral function,
which appears in the integration over the real frequency.
The reason for this integration path is to avoid the poles
of the Fermi distribution function at Matsubara frequen-
cies, but those contributions are small for nonlinear re-
sponses, as will be shown later. Therefore, the poles of
the Green’s with imaginary parts and the Fermi distri-
bution function with complex argument play an impor-
tant role. In the previous studies, while the relaxation
of the non-equilibrium states can be considered through
the RTA, the effect of the broadening of the distribution
function cannot be captured.

In this paper, we analyze the effect of the broadening of
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the spectral function on the nonlinear transport. We elu-
cidate that the broadening of the spectral function results
in the shift of the Fermi distribution function (DF) to
the imaginary direction and the Matsubara term, which
cannot be described by the SCB treatment or the RDM
method. Furthermore, the shift of the Fermi DF to the
imaginary direction gives the novel dissipation-induced
geometric terms. For example, the Christoffel symbol
term appears in second-order nonlinear transport and
gives the multi-band correction to the nonlinear Drude
term. We note that this Christoffel symbol term is com-
pletely different from Ref.[37], in which it appears under
the magnetic field. We also elucidate the geometric ori-
gin of the non-reciprocal conductivity, which is related to
the Berry curvature generalized to higher derivatives and
is also a dissipation-induced geometric term. Moreover,
we analytically derive the geometric term in the Weyl
Hamiltonian for the type-I and type-II cases. We show
that the chemical potential dependence of the nonlinear
Hall conductivity for each case is entirely different, and
therefore, the observation of such chemical potential de-
pendence can lead to the detection of the Weyl points and
their type. Especially for the type-I case, we also show
that we can estimate the relaxation time in the material
from this observation.

In the following, we derive the shift of the Fermi DF to
the imaginary direction and the Matsubara terms from
the Green function methods[36, 38]. First, we derive
them in the linear conductivity to illustrate the formula-
tion in section II. We show the shift of the Fermi DF re-
sults in the quantum metric term at the Fermi surface. In
section III, we extend the results in the linear response to
the nonlinear transport and derive the geometrical terms,
such as the Christoffel symbol term and the generalized
Berry curvature term. Then, we numerically calculate
it in a model for transition metal dichalcogenides and
show its dissipation-strength and chemical potential de-
pendence. In section IV, we derive the analytical results
of the geometric terms such as the Berry curvature dipole
term and the Christoffel symbol term for the type-I and
type-II Weyl Hamiltonian. In section V, we summarize
our results.

II. DISSIPATIVE GEOMETRY IN LINEAR
CONDUCTIVITY

Before considering nonlinear conductivity, we first an-
alyze the dissipation effect in linear conductivity. Al-
though the methods we use in this paper are not so effec-
tive in linear conductivity, the analysis in linear conduc-
tivity is pedagogical and helps us understand the results
in nonlinear conductivity.

A. Formulation

In this paper, we include the dissipation effect via
the imaginary part of the single-particle self-energy and
calculate the conductivity using Green function meth-
ods. Throughout this paper, we ignore the momentum
and frequency dependence of the dissipation and sup-
pose the dissipation strength is the same for all bands.
This assumption and approximation are justified when
considering the impurity scattering, independent of the
momentum transfer, under the first-order Born approx-
imation. It is also justified to ignore the vertex cor-
rection because here we ignore the momentum depen-
dence of the self-energy and satisfy the Ward-Takahashi
equation. Under these approximations and assumptions,
the single-particle Green function has the same eigen-
state as the Hermitian part of the effective Hamiltonian
Heff = H0 +ReΣR. We also set e = kB = h̄ = 1 through-
out this paper.

First, we analyze the dissipation effect through the
distribution function in the linear conductivity, and fo-
cus on the symmetric part of the linear DC conductivity

σαβDC = (σα;β + σβ;α)/2 for simplicity.[39] α(β) in σα;β

represents the output(input) direction. σαβDC can be writ-
ten in the Green function methods with the band-indices
n,m as,

σαβDC

=
∑
k

∫ ∞
−∞

dω

2π
Re
∑
nm

J αnmGRmJ βmn
(
GRn −GAn

)∂f
∂ω

(1)

where J α = ∂αHeff , ∂α = ∂/∂kα, Onm = 〈n|O|m〉,
On = Onn, |n〉 is the eigenstates of Heff , and f(ω) is
the Fermi distribution function. Throughout this paper,
we omit writing the momentum dependence of the func-

tion, such as J , εn, GR(A)
n , and the frequency dependence

of the Green function. In the limit |ω| → ∞, the inte-
grand is proportional to 1/|ω|3, and therefore, the inte-
gration

∫∞
−∞ dω/2π is equivalent to the contour integral∮

C
dω/2π.(along the closed loop C in Fig. 1.) For this

integral, we should consider the poles of the advanced
Green function (green cross marks in Fig. 1.) and the
Matsubara frequencies from the Fermi distribution func-
tion (red cross marks in Fig. 1.). Then, Eq. (1) can be
written as,

σαβDC = σαβM + σαβG (2)

σαβM = Re
∑
k

i

2β

∑
nm

∑
ωM>0

(J αnmJ βmn + J βnmJ αmn)

×
[ ∂
∂ω

(
GRm(GRn −GAn )

)]
iωM

(3)

σα;β
G = Re

∑
k

∑
n

[
J αn J βn τ + i

∑
m6=n

(QαβD;n,m+QβαD;n,m)

2

×(εnm+2iη)
](
−∂f
∂ω

)
εn+iη

, (4)
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FIG. 1. Path integration Path integration in the DC limit.

with

QαβD;n,m =
J αnmJ βmn

(εnm + 2iη)2
, (5)

where ωM = (2M + 1)π/β is the Fermionic Matsubara
frequency, β is the inverse of temperature, εn is the eigen-
value of Heff , η = −ImΣR, τ = 1/(2η)[40], εnm = εn−εm
and QαβD;n ≡

∑
m 6=nQ

αβ
D;n,m is the dissipative quantum

geometric tensor, which correspond to 〈∂αn|∂βn〉 in the

limit of η → 0. We call the first term σα;β
M as “ Matsub-

ara term” because it represents the contribution from the
poles of the Fermi distribution functions at the Fermionic
Matsubara frequencies. While the contribution from the
poles of the advanced Green function σG corresponds to
the results by the SCB treatment or the RDM method
in the limit η → 0[41], the Matsubara term σM is pro-
portional to η[42] and therefore cannot be condsidered
in the SCB treatment or the RDM method. We also
note that, in the expression of Eq.(4), the contribution
from the poles of the advanced Green function describes
the picture of the transport of the quasi-particles with
complex energy εn + iη and the variable of the Fermi
DF changes to a complex number, while the Fermi-Dirac
statistics of electrons are kept since their operators sat-
isfies the anti-commutation relations. Next, we analyze
the second term in Eq. (4). We can understand the dis-
sipative geometric term as the multi-band correction to
the Drude term, which reads,

σ̃αβDrude = σαβDrude + σαβQM:re (6)

σαβQM:re ∼
∑
k

∑
n

gαβS;n

τ

(
−∂f
∂ω

)
εn

(7)

gαβS;n =
∑
m

gαβS;n,m, gαβS;n,m =
(J αnmJ βmn + J βnmJ αmn)

2(ε2nm + 4η2)
.

(8)

The detail derivation is written in appendix A. We can

derive σαβQM:re from the dissipative geometric term. We

call gαβS;n as the “smeared quantum metric,” which be-

comes the quantum metric in η → 0 limit, and σαβQM:re

as the “(smeared) quantum metric term”. At the band
degeneracy where εnm = 0, the smeared quantum metric
is proportional to τ2, and therefore, the quantum met-
ric term becomes proportional to τ . We note that this
quantum metric correction was pointed out in two-band
models in Ref.[43]. This means the quantum metric term
describes the multi-band correction to the Drude term,
which is proportional to τ . We note that we can also
derive this correction from the reduced density matrix
methods under the RTA, by changing f(εn)→ f(εn+ iη)
and approximating Imf(εn + iη) ' η(∂f/∂ω)εn . There-
fore, we can consider that the quantum metric term stems
from the imaginary part of the Fermi DF. We also nu-
merically check how large these terms are and show that
the quantum metric term is dominant when the band de-
generacy exists at the Fermi surface in appendix C. We
also show in appendix C that the Matsubara term is also
finite, and therefore, the treatment in this section is not
so effective in linear response cases. On the other hand,
as we will show in the next section, the Matsubara term
is small, and the description by the shift of the Fermi DF
to the imaginary direction works well in the nonlinear
responses.

III. DISSIPATION-INDUCED GEOMETRY IN
NONLINEAR RESPONSE

A. formulation

Next, we consider the effect of the broadening of DF
on second-order nonlinear DC conductivity by the same
procedure as the linear case. In nonlinear conductivity,
many terms emerge from the dissipation effect, and the
formula becomes so complicated. Therefore, we write the
detailed derivation in appendix D, and here write down
the final and summarized results, which read,

σα;βγ
DC = σα;βγ

M + σα;βγ
G (9)

σα;βγ
G = σα;βγ

Drude + σα;βγ
BCD + σα;βγ

ChS + σα;βγ
gBC +O(τ−2).

(10)

σα;βγ
M , σα;βγ

G , σα;βγ
Drude, σα;βγ

BCD, σα;βγ
ChS , and σα;βγ

gBC represent
respectively the Matsubara term in nonlinear conduc-
tivity, the sum of the contribution from the poles of
the advanced Green function the nonlinear Drude term,
the Berry curvature dipole (BCD) term, the Christof-
fel symbol term, and the generalized Berry curvature

term. Here, we newly elucidate last two terms, σα;βγ
ChS

and 1 σα;βγ
gBC , by considering the effect of dissipation. It is

known that the terms including GA are proportional to
∂f/∂ω (see Eq.(16) in Ref.[36]), and therefore, we can
divide σ into σG, which includes only the Fermi sur-
face term, and σM , the contribution from the Matsubara
poles. In η → 0, σG correspond to the Fermi surface term
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in Eq.(E5) in Ref.[36] except for the Christoffel symbol
term, and σM must be zero because it is proportional to
η. This means that the Fermi sea term must be zero in
η → 0 and in the DC limit. Under T -symmetry, σDrude

and σChS must be zero, while under PT -symmetry, σBCD

and σgBC must be zero. We summarize τ -dependence of
the dominant contribution of each term in Table I. Below,
we describe the detailed analysis of each term.

TABLE I. Symmetry classification and τ -dependence

term T PT τ -dependence

σM - - O(τ−1)

σDrude × X O(τ2)

σBCD X × O(τ)

σChS × X O(τ0) (O(τ2))

σgBC X × O(τ−1)

B. analysis of each term

In this subsection, we analyze each term in Eq. (10).
Each term, except for the Matsubara term, is so com-
plex, and therefore, we write the simple forms under some
approximations, which are Imf(εn + iη) ' η(∂f/∂ω)εn
and ε2nmτ

2 � 1. We write the detail derivation of
each term and the full terms without approximation
in appendix D. We also note that the approximation
Imf(εn + iη) ' η(∂f/∂ω)εn can be justified even when
βη ∼ 0.5.(see appendix A.)

1. Matsubara term in nonlinear conductivity

The Matsubara term in nonlinear conductivity is the
contribution from the poles at Fermionic Matsubara fre-
quencies as in the case of linear conductivity:

σα;βγ
M

=
∑
nml

∑
ωM>0

Re
[ ∂
∂ω

{
2J αnm

∂GRm
∂ω
J βmlG

R
l J

γ
ln(GRn−GAn )

+J αnm
∂GRm
∂ω
J βγmn(GRn−GAn )

}
+
{
β ↔ γ

}]
ω=iωM

,(11)

where J βγ = ∂βγHeff and ∂βγ = ∂β∂γ . As we will nu-
merically show, in the second-order conductivity under
the TRS and the condition πkBT > η, the Matsubara
term is small enough to be ignored, compared with the
other finite terms, and therefore, the description by the
Fermi DF of complex argument works well.

2. nonlinear Drude term

The nonlinear Drude term can be written as,

σα;βγ
Drude ' 2

∑
k

∑
n

τ2J αn ∂β∂γf(εn). (12)

Because the nonlinear Drude term is proportional to τ2,
this term is most dominant in clean metals without TRS.
We note that, if there is the band degeneracy at the Fermi
surface, the Christoffel symbol term can be also dominant
as we will show later.

3. Berry curvature dipole term

The BCD term[7, 44] can be written as,

σα;βγ
BCD = σα;βγ

BCD:re + σα;βγ
BCD:im (13)

σα;βγ
BCD:re ' 2τ

∑
k

∑
nm

∂γ(ΩαβS;n,m)f(εn) (14)

σα;βγ
BCD:im '

∑
k

∑
nm

ΩαβS;nJ γn
εnmτ

(∂2f

∂ω2

)
εn

(15)

ΩαβS;n,m =
−i(J αnmJ βmn − J βnmJ αmn)

ε2nm + 4η2
(16)

Under the TRS, the nonlinear Drude term must be zero,

and the BCD term is dominant. Because σα;βγ
BCD:im, which

stems from the imaginary part of the Fermi DF, is pro-
portional to η, it is not so large in clean systems. Here
we can describe the BCD term by the smeared Berry cur-

vature ΩαβS;n, which secures the convergence of the BCD
term at the band-crossing points.

4. Christoffel symbol term

The Christoffel symbol term can be described as,

σα;βγ
ChS = σα;βγ

ChS:I + σα;βγ
ChS:II (17)

σα;βγ
ChS:I = 2

∑
k

∑
n

Γα;βγ
S;n

(
−∂f
∂ω

)
εn

(18)

σα;βγ
ChS:II ' 2

∑
k

∑
n

Γα;βγ
S′;n

(
−∂f
∂ω

)
εn

(19)

where Γα;βγ

S(′);n
is the smeared Christoffel symbol of the first

kind[37, 45]. Starting from the conventional Christoffel
symbol Γα;βγ

n , which reads,

Γα;βγ
n =

1

2

(
∂γgαβn + ∂βgγαn − ∂αgβγn

)
=

1

2

(
〈∂αn|∂βγn〉+ 〈∂βγn|∂αn〉

)
(20)

=
∑
m(6=)n

Re
[J αnm
ε2nm

(∑
l(6=n)

J βmlJ
γ
ln + (β↔γ)

εnl
+J βγmn

)]
,

(21)
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we define Γα;βγ
S;n by substituing gαβn → gαβS;n, and Γα;βγ

S′;n

by substituting 1/εnl → εnl/(ε
2
nl + 4η2) and 1/ε2nm →

1/(ε2nm + 4η2). σα;βγ
ChS:I stems from the imaginary part of

the Fermi DF in the term which is originally the BCD

terms and the nonlinear Drude term, while σα;βγ
ChS:II stems

from the full interband contribution. Interestingly, in

this regime, even though σα;βγ
ChS:I stems from the imaginary

part of the Fermi DF and the dissipation, it seems not
to depend the dissipation strength. On the other hand,
when we consider the band degeneracy at the Fermi sur-
face εn = εm ' 0, the Christoffel symbol term is propor-

tional to τ2 because gαβS;n or 1/(ε2nm+4η2) is proportional

to τ2, and therefore, the Christoffel symbol term also
gives the multi-band correction to the nonlinear Drude

term. We note that the difference between Γα;βγ
S;n and

Γα;βγ
S′;n appears when focusing on the band-degeneracy of

the two-band systems with linear dispersion. In that

case, Γα;βγ
S;n is finite and gives the correction to the non-

linear Drude term while Γα;βγ
S′;n is zero. We also note that

this Christoffel symbol term is different from the one un-
der magnetic field derived by the SCB treatment.[37]

5. generalized Berry curvature term

The generalized Berry curvature term can be written
as,

σα;βγ
gBC = σα;βγ

gBC:re + σα;βγ
gBC:im + σα;βγ

gBC:add (22)

σα;βγ
gBC:re '

∑
k

∑
n,m( 6=n)

Ωα,βγS′;n,m

εnmτ

(
−∂f
∂ω

)
εn

(23)

σα;βγ
gBC:add ' 2

∑
k

∑
n,m,l(6=n)

{ Im(J αnmJ
β
mlJ

γ
ln)

ε2nmεnl
×

( 1

εnmτ
− 1

εnlτ

)(
−∂f
∂ω

)
εn

+ (β↔γ)
}
,(24)

σα;βγ
gBC:im ' −

∑
k

∑
n

Ωα,βγS′;n

τ

(
−∂

2f

∂ω2

)
εn
, (25)

where Ωα,βγS;n is the smeared Berry curvature generalized

to the second-order derivative and we define Ωα;βγ
S′;n,m as

derived from Ωα;βγ
n,m , which reads,

Ωα,βγn,m = 2Im
[
〈∂αn|m〉 〈m|∂βγn〉

]
(26)

=
∑
m( 6=)n

Im
[J αnm
ε2nm

(∑
l(6=n)

J βmlJ
γ
ln + (β↔γ)

εnl
+J βγmn

)]
,

(27)

by substituting 1/εnl → εnl/(ε
2
nl + 4η2) and 1/ε2nm →

1/(ε2nm + 4η2). σα;βγ
gBC:add is zero when considering the

two-band model and therefore it represent the more than

two-band correction to σα;βγ
gBC:re. When considering the

nonreciprocal transport α = β = γ under the TRS, only
this generalized Berry curvature term can be finite. In
that case, the nonreciprocal conductivity is proportional
to η, and the dissipation is essential for the nonrecipro-
cal conductivity, as pointed out in Ref.[18]. Moreover,
we find that, when we focus on two-band models, higher
order terms in momentum, such as k2 term, in the Hamil-
tonian is also necessary so that Jααmn = 〈m| (∂ααHeff ) |m〉
is nonzero, for the diagonal part of the finite generalized
Berry curvature with α = β = γ. It is because l cor-
responds to m in Eq. (27) for the two-band model, and
hence the diagonal part of the generalized Berry curva-
ture vanishes as Ωα;αα

n,m = 2Ωααn,mJ α/εnm = 0.[46] This
means that the simple linear Weyl Hamiltonian cannot
generate the nonreciprocal transport under the TRS. (see
the detail in appendix D.)

C. Model calculation

Now we estimate how large the dissipation-induced ge-
ometric terms are in the model calculations. We use
the model which effectively describes 2D transition-metal
dichalcogenides with uniaxial strain, such as MX2 (M =
Mo, W and X = S, Te)[47–49], which reads,

Heff =
∑
k,s,s′

(
(ε(k)−µ)σ0 + (h+g(k)) · σ

)
ss′
c†k,sck,s′(28)

ε(k) = 2t
(

(1− p) cos(k · a1)

+cos(k · a2)+cos(k · (a1+a2))
)

(29)

gx(k) =
α1

2

[
sin(k · (a1 + a2)) + sin(k · a2)

]
(30)

gy(k) = − α1√
3

[
sin(k · a1)+

sin(k · (a1+a2))−sin(k · a2)

2

]
(31)

gz(k) =
2α2

3
√

3

[
sin(k · a1)+sin(k · a2)−sin(k · a1+a2)

]
,

(32)

where µ is the chemical potential, h is the magnetic filed,
t is the hopping, a1 = (1, 0), a2 = (−0.5,

√
3/2), p rep-

resents the effect of the uniaxial strain, and α1(2) is the
spin-orbit coupling. When h = 0, this model holds the
TRS, while mirror symmetry of y-direction is broken due
to finite p. Because, in this paper, we consider in-plane
magnetic field such as h = (hx, 0, 0), we can ignore the
coupling with the orbital motion. In this section, we set
the parameters as t = 0.5, p = 0.3, α1 = 0.08, α2 = 0.06
in the numerical calculation for Fig. reffig:disp, Fig. 3, 4,
and (5. Fig. 2 shows the energy dispersion of the model
when µ = 0. It has the band degeneracy M -, M ′-, and
Γ- point and their energy levels are ε = −0.7, ε = −1.3,
ε = 2.7. The density of states is large near ε = −1.3
corresponding to the nearly flat dispersion along K ′-M ′.
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FIG. 2. Dispersion of the model on the high symmetric line.
we set µ = 0. The band degeneracy exists at ε = −0.7,
ε = −1.3, and ε = 2.7 at M -, M ′ and Γ-point.

1. Cases with the time-reversal symmetry

In this subsection, we calculate the nonlinear Hall con-
ductivity σy;xx and the non-reciprocal conductivity σy;yy

in the model introduced above. We note that the model
holds the mirror symmetry in x-direction and therefore
σx;yy = σy;yx = σx;xx = 0. In Fig. 3, we calculate η-
dependence, and µ-dependence of the nonlinear Hall con-
ductivity σy;xx. Under the time-reversal symmetry, the
dominant contribution are the BCD term in Eq. (13) and
the generalized Berry curvature (gBC) term in Eq. (22).
In the top panel of Fig. 3, as we have shown theoreti-
cally, σBCD:re is proportional to 1/η, while σBCD:im and
σgBC are proportional to η in the regime η < T . In
the limit η � εnm, σBCD:im and σgBC are proportional
to 1/η, and therefore they both decrease in η > 0.04.
At η = πT , due to the singular behavior of Im(∂f/∂ω),
σBCD:im change its sign and the Matsubara term be-
come large as to compensate it. The bottom panel of
Fig. 3 shows µ-dependence. Around µ = −1.3, there is
quadratic dispersion at the Fermi surface around at M -
and M ′-point, and the gBC term becomes large.

Next, we calculate the non-reciprocal conductivity. As
I have shown in the previous section, under the time-
reversal symmetry, only the gBC term is finite. The
top panel of Fig. 4 shows the η-dependence of the non-
reciprocal conductivity σy;yy. As in the case of the non-
linear Hall conductivity, the gBC term is proportional to
η for η < T and proportional to 1/η for η � εnm.

In the bottom panel of Fig. 4, the non-reciprocal con-
ductivity (gBC term) behaves as same as the gBC term in
the nonlinear Hall conductivity. (see the bottome panel
of Fig. 3)

FIG. 3. η-dependence and µ-dependence of each contribution
in nonlinear Hall conductivity.
The top panel shows the dissipation-strength dependence of
the nonlinear Hall conductivity σy;xx, and the bottom panel
shows that the chemical potential dependence of σy;xx. We set
µ = −0.9 in the top panel, η = 0.02 in the bottom panel, and
kBT = 0.02 in both panel. We perform the momentum inte-
gration by 1000×1000 and frequency integration by 1000. The
blue, orange, green, red, and brown plots respectively repre-
sent the generalized Berry curvature term, σBCD:re, σBCD:im,
the Matsubara term, and the results by the Green function
methods which coincides with the sum of all the terms.

2. Cases without the time-reversal symmetry

Next, we consider the case h 6= 0, in which time-
reversal symmetry is broken. Without the time-reversal
symmetry, the Drude term, the Christoffel symbol term
can be finite. Here, we focus on the non-reciprocal con-
ductivity with the magnetic field in x-direction hx = 0.05
for Fig. 5.

In time-reversal symmetry broken systems, the (non-
linear) Drude term, which is proportional to τ2, is dom-
inant in the small dissipation regime. (See the top panel
of Fig. 5) The Christoffel symbol term seems also propor-
tional to τ2 and gives the multi-band correction to the
Drude term, because there is band degeneracy around at
the Fermi surface.

The bottom panel of Fig. 5 shows the µ-dependence
of the non-reciprocal conductivity, In the regime µ >
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FIG. 4. η-dependence and µ-dependence of each contribution
in nonreciprocal conductivity under the time-reversal symme-
try.
The top panel shows the dissipation-strength dependence of
the non-reciprocal conductivity σy;yy, and the bottom panel
shows that the chemical potential dependence of σy;yy. We set
µ = −0.9 in the top panel, η = 0.02 in the bottom panel, and
kBT = 0.02 in both panel. The blue, red, and orange plots
respectively represent the generalized Berry curvature term,
the Matsubara term, and the results by the Green function
methods. We note that blue and orange plots overlap in the
upper panel.

−0.2, the band velocity is large at the Fermi surface,
and therefore the Drude term is dominant. On the other
hand, in the regime −0.85 < µ < −0.5, the band velocity
is not so large and there is the degeneration near the
Fermi surface at M ′-point, and therefore the Christoffel
symbol term is dominant.

IV. NONLINEAR CONDUCTIVITY INDUCED
BY DISSIPATIVE QUANTUM GEOMETRY IN

THE WEYL HAMILTONIAN

In this section, we derives the analytical results about
the geometric terms derived in the previous sections.

FIG. 5. η-dependence and µ-dependence of each contribution
in nonreciprocal conductivity without the time-reversal sym-
metry.
The top panel shows the dissipation-strength dependence of
the non-reciprocal conductivity σy;yy, and the bottom panel
shows that the chemical potential dependence of σy;yy. We
set µ = −0.9 in the top panel and η = 0.02 in the bottom
panel, and kBT = 0.02 and h = (0.05, 0, 0) in both panel.
The blue, orange, red, and green plots respectively represent
the Drude term, the Christoffel symbol term, the Matsubara
term, and the results by the Green function methods.

A. Hamiltonian and its dissipative quantum
geometry

Here, we consider the tilted Weyl Hamiltonian, which
reads,

H(k) = (−µ+ t · k)σ0 + t0k · σ, (33)

where σ0 is the two by two unit matrix, µ is the chemical
potential, t represents the tilting, t0 is the Fermi velocity,
σ = {σx, σy, σz} is the Pauli matrix. When t < t0, this
Hamiltonian describes the type-I Weyl Hamiltonian ,and
when t > t0, it describes the type-II Weyl Hamiltonian.
Here we set t = {0, 0, t} for the simplicity.

In this Hamiltonian, the eigenvalues and the smeared
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geometrical quantities are,

E± = tkz ± t0k = t0k(λt cos θ ± 1) (34)

J α± = t0k
α(δαzλt ± 1)/k (35)

ΩαβS;+− = −ΩαβS;−+ = −ΩβαS;+− =
kγεαβγ

8(k2 + η̃2)k
(36)

gαβS;+− = gαβS;−+ = gβαS;+− =
δαβ(k2 − k2

α)

4(k2 + η̃2)k2
(37)

where k = |k|, λt = t/t0, cos θ = kz/k, and η̃ = η/t0
is the dissipation strength renormalized by the Fermi ve-
locity. We also define the geometric quantities, which
appear in the nonlinear conductivity, as follows:

Dµν
± ≡

1

2
εµληΩληS;±J

ν
± = ±kµ(δzνλt ± kν/k)

8(k2 + η̃2)k
(38)

Fµν± ≡ ∂µgννS;±

= − kµ

2(k2 + η̃2)2k2

{
(1− k2

ν

k2
)(2k2+η̃2) + δµν(k2+η̃2)

}
(39)

Γµ;νη
S;± =

1

2
(δηµF

νη
± + δµνF

ηµ
± − δνηF

µν
± ) (40)

Ωα,βγS;± =
±k(ΩαβS;±J

γ
± + ΩαγS;±J

β
±)

2(k2 + η̃2)
(41)

In the following, we suppose that βη � 1 and the
Matsubara term can be ignored. We also approxi-
mate Re(−∂f/∂ω)εn+iη ' (−∂f/∂ω)εn ' δ(εn) and
Imf(εn + iη) ' η(∂f/∂ω)εn , and then, analyze the ge-
ometric terms in the type-I case (0 < λt < 1) and the
type-II case (λt > 1) in the regime µ � η and µ � η.
We note that, in the former regime, we just focus on the
behavior at µ ∼ 0.

B. Type-I case

We here consider the case where λt < 1. We can ana-
lytically calculate the BCD term and the Christffel sym-
bol term in the limit η � |µ| and η � |µ| as,

σα;βγ
BCD;I

' τ
∫

dk

(2π)3

{
ΩαβS;±J

γ
± + (β ↔ γ)

}
δ(ε±) (42)

= τ

∫
dk

(2π)3
(δγz − δβz)

1

2
εαβγ(Dzz

± ) (43)

=
τ

2
εαβγ(δγz − δβz)× (44)
1

8λt

{
2λt−ln

(1+λt
1−λt

)}
(η � |µ|),

− 1

8λ3
t

µ2

η2

{
2λt−tanh−1

( 2λt
1+λ2

t

)}
(η � |µ|),

σα;βγ
ChS;I '

∫
dk

(2π)3
Γα;βγ
S;± δ(ε±) (45)

=
1

2

(
δαβδγzF̃

γα
I +δγαδβzF̃

βγ
I −δβγδαzF̃

αβ
I

)
(46)

with

F̃ zzI

=



µ

t0λt

{
− 6

λ2
t

+
3(2− λ2

t )

2λ3
t

ln
(1 + λt

1− λt

)
+

1

1− λ2
t

}
(η � |µ|),

(3− λ2
t )µ

t0λ3
t

{ 1

2λt
tanh−1

( 2λt
1 + λ2

t

)
− 1

1− λ2
t

}
(η � |µ|),

(47)

F̃ zxI = F̃ zyI = F̃ xzI = F̃ yzI

=



µ

t0λt

{
− 6

λ2
t

+
3(2− λ2

t )

2λ3
t

ln
(1 + λt

1− λt

)
+

1

1− λ2
t

}
(η � |µ|),

(3− λ2
t )µ

t0λ3
t

{ 1

2λt
tanh−1

( 2λt
1 + λ2

t

)
− 1

1− λ2
t

}
(η � |µ|),

(48)

Here we omit the analysis of the gBC term, because here
we approximate Re(−∂f/∂ω)εn+iη ' δ(ε). This approxi-
mation is justified when T → 0 and η → 0 with kBT � η,
while the gBC term is proportional to η. Interestingly,
the nonlinear Hall conductivity by the BCD term is inde-
pendent of the chemical potential in the regime |µ| � η,
while it is proportional to µ2/η2 in the regime |µ| � η,
which results in the dip around |µ| < η. The Christoffel
symbol term is proportional to µ in both regime. We
note that, although Eq. (44) and Eq. (47) appears to
diverge at λt → 0, they becomes zero by appropriately
expanding the terms in {. . . } in Eq. (44) and Eq. (47).

C. Type-II case

Next, we analyze the type-II Weyl Hamiltonian where
λt > 1. Although the only difference in the model
from type-I is the magnitude of λt, the behavior is com-
pletely different. Because the integral of momentum
space

∫∞
0
dkk2 is not convergent. Therefore, we intro-

duce the cut-off scale Λ (
∫∞

0
dk →

∫ Λ

0
dk), in which

the approximation to the Weyl Hamiltonian is justified.
Then, we can derive the BCD term and the Christoffel
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symbol term as,

σα;βγ
BCD;II = −τεαβγ(δγz − δβz)

32π2λt
ln
( Λ2 + η2

(µ/(1 + λt))2 + η2

)
(49)

σα;βγ
ChS;II =

1

2

(
δαβδγzF̃

γα
II +δγαδβzF̃

βγ
II −δβγδαzF̃

αβ
II

)
(50)

F̃ zzII =
Λ

t0

( 3

2λ2
t

− 1

λ4
t

)
+O(lnΛ) (51)

F̃ zxII = F̃ zyII = F̃ xzII = F̃ yzII =
Λ

t0

( 1

λ2
t

− 1

λ4
t

)
+O(lnΛ)

(52)

In the type-II case, when we consider the limit µ → 0
with η/µ = const., the BCD term shows a logarithmic
divergence, while it is convergence with finite η. This
behavior is completely different from the type-I case,
where the BCD term has the dip at µ = 0. In the limit
Λ � t0, µ, η, λt, the dominant term of the Christoffel
symbol term is independent of µ and η in the type-II
Weyl Hamiltonian.

D. Numerical results

We also check the numerical calculation about the
chemical potential dependence of the nonlinear Hall ef-
fect σy;zx = −σx;yz. Interestingly, in addition to the
µ-independence of the nonlinear Hall conductivity at
|µ| � η as we have analytically shown, the gBC term
compensates the dip of the BCD term around µ = 0,
which results in complete µ-independence of the nonlin-
ear Hall conductivity.(See the top panel of Fig. 6.) The
bottom panel of Fig. 6 shows that the peak behaviour
of the nonlinear Hall conductivity at µ = 0 as we have
shown, and its order of the conductivity is much larger
than type-I Weyl systems. This result means that the
type-II Weyl materials can show large nonlinear Hall ef-
fect.

We again stress that this chemical potential indepen-
dence or the peak behavior of the nonlinear Hall conduc-
tivity can be highly utilized for the detection of the Weyl
points and their type.

V. SUMMARY AND OUTLOOK

In this paper, we have analyzed the dissipation effect
on the linear and nonlinear DC conductivity under the
Markov approximation in multi-band systems.

Starting from the Green function formalism, we eluci-
date the effect of the dissipation: the shift of the dis-
tribution function in the imaginary direction and the
Matsubara term, which cannot be included by the con-
ventional methods such as the SCB treatment and the
reduced density matrix methods. Moreover, we clarify
that the novel terms from the imaginary part of the dis-
tribution function also have a geometric nature, such as

FIG. 6. µ-dependence of the nonlinear Hall conductivity in
type-I and II Weyl Hamiltonian.
The top (bottom) panel shows the nonlinear Hall conductivity
in the type-I (II) Weyl Hamiltonian. We set the parameter
as t0 = 1.0, t = 0.3 for the type-I Weyl Hamiltonian and
t0 = 0.3, t = 0.5 for the type-II Weyl Hamiltonian. We also
set kBT = 0.02 and η = 0.01 for each case. The terms except
the BCD term and the gBC term are almost zero.

the quantum metric term in the linear conductivity, the
Christoffel symbol term, and the generalized Berry cur-
vature term in the nonlinear conductivity. These terms
give the multi-band correction to the (nonlinear) Drude
term when there is band degeneracy at the Fermi sur-
face. Although the Matsubara term is not small in the
linear response, it is small enough to be ignored in the
nonlinear conductivities, especially under the TRS, and
therefore, the description of the Fermi DF of complex ar-
gument works well. Under the TRS, the inversion sym-
metry breaking is encoded in the multi-band effect such
as the BCD and the generalized Berry curvature. At
the pole of the Matsubara frequency, the large imaginary
value of iωM in the denominator of the G(iωM ) cloaks
such kind of geometric structure, and therefore, the Mat-
subara term becomes almost zero. When πkBT ∼ η,
iωM − iη in the denominator of GA(iωM ) becomes al-
most zero, and the above cloaking is unveiled, and the
Matsubara term becomes finite. In the nonlinear con-
ductivity without TRS and the linear conductivity, the
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Drude term, which is the intra-band contribution and
does not need the geometric structure, can be finite, and
therefore, the Matsubara term can also be finite.

We have also elucidated the geometric origin of the
non-reciprocal conductivity under the TRS, which can
be described by the Berry curvature generalized to the
higher-order derivative. For two-band systems, we have
identified another condition of the non-reciprocal con-
ductivity under the time-reversal symmetry, that is, the
quadratic term, in addition to the dissipation which is
pointed out in Ref.[18].

Then, we numerically calculate the η- and µ-
dependence of each contribution in the model which de-
scribes TMD materials. The results show that the Mat-
subara term becomes large at η > πkBT when the terms
from the imaginary part of the distribution function are
not small. We have shown that, in some regime, the novel
geometric term become dominant.

Finally, we analyze each geometric term in the Weyl
Hamiltonian. We clarify that the chemical potential de-
pendence around the Weyl point of nonlinear Hall con-
ductivity is completely different between the type-I and
type-II case. While the nonlinear Hall conductivity is in-
dependent of the chemical potential in the type-I case,
it shows the logarithmic divergence behavior at the en-
ergy level where the Weyl points exist in the type-II case.
This result suggests that detecting the chemical poten-
tial dependence of the nonlinear Hall conductivity under
the time-reversal symmetry can be utilized to detect the
existence of the Weyl points and their type. Moreover,
we also show that the type-II Weyl materials can show
large nonlinear Hall conductivity due to their divergent
behavior at the Weyl points.

Although we consider the DC conductivity in this pa-
per, a similar analysis can be applied to the photovoltaic
effect, in which dissipation holds an important role. It is
left for future work.
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Note added. – While revising the manuscript, we no-
ticed a related paper by Daniel Kaplan, Tobias Holder,
and Binghai Yan.[51] They analyze the dissipation effect
on nonlinear conductivity by first calculating in τ → ∞

limit and then restoring the finite τ , which results in ig-
noring the essential part of the generalized Berry curva-
ture term in Eq.(22). For an example, their τ−1 depen-
dent term must disappear in longitudinal nonreciprocal
conductivity, while our generalized Berry curvature term
can be finite.

Appendix A: Detail derivation of the
dissipation-induced geometric term in linear

conductivity

Contribution from the pole of the advanced Green
functions to the linear conductivity can be described as
follows,

σαβG = σαβDrude + σαβQM:re + σαβQM:im (A1)

σαβDrude =
∑
k

∑
n

J αn J βn τRe
(
−∂f
∂ω

)
εn+iη

(A2)

σαβQM:re =
∑
k

∑
n

gαβS;n

τ
Re
(
−∂f
∂ω

)
εn+iη

(A3)

σαβQM:im =
∑
k

∑
n

∑
m6=n

gαβS;n,mεnmIm
(
−∂f
∂ω

)
|εn+iη(A4)

gαβS;n,m =
(J αnmJ βmn + J βnmJ αmn)

2(ε2nm + 4η2)
. (A5)

We call gαβS;n as “the smeared quantum metric.” We note
that the smeared geometric quantities are well defined

and finite at gapless points where εnm = 0. σαβQM:re +

σαβQM:im is the novel term, which we call “quantum metric
term” at the Fermi surface.

We note that we can approximate Ref(εn+iη) ' f(εn)
and Imf(εn + iη) ' η∂f(εn)/∂ω when βη � 1. Fig. 7
shows that this approximation is valid even when βη ∼
0.5. Under this approximation, in the both limits εnm �
η and εnm → 0, the terms proportional to the imaginary
part of the distribution function can be written as,

gαβS;n,mεnmIm
(
−∂f
∂ω

)
|εn+iη '

εnm
2τ

gαβS;n,m

(
−∂

2f

∂ω2

)
|εn
(A6)

When we see the frequency derivative of the Fermi dis-
tribution function as ∼ O(β), the imaginary part contri-
butions are the order ∼ O(εnmβ) compared to the real
part of the contribution. This means that the contribu-
tion from the imaginary part of the distribution func-
tion can be dominant at low temperature. We note
that, under the approximation Ref(εn + iη) ' f(εn) and
Imf(εn+iη) ' η∂f(εn)/∂ω, Eq. (A3) can be derived from
the RDM methods by substituting f(εn)→ f(εn + iη) in
the anomalous quantum Hall term and considering the
imaginary part of the Fermi distribution function. From

this point of view, σαβQM:re also originates from the imag-
inary part of the distribution function in the anomalous
quantum Hall term.
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FIG. 7. Approximation about the imaginary part of the dis-
tribution function.
The blue(orange) plots show the real(imaginary) part of
f(ω+ iη). The green plots show f(ω) and the red plots show
η∂f/∂ω. The parameters are T = 0.02, and η = 0.01 on
the left panel and η = 0.02 on the right panel. This fig-
ure shows that the approximation Ref(ω + iη) ' f(ω) and
Imf(ω+iη) ' η∂f(ω)/∂ω is enough good even when βη ∼ 0.5.

When considering the band degeneracy at the Fermi
surface, which means εn = εm, the smeared quantum

metric gαβS;n is proportional to τ2 and the quantum metric

term in Eq. (A3) is proportional to τ , which means the
quantum metric term gives the multi-band correction to
the Drude term in Eq. (A2). Therefore, the quantum
metric term becomes important in materials with large
band degeneracy at the Fermi surface or the strongly-
dissipative system.

Appendix B: Intuitive understanding about the
Matsubara term

In this part, we give an intuitive understanding of
the shift of the Fermi DF and the Matsubara term. In
the conventional band representation, the occupancy of
the band is determined by its energy and the Fermi DF
(f(εn)), and it is true in the limit of η → 0. However,
when η is finite, there is a broadening of the spectral
function, and the occupancy of the band cannot be de-
termined just by the band energy and the Fermi DF.
In the small dissipation regime η � T , the broaden-
ing is small, and the bands with the energy level where
(df/dω)εn is finite contribute to the transport. For exam-
ple, in Fig. 8, the band, whose energy is |εn| > T , almost
does not contribute to the transport. In this case, the
description by the Fermi DF is accurate, and the shift
of the Fermi DF to the imaginary direction well approx-
imates the broadening of the spectral function. On the
other hand, when we consider the highly dissipative case
η > T , even though the band energy is far away from the
Fermi energy |εn| � T and (df/dω)εn ' 0, there is the
overlap between df(ω)/dω and A(ω), and this band can
contribute to the transport. In this case, the description
by the Fermi DF becomes bad, and the Matsubara term,
which is not described by the Fermi DF, can become
large. This understanding should also hold in nonlinear
conductivity.

FIG. 8. broadening of the spectral function v.s. derivative of
the Fermi DF.
The blue(orange) plots show the ω-derivative of the Fermi
DF (−∂f/∂ω) (the spectral function A(ω)). Here we set the
temperature T = 0.02, and εn = 0.1. η = 0.01(0.1) in the
left(right) panel.

Appendix C: model calculation

We numerically calculate these contribution to the lin-
ear conductivity in the nodal-line semimetals, which is
described by the following Hamiltonian as[52],

H = µτ0 + t(2 + cos k0 − cos kx − cos ky − cos kz)τ
z

+v sin kzτ
y + ∆τx. (C1)

µ, t, v,∆ represent the chemical potential, the hopping
amplitude, the hybridization, and the TRS breaking pa-
rameter. We note that this tight-binding Hamiltonian de-
scribes the low-energy dispersion near the Fermi level of
CaAgP and Ca3P2[53, 54]. For the upper panel of Fig. 9,
the chemical potential (µ) dependence of the linear con-
ductivity is shown. Here the temperature kBT = 0.02,
η = 0.04, and ∆ = 0. This model has the nodal line at
the Fermi surface when µ = 0,∆ = 0 and the quantum
metric term becomes large. We note that, in this model,
J znn is zero on the nodal line and therefore the Drude
term becomes almost zero at µ = 0, while the qunatum
metric term and the Matsubara term are finite due to the
broadening of the spectral weight and the hybridization.

In this case, the quantum metric term and the Mat-
subara term cannot be ignored for finite eta, and the
Matsubara term is dominant when η > πT . Even when
the system has a quadratic band touching at the Fermi
surface and the Drude term is zero, if these bands are
constructed by the hybridization, the linear conductivity
can be finite due to the quantum metric term.

The bottom panel of Fig. 9 shows that η-dependence of
the linear conductivity. Here the temperature T = 0.02,
µ = 0, and ∆ = 0. In the small dissipation regime,
the quantum metric term and the Matsubara term are
proportional to η, and therefore, the Drude term is dom-
inant. In our formulation, η = πT , where the Fermi
distribution function f(εn + iη) behaves as the Bose dis-
tribution function fB(εn), is a singular. In the large dis-
sipation regime where η > πT , the contribution from
the Drude term becomes almost zero. This large dissi-
pation regime at low temperature can be realized in the
quantum critical regime because the large quantum fluc-
tuation behaves as the large dissipation from the single-
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FIG. 9. Linear conductivity in a nodal-line semimetal.
The parameters are T = 0.02, η = 0.04 on the top panel
and T = 0.02, µ = 0 on the bottom panel. We perform the
momentum integration by 250× 250× 250 and frequency in-
tegration by 1000. The blue, orange, green, red plots respec-
tively describe the Drude term, the quantum metric term
(σzzQM:re + σzzQM:im), the total conductivity calculated by the
Green function methods, and the Matsubara term.

particle point of view. In such a regime, the SCB treat-
ment and the reduced density matrix method are not
appropriate, and we must use the Green function meth-
ods.

The relaxation time τ in usual materials is about
1 ∼ 100 picosecond[27], which equals to η ' 2.1 ∗ 10−5 ∼
2.1 ∗ 10−3[eV]. In this case, the temperature which sat-
isfies πkBT > η is about T > 7.5 ∗ 10−2 ∼ 7.5[K], and
this condition is often not satisfied in the condensed mat-
ter physics. Therefore, our result shows that we should
consider the broadening of the spectral function or, to
say, the quantum dissipation at low temperature, and
the SCB treatment or the reduced density matrix for-
malism is not appropriate, especially when we consider
the transport at a degenerated Fermi surface.

Appendix D: Detail derivation of the
dissipation-induced geometric terms in nonlinear

conductivity

The nonlinear conductivity is described with the Green
function formalism as

σα;βγ
DC

=

∫ ∞
−∞

dω

2π
ImTr

[{
2J αnm

∂GRm
∂ω
J βmlG

R
l J

γ
ln(GRn −GAn )

+J αnm
∂GRm
∂ω
J βγmn(GRn −GAn )

}
+ {β ↔ γ}

]
,(D1)

where J βγ = ∂β∂γHeff . By starting from this Green
function formalism and performing the same procedure
as in the linear case, we can derive the following equation
as,

σα;βγ
DC =

∑
k

(
σα;βγ

M + σ̃α;βγ
Drude + σ̃α;βγ

BCD + +σ̃α;βγ
Inter

)
, (D2)

σα;βγ
Th =

∑
nml

∑
ωM>0

Re
[ ∂
∂ω

{
2J αnm

∂GRm
∂ω
J βmlG

R
l J

γ
ln(GRn −GAn ) + J αnm

∂GRm
∂ω
J βγmn(GRn −GAn )

}
+
{
β ↔ γ

}]
ω=iωM

(D3)

σ̃α;βγ
Drude = 2

∑
n

τ2Re
[
J αn J βn J γn

(
−∂

2f

∂ω2

)
+ J αn J βγn

(
−∂f
∂ω

)
+
∑
m( 6=n)

J αn
J βnmJ γmn + (β ↔ γ)

εnm + 2iη

(
−∂f
∂ω

)]
ω=εn+iη

(D4)

σ̃α;βγ
BCD = 2

∑
n

τ Im
[
QαβD;nJ

γ
n

(
−∂f
∂ω

)
+ (β ↔ γ)

]
ω=εn+iη

(D5)

σ̃α;βγ
Inter = 2

∑
nm(m6=n)

Re
[ J αnmJ βγmn

(εnm + 2iη)2

(
−∂f
∂ω

)
+
∑
l 6=n

J αnmJ
β
mlJ

γ
ln + (β ↔ γ)

(εnm+2iη)2(εnl+2iη)

(
−∂f
∂ω

)]
ω=εn+iη

(D6)

σα;βγ
M is the Matsubara term for the second order non-

linear response. Tilde above the terms means the clas-
sification of terms in the limit η → 0. First, we ana-

lyze the ”Drude term” σ̃α;βγ
Drude, which corresponds to the

Drude term in the conventional analysis. While the first
term and second term in Eq. (D4) only get the contri-
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bution from the real part of the distribution function,
the third term has the contribution from the imaginary
part. Under the approximation Ref(εn+iη) ' f(εn) and
Imf(εn + iη) ' η∂f(εn)/∂ω, we can derive the following
form from the third term in Eq. (D4) as,

∑
m(6=n)

J αn
J βnmJ γmn + (β ↔ γ)

εnm + 2iη

(
−∂f
∂ω

)]
ω=εn+iη

= 2
∑
n 6=m

τ2εnmJ αn g
βγ
S;n,mRe

(∂f
∂ω

)
ω=εn+iη

+2
∑
n

τJ αn g
βγ
S;nIm

(∂f
∂ω

)
ω=εn+iη

(D7)

' 2
∑
n 6=m

τ2εnmJ αn g
βγ
S;n,m

(∂f
∂ω

)
ω=εn

+
∑
n

J αn g
βγ
S;n

(∂2f

∂ω2

)
ω=εn

(D8)

The second term newly arise from the imaginary part
of the distribution function, which represents the broad-
ening of the spectral function. We note that the other
terms in σ̃Drude can be summarized into the conventional
Drude term as τ2

∑
n J αn ∂β∂γf(εn) in the limit of η → 0.

We can transform the second term into

σ̃α;βγ
Drude = σα;βγ

Drude + σα;βγ
sQMD (D9)

σα;βγ
Drude = 2τ2

∑
n

J αn

[
J βn J γn Re

(
−∂

2f

∂ω2

)
+

(
J βγn +

∑
m

εnmg
βγ
S;n,m

)(
−∂f
∂ω

)]
|εn+iη

' 2τ2
∑
n

J αn ∂β∂γf(εn) (D10)

σα;βγ
sQMD = 2

∑
n

τJ αn g
βγ
S;nIm

(∂f
∂ω

)
ω=εn+iη

'
∑
n

J αn g
βγ
S;n

(∂2f

∂ω2

)
ω=εn

=
∑
n

∂αgβγS;n

(
−∂f
∂ω

)
ω=εn

, (D11)

and therefore, we call it the (smeared) quantum metric
dipole term. We note that this quantum metric dipole
term is different from that in Ref.[55], which needs non-
uniform electric fields. Because here it is the smeared
quantum metric, when there is a band-degeneracy at
the Fermi surface, this term is proportional to τ2 (be-

cause gβγS;n is proportional to τ2 when εnm = 0) and gives
the multi-band correction to the conventional nonlinear
Drude term, as same as the linear conductivity. On the
other hand, in the regime |εn − εm|τ � 1, this term be-
comes almost independent from the strength of the dissi-
pation even though this term stems from the dissipation.

Next, we analyze the originally Berry curvature dipole

term. Under the approximation, we can derive

σ̃α;βγ
BCD = σα;βγ

dBCD + σα;βγ
dQMD (D12)

σα;βγ
dBCD = 2

∑
n

τΩαβD;nJ
γ
n Re

(
−∂f
∂ω

)
εn+iη

+ (β ↔ γ)

= 4τ
∑
n

∂γΩαβD;nRef(εn + iη) + (β ↔ γ)(D13)

σα;βγ
dQMD = −2

∑
n

gαβD;nJ
γ
n Im

(
−∂f
∂ω

)
εn

+ (β ↔ γ)

= 4τ
∑
n

∂γgαβD;nImf(εn + iη) + (β ↔ γ),(D14)

where ΩαβD;n = ImQαβD;n is the dissipative Berry curvature

and ΩαβD;n = 2ReQαβD;n is the dissipative quantum metric.

In the limit η → 0, Eq. (D13) becomes the well-known
the Berry curvature dipole term. We note that the dissi-
pative quantum geometry is different from the smeared
quantum geometry. In this representation, because it is
the dissipative geometry, the (dissipative) Berry curva-
ture dipole term is not necessarily the Hall conductivity.
Therefore, it is more convenient to convert the smeared
geometric terms as written as,

σα;βγ
dBCD

= 2τ
∑
n,m

[(ε2nmτ2 − 1

ε2nmτ
2 + 1

ΩαβS;n,m −
2εnmτ

ε2nmτ
2 + 1

gαβS;n,m

)
× J γn Re

(
−∂f
∂ω

)
εn+iη

+ (β ↔ γ)

]
(D15)

' 2τ
∑
n,m

[(
ΩαβS;n −

2gαβS;n,m

εnmτ

)
J γn
(
−∂f
∂ω

)
εn

+ (β ↔ γ)

]
(D16)

σα;βγ
dQMD

= 2τ
∑
n,m

[(ε2nmτ2 − 1

ε2nmτ
2 + 1

gαβS;n,m +
2εnmτ

ε2nmτ
2 + 1

ΩαβS;n,m

)
× J γn Im

(
−∂f
∂ω

)
εn+iη

+ (β ↔ γ)

]
(D17)

'
∑
n

[
−
(
∂γgαβS;n

)(
−∂f
∂ω

)
εn

+
2ΩαβS;n,m

εnmτ
J γn
(
−∂

2f

∂ω2

)
εn

+ (β ↔ γ)

]
(D18)

In the limit εnmτ � 1, up to the first order of η, the first
term in Eq. (D15) is the conventional Berry curvature
dipole term and the second term is the terms pointed out
in Ref.[37, 56, 57]. [58] Here, another QMD term emerges
from the original Berry curvature dipole term. Because it
is the dissipative quantum metric, when there is a band-
degeneracy at the Fermi surface, this term also gives the
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multi-band correction to the nonlinear Drude term. As
same as the smeared QMD term, in the limit |εn−εm|τ �
1, this behaves as almost independent of the strength
of the dissipation, while it stems from the dissipation.
When considering the limit εnmτ � 1 and approximating
Imf(εn+ iη) = η(∂f/∂ω)|εn , which is enough justified at
βη � 1, the sum of the smeared QMD term and the first
term in Eq. (D18) can be written as,

(
∂γgαβS;n+∂βgαγS;n−∂

αgβγS;n

)(∂f
∂ω

)
εn

= 2Γα;βγ
S;n

(∂f
∂ω

)
εn
,

(D19)

where Γα;βγ
S;n ≡ (∂γgαβS;n+∂βgαγS;n−∂αg

βγ
S;n)/2 can be called

the “smeared Christoffel symbol”, which is the general-
ization of the Christoffel symbol in Ref.[45] to the dissi-
pative case. Therefore, we can call the sum of those term
as “the smeared Christoffel symbol term” at the Fermi
surface.

Finally, we analyze the interband term σ̃α;βγ
Inter in

Eq. (D6).

σ̃α;βγ
Inter can generate the another Christoffel symbol term

and the generalized Berry curvature term as,

σα;βγ
Inter;1 = σα;βγ

ChS:II + σα;βγ
gBC , (D20)

σα;βγ
ChS:II

= 2
∑
k

∑
n,m(6=n)

[
Re(J αnmJ βγmn)Re

( 1

(εnm+2iη)2

)
+
{∑
l(6=n)

Re(J αnmJ
β
mlJ

γ
ln)Re

( 1

(εnm+2iη)2(εnl+2iη)

)}
+
{
β ↔ γ

}]
Re
(
−∂f
∂ω

)
εn+iη

+O(τ−2) (D21)

= 2
∑
k

∑
n

gα;βγ
S′;n

(
−∂f
∂ω

)
εn

= 2
∑
k

∑
n

Γα;βγ
S′;n

(
−∂f
∂ω

)
εn

(D22)

'
∑
k

∑
n

(
〈∂αn|∂βγn〉+ 〈∂βγn|∂αn〉

)(
−∂f
∂ω

)
εn

(D23)

= 2
∑
k

∑
n

Γα;βγ
n

(
−∂f
∂ω

)
εn

(D24)

Γα;βγ
n =

1

2

(
∂γgαβn + ∂βgγαn − ∂αgβγn

)
=

1

2

(
〈∂αn|∂βγn〉+ 〈∂βγn|∂αn〉

)
(D25)

σα;βγ
gBC = σα;βγ

gBC:re + σα;βγ
gBC:im + σα;βγ

gBC:add (D26)

σα;βγ
gBC:re + σα;βγ

gBC:add

= 2
∑
k

∑
n,m(6=n)

[
Im(J αnmJ βγmn)Im

( 1

(εnm+2iη)2

)
+
{∑
l(6=n)

Im(J αnmJ
β
mlJ

γ
ln)Im

( 1

(εnm+2iη)2(εnl+2iη)
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+
{
β ↔ γ

}]
Re
(∂f
∂ω

)
εn+iη

(D27)

=
∑
k

∑
n,m( 6=n)

Ωα,βγS′;n,m

εnmτ

(
−∂f
∂ω

)
εn

+ σα;βγ
gBC:add +O(τ−2), (D28)

σα;βγ
gBC:add

' 2
∑
k

∑
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β
mlJ

γ
ln)
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( 1
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)(
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)
εn
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+(β ↔ γ) (D29)

σα;βγ
gBC:im

= 2
∑
k

∑
n,m( 6=n)

[
Im(J αnmJ βγmn)Re

( 1

(εnm+2iη)2

)
+
{∑
l( 6=n)

Im(J αnmJ
β
mlJ

γ
ln)Re

( 1

(εnm+2iη)2(εnl+2iη)
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+
{
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Im
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(D30)

= −
∑
k

∑
n

Ωα,βγS′;n

τ

(
−∂

2f

∂ω2

)
εn

+O(τ2), (D31)

where the Ωα,βγS′;n,m(gα,βγS′;n,m) is the smeared Berry curva-

ture (quantum metric) generalized to the higher-order
derivative, which can be derived by the following substi-
tution from Ωα,βγn,m (gα,βγn,m ),

1

ε2nm
→ 1

ε2nm + 4η2

1

εnm
→ εnm

ε2nm + 4η2
,

(D32)

gα,βγn,m = Re 〈∂αn|m〉 〈m|∂βγn〉 = Γα;βγ
n,m (D33)

= 2Re
[J αnm
εnm

1

εnm

(
J βγmn +

J βmlJ
γ
ln + (β ↔ γ)

εnl

)]
(D34)

Ωα,βγn,m = 2Im 〈∂αn|m〉 〈m|∂βγn〉 (D35)

If we consider ∂βγ as the derivative to the new direc-
tion, Ωα,βγS′;n,m(gα,βγS′;n,m) is also the smeared Berry curva-

ture (quantum metric) generalized to the higher-order
derivative. We note that, in two-band systems under the
time-reversal symmetry, only the first term in Eq. (D27)
can induce the non-reciprocal conductivity σα;αα. Under
the time-reversal symmetry, the Drude term, the smeared
Christoffel term, and the other terms proportional to the
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smeared quantum metric are zero. Moreover, the terms
proportional to the conventional smeared Berry curva-
ture are also zero because α = β = γ. However, the ex-
tended Berry curvature Ωα,αα can be finite because ∂αα is
different from ∂α. As we can see in Eq. (D28), Eq. (D29)
and Eq. (D31), this non-reciprocal term under the time-
reversal symmetry becomes zero when η → 0, which is

pointed out in Ref.[18]. Here we also find another neces-
sary condition, which is that the Hamiltonian must have
the quadratic term, because J αα becomes zero without
it. Therefore, non-reciprocal transport under the time-
reversal symmetry in the DC limit is zero, for example,
in the Weyl system with linear dispersion.
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